
TYPES OF LPS

CSCI 4113/6101
INSTRUCTOR: NORBERT ZEH

SEPTEMBER 10, 2025

So far, we have focused on discussing how to model some optimization problems using LPs. More
examples will follow in subsequent chapters—linear programming will be used as a tool to express
optimization problems throughout this course. The next chapter is concerned with discussing the most
widely used algorithm for solving LPs, the Simplex Algorithm. This algorithm assumes that its input
is in a particular form. This topic introduces two standard representations of linear programs, the
canonical form and the standard form; the latter, sometimes also called slack form, is the one the
Simplex Algorithm works with.1

1 CANONICAL FORM

An LP in canonical form consists of an n-element row vector

c = (c1, . . . , cn),

an m-element column vector

b =











b1

b2
...

bm











,

and an m× n matrix

A=











a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n











.

1To make things perfectly confusing, texts that refer to standard form as slack form often also refer to canonical form as
standard form. I follow the terminology used by Papadimitriou and Steiglitz (1982) here because the interpretation of some
variables in the standard form as “slack variables”, which justifies the name “slack form”, makes sense only immediately after
converting an LP in canonical form into one in standard form.

1

A, b, and c represent the following LP:

Maximize
n
∑

j=1

c j x j

s.t.
n
∑

j=1

ai j x j ≤ bi ∀i ∈ [m]

x j ≥ 0 ∀ j ∈ [n]

(1)

The last n constraints are called non-negativity constraints.
In other words, all variables in an LP in canonical form are required to be non-negative, all constraints

are upper bound constraints—constant upper bounds on linear combinations of the variables—and the
objective is to maximize the objective function.

If we define that x ≤ y for two m-element vectors if and only if x i ≤ yi for all 1 ≤ i ≤ m, and we
write 0 to denote the 0-vector (0, . . . , 0)T , then this LP can be written more compactly as2

Maximize cx

s.t. Ax ≤ b

x ≥ 0,

where cx is the inner product of the two vectors c and x and Ax is the usual matrix-vector product.
(Throughout the discussion of linear programs in this course, we treat x as a column vector.)

Throughout most of this course, we call two LPs equivalent if they have the same variables and
the same set of feasible solutions, and their objective functions assign the same value to each feasible
solution. In the following two lemmas, we use the more general notion of equivalence that considers
two LPs P and P ′ over variables x = (x1, . . . , xn)T and y = (y1, . . . , yr)T equivalent if there exist two
linear functions φ : Rn→ Rr and ψ : Rr → Rn such that

• x̂ is a feasible solution of P if and only if φ(x̂) is a feasible solution of P ′,
• ŷ is a feasible solution of P ′ if and only if ψ(ŷ) is a feasible solution of P,
• If x̂ is an optimal solution of P, then φ(x̂) is an optimal solution of P ′, and
• If ŷ is an optimal solution of P ′, then ψ(ŷ) is an optimal solution of P.

Equivalence of LPs is useful because it allows us to obtain an optimal solution of an LP by solving any of
its equivalent LPs.

PROPOSITION 1. Every linear program can be transformed into an equivalent linear program in canonical
form.

Proof. An LP P may not be in canonical form for four reasons:

• It may be a minimization LP.
• Some of its constraints may be equality constraints.
• Some of its inequality constraints may be lower bounds, as opposed to upper bounds.

2Recall that AT denotes the transpose of the matrix A. A column vector is simply an m× 1 matrix. A row vector is simply a
1× n matrix. Here, transposing the row vector (0, . . . , 0) produces a column vector.

2

• Some variables may not have non-negativity constraints.

We define a sequence of LPs P = P0, P1, P2, P3, P4 = P ′ such that P ′ is in canonical form and for all
1≤ i ≤ 4, Pi−1 and Pi are equivalent. Thus, P ′ is an LP in canonical form that is equivalent to P.

From minimization LP to maximization LP. First we construct a maximization LP P1 that is equivalent
to P0 = P. If P0 is itself a maximization LP, then P1 = P0. Otherwise, the objective of P0 is to minimize cx .
This is the same as maximizing −cx . Thus, P1 has the objective function −cx and asks us to maximize it.
P0 and P1 have the same variables and the same constraints, so they have the same set of feasible
solutions. As just observed, any feasible solution that minimizes cx also maximizes −cx . Thus, P0 and
P1 are equivalent.

From equalities to inequalities. The next LP P2 we construct from P1 is a maximization LP without
equality constraints. Clearly,

n
∑

j=1

ai j x j = bi

if and only if

n
∑

j=1

ai j x j ≥ bi and

n
∑

j=1

ai j x j ≤ bi .

Thus, we construct P2 by replacing every equality constraint in P1 with these two corresponding inequality
constraints. P1 and P2 have the same variables and the same objective function, and every inequality
constraint in P1 is also a constraint in P2. As just observed, any solution x̂ = (x̂1, . . . , x̂n) satisfies an
equality constraint in P1 if and only if it satisfies the two corresponding inequality constraints in P2. Thus,
P1 and P2 have the same set of feasible solutions and the same objective function. They are therefore
equivalent.

From lower bounds to upper bounds. The next LP P3 we construct from P2 is a maximization LP with
only upper bound constraints, apart from constraints of the form x j ≥ 0 or x j ≤ 0. This transformation is
similar to the transformation from a minimization LP to a maximization LP: Every lower bound constraint

n
∑

j=1

ai j x j ≥ bi

in P2 is satisfied if and only if the upper bound constraint

n
∑

j=1

−ai j x j ≤ −bi

3

is satisfied, so we replace it with this constraint in P3. Since P2 and P3 have the same variables and the
same objective function, and it is easy to see that x̂ = (x̂1, . . . , x̂n) is a feasible solution of P2 if and only
if it is a feasible solution of P3, P2 and P3 are equivalent.

Introducing non-negativity constraints. P3 is in canonical form, except that there may be variables
that are constrained to be non-positive (x j ≤ 0) and there may be variables that are unconstrained,
that is, that are neither required to be non-negative nor to be non-positive. Let X+, X−, and X± be
the sets of variables in P3 that are constrained to be non-negative, constrained to be non-positive, and
unconstrained, respectively. We construct a new set of variables

Y = {y j | x j ∈ X+ ∪ X±} ∪ {z j | x j ∈ X− ∪ X±}.

P4 is obtained from P3 by adding the constraints y j ≥ 0 and z j ≥ 0, for all y j , z j ∈ Y , and performing the
following substitutions:

• Replace every occurrence of every variable x j ∈ X+ in P3 with y j ,
• Replace every occurrence of every variable x j ∈ X− in P3 with −z j , and
• Replace every occurreence of every variable x j ∈ X± in P3 with y j − z j .

The linear transformations φ and ψ that establish the equivalence between P3 and P4 are defined as
follows:

φ(x̂) = (ŷ , ẑ),

where ŷ = (ŷ j)x j∈X+∪X± and ẑ = (ẑ j)x j∈X−∪X± , such that

ŷ j =max(x̂ j , 0) ∀x j ∈ X+ ∪ X±,

ẑ j =max(− x̂ j , 0) ∀x j ∈ X− ∪ X±,

and
ψ
�

ŷ , ẑ) = x̂ ,

where
x̂ j = ŷ j ∀x j ∈ X+,

x̂ j = −ẑ j ∀x j ∈ X−,

x̂ j = ŷ j − ẑ j ∀x j ∈ X±.

Given a feasible solution x̂ of P3, we have φ(x̂) = (ŷ , ẑ), where the definition of φ explicitly ensures
that ŷ j ≥ 0 and ẑ j ≥ 0, for all y j , z j ∈ Y , that is, all variables in Y satisfy the non-negativity constraints
in P4. Given the replacement of variables performed to obtain P4 from P3, (x̂ , ŷ) satisfies all other
constraints in P4 if we can prove that

(i) ŷ j = x̂ j , for all x j ∈ X+,
(ii) −ẑ j = x̂ j , for all x j ∈ X−, and

(iii) ŷ j − ẑ j = x̂ j , for all x j ∈ X±.

(i) For every x j ∈ X+, P3 contains the constraint x j ≥ 0. Since x̂ is a feasible solution of P3, this
implies that x̂ j ≥ 0, so ŷ j =max(x̂ j , 0) = x̂ j .

4

(ii) For every x j ∈ X−, P3 contains the constraint x j ≤ 0. Since x̂ is a feasible solution of P3, this
implies that x̂ j ≤ 0, so ẑ j =max(− x̂ j , 0) = − x̂ j .

(iii) For every real number x , it is easily verified that x =max(x , 0)−max(−x , 0). Thus, for every
x j ∈ X±, we have ŷ j − ẑ j =max(x̂ j , 0)−max(− x̂ j , 0) = x̂ j .

Since the same replacements of variables are performed in the objective function of P3 to obtain the
objective function of P4, these three properties also immpdiately imply that x̂ and (ŷ , ẑ) have the same
objective function value as solutions of P3 and P4, respectively.

Given a feasible solution (ŷ , ẑ) of P4, let x̂ =ψ(ŷ , ẑ). Then all values in (ŷ , ẑ) are non-negative due
to the non-negativity constraints in P4. Thus, x̂ j = ŷ j ≥ 0, for all x j ∈ X+, that is, all variables of P3 that
are required to be non-negative have non-negative values. Similarly, x̂ j = −ẑ j ≤ 0, for all x j ∈ X−, that
is, all variables in P3 that are required to be non-positive have non-positive values. Given that (ŷ , ẑ)
satisifies all the constraints in P4 and given the replacement of variables performed to obtain P4 from P3,
the definition of x̂ immediately implies that x̂ satisfies all remaining constraints in P3, and that x̂ and
(ŷ , ẑ) have the same objective function value as solutions of P3 and P4, respectively. This finishes the
proof that P3 and P4 are equivalent.

Since we have shown that P0, . . . , P4 are all equivalent and P4 is in canonical form, the proposition
holds.

EXAMPLE 2. Here is an illustration of the transformation from Prop. 1. It uses a slightly modified version
of an LP that arises in modelling minimum-cost flow problems. This LP describes a flow through a graph
G whose edges are partitioned into two subsets Eb and Eu. The LP has one variable pv per vertex v ∈ V
and one variable su,v for every edge (u, v) ∈ Eb. There is no variable corresponding to any edge in Eu:

Minimize
∑

(u,v)∈Eb

cu,vsu,v −
∑

u∈V

bupu

s.t. pu − pv − su,v ≤ qu,v ∀(u, v) ∈ Eb

pv − pu ≥ qu,v ∀(u, v) ∈ Eu

su,v ≥ 0 ∀(u, v) ∈ Eb

First we turn the LP into a maximization LP:

Maximize
∑

u∈V

bupu −
∑

(u,v)∈Eb

cu,vsu,v

There are no equality constraints, so the second transformation is not needed. Next, we turn lower
bounds into upper bounds:

pu − pv − su,v ≤ qu,v ∀(u, v) ∈ Eb

pu − pv ≤ −qu,v ∀(u, v) ∈ Eu

Finally, observe that all variables su,v for (u, v) ∈ Eb are already constrained to be non-negative, but the
variables pu for u ∈ V are unconstrained. Thus, we replace every variable pu with two variables p′u and

5

p′′u to obtain the final LP in canonical form:

Maximize
∑

u∈V

bup′u −
∑

u∈V

bup′′u −
∑

(u,v)∈Eb

cu,vsu,v

s.t. p′u − p′′u − p′v + p′′v − su,v ≤ qu,v ∀(u, v) ∈ Eb

p′u − p′′u − p′v + p′′v ≤ −qu,v ∀(u, v) ∈ Eu

p′u ≥ 0 ∀u ∈ V

p′′u ≥ 0 ∀u ∈ V

su,v ≥ 0 ∀(u, v) ∈ Eb

(2)

1.1 STANDARD FORM

The Simplex Algorithm expects its input in standard form:

Maximize cx + d

s.t. Ax + y = b

x ≥ 0

y ≥ 0,

(3)

where c is an n-element row vector, d is an arbitrary real number, b is an m-element column vector,
A is an m × n-matrix, and y is a column vector of m variables. In other words, just as for an LP in
canonical form, the objective is to maximize the objective function and all variables are constrained to
be non-negative. However, whereas all constraints in an LP in canonical form are required to be upper
bound constraints, the constrains in an LP in standard form must be equality constraints. In addition,
there must be a one-to-one correspondence between the variables in y and the constraints, in the sense
that every variable in y appears with coefficient 1 in its corresponding constraint and with coefficient 0
everywhere else, even in the objective function.

The elements of y are called basic variables; the elements of x , non-basic variables. The additive
term d in the objective function clearly does not affect the optimality of a solution (x̂ , ŷ) ∈ Rn×Rm—any
solution (x̂ , ŷ) is optimal for d = d1 if and only if it is optimal for d = d2—and is normally not included
in the definition of standard form. The reason we include it is because it allows the Simplex Algorithm
to explicitly keep track of the objective function value of the current solution: The Simplex Algorithm
constructs a sequence of equivalent LPs in standard form and corresponding feasible solutions (x̂ , ŷ)
with the property that x̂ = 0. Since the variables in ŷ do not appear in the objective function at all, this
means that the solution (x̂ , ŷ) has objective function value d.

PROPOSITION 3. Every linear program in canonical form can be transformed into an equivalent linear
program in standard form.

Proof. Consider the LP (1) in canonical form and the LP (3) in standard form with d = 0. If x̂ is a
feasible solution of (1), it can be extended to a feasible solution of (3) by setting ŷi = bi −

∑n
j=1 ai j x̂ j.

This solution satisfies ŷ ≥ 0 because bi ≥
∑n

j=1 ai j x̂ j, for any feasible solution x̂ of (1). Thus, (x̂ , ŷ) is
a feasible solution of (3), and it is easy to see that it achieves the same objective function value as x̂

6

viewed as a solution of (1).
If (x̂ , ŷ) is a feasible solution of (3), then x̂ is a feasible solution of (1) because, for all i ∈ [m],

ŷi = bi −
∑n

j=1 ai j x̂ j and ŷi ≥ 0, so bi ≥
∑n

j=1 ai j x̂ j . Moreover, x̂ as a solution of (1) achieves the same
objective function value as (x̂ , ŷ) as a solution of (3).

This shows that (1) and (3) are equivalent LPs.

EXAMPLE 4. To continue Ex. 2, we can convert the LP (4) into an equivalent LP in standard form by
introducing a slack variable yu,v for every edge (u, v) ∈ E and rewriting (4) as

Maximize
∑

u∈V

bup′u −
∑

u∈V

bup′′u −
∑

(u,v)∈Eb

cu,vsu,v

s.t. p′u − p′′u − p′v + p′′v − su,v + yu,v = qu,v ∀(u, v) ∈ Eb

p′u − p′′u − p′v + p′′v = yu,v = −qu,v ∀(u, v) ∈ Eu

p′u ≥ 0 ∀u ∈ V

p′′u ≥ 0 ∀u ∈ V

su,v ≥ 0 ∀(u, v) ∈ Eb

yu,v ≥ 0 ∀(u, v) ∈ Eb ∪ Eu

(4)

The standard form (3) can be rewritten as

Maximize 0y + cx + d

s.t. b = I y + Ax

x ≥ 0

y ≥ 0,

(5)

where I is the m×m identity matrix and 0 is the m-element 0-vector.
Now let c′ be the concatenation of 0 and c,

c′ = (0,0, . . . , 0
︸ ︷︷ ︸

m times

, c1, c2, . . . , cn),

let

A′ = [I |A] =











1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

�

�

�

�

�

�

�

�

�

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n











,

7

and let

z =











z1

z2
...

zm+n











=

























y1

y2
...

ym

x1

x2
...xn

























.

Then (5) becomes
Maximize c′z + d

s.t. b = A′z

z ≥ 0.

(6)

An LP written in this form is said to be in standard form if it is equipped with a basis B = { j1, . . . , jm} ⊆
[m+ n]3 of m indices such that for all i ∈ [m], c ji = 0, ai ji = 1, and ai j = 0, for all j ∈ [m+ n] \ { ji}. The
variables z j1 , . . . , z jm are the basic variables of the LP. To clearly associate each index ji ∈ B with the ith
equality constraint in (6), we write B as a vector (j1, . . . , jm), not as a set, but we still use standard set
notation such as h ∈ B to indicate that an index h occurs in this vector. The above translation of (3) into
(6) together with the basis B = (1, . . . , m) clearly satisfies these conditions.

REFERENCES

Papadimitriou, Christos H. and Kenneth Steiglitz (1982). Combinatorial Optimization: Algorithms and
Complexity. Prentice Hall.

3We may also refer to the set {z j1 , . . . , z jm} as the basis. Whether we mean the basic variables or their indices will be clear
from the context.

8

