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Given that we have polynomial-time algorithms for solving LPs but solving ILPs is NP-hard, an important
question is whether we can use the machinery for solving LPs to obtain suboptimal but good solutions
for ILPs. We will explore this question in the third part of this book. Here, we introduce an important
tool for translating ILPs into related LPs: LP relaxation.

For every ILP, one can define a corresponding LP by simply dropping the requirement that a feasible
solution must assign integer values to all variables—in the LP solution, variables are allowed to take on
any real values as long as they satisfy the constraints in the LP. This LP is called the LP relaxation of
the ILP. As an example, here is the LP relaxation of the first ILP formulation of the MST problem we
developed earlier. It is identical to the ILP, except that the constraint xe ∈ {0, 1} has been replaced with
the constraint 0≤ xe ≤ 1—xe is no longer required to be integral:

Minimize
∑

e∈E

we xe

s.t.
∑

e∈E

xe = n− 1

∑

e∈C

xe ≤ |C | − 1 ∀cycle C in G

0≤ xe ≤ 1 ∀e ∈ E.

In general, the LP relaxation of an ILP may have a much better optimal solution than the ILP itself,
but it can never have a worse optimal solution:

LEMMA 1. If x̂ is an optimal solution to a minimization ILP P and x̃ is an optimal solution to its LP
relaxation P ′, then f ( x̃)≤ f ( x̂), where f is the objective function of P and P ′.

Proof. Since x̂ is a feasible solution of P, it is also a feasible solution of P ′. Since x̃ is an optimal solution
of P ′, this implies that f ( x̃)≤ f ( x̂).

The ratio f ( x̂)
f ( x̃) between the optimal objective function values of the ILP and its relaxation is called

the integrality gap of the ILP. In general, this gap can be arbitrarily large. However, for problems
where the integrality gap is bounded, the LP relaxation can often be used to obtain an approximation
of the optimal solution of the ILP efficiently, a fact that is at the heart of LP rounding, technique for
developing polynomial-time approximation algorithms discussed later in this course. Another useful
property exploited by some approximation algorithms is half-integrality of the optimal solution of some
LPs: in the optimal solution, every variable takes on a value that is a multiple of 1

2 . We will discuss this
later, as port of the discussion of LP rounding.
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1 INTEGRALITY GAPS OF OUR ILP FORMULATIONS OF MST

In some instances, the LP relaxation of an ILP has an integral optimal solution, that is, every variable in
this optimal solution has an integer value even though this is not explicitly enforced by the LP. By Lem. 1,
this implies that the optimal solution of the LP relaxation is also an optimal solution of the ILP. Is the
MST problem such a problem? The answer depends on the chosen ILP formulation. For each of the ILP
formulations of the MST problem that we have discussed so far, there exists an input that has a fractional
solution with a lower objective function value than the best possible integral solution, as shown in the
following two examples.

EXAMPLE 2. The first ILP formulation of the MST problem we developed was based on the characterization
that a tree on n vertices has n− 1 edges and is acyclic:

Minimize
∑

e∈E

we xe

s.t.
∑

e∈E

xe = n− 1

∑

e∈C

xe ≤ |C | − 1 ∀cycle C in G

xe ∈ {0,1} ∀e ∈ E.

(1)

As observed above, its LP relaxation is

Minimize
∑

e∈E

we xe

s.t.
∑

e∈E

xe = n− 1

∑

e∈C

xe ≤ |C | − 1 ∀cycle C in G

0≤ xe ≤ 1 ∀e ∈ E.

(2)

Any MST of the graph in Fig. 1 has weight 10. One such MST is shown in red. On the other hand, the
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Figure 1: The graph used in Ex. 2. The edge labels are edge weights.
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following fractional solution with objective function value 6 satisfies all constraints of (2): 1

x12 = 0

x23 = x24 = x25 = x26 =
1
2

x37 = x47 = x57 = x67 = 1

Thus, the integrality gap of (1) is at least 5/3.

EXAMPLE 3. The second ILP formulation of the MST problem we developed was based on the characteri-
zation that a tree on n vertices has n− 1 edges and must be connected, which we expressed by requiring
that every cut in the tree must be crossed by at least one edge:

Minimize
∑

e∈E

we xe

s.t.
∑

e∈E

xe = n− 1

∑

e crosses S

xe ≥ 1 ∀cut S in G

xe ∈ {0, 1} ∀e ∈ E.

(3)

Its LP relaxation is
Minimize
∑

e∈E

we xe

s.t.
∑

e∈E

xe = n− 1

∑

e crosses S

xe ≥ 1 ∀cut S in G

0≤ xe ≤ 1 ∀e ∈ E.

(4)

Any MST of the graph in Fig. 2 has weight 2. One such MST is shown in red. On the other hand, the
following fractional solution with objective function value 3

2 satisfies all constraints of (4):

x12 = x13 = x24 = x34 =
1
2

x25 = x45 = 1

Thus, the integrality gap of (3) is at least 4/3.

2 AN ILP FORMULATION OF MST WITH INTEGRALITY GAP 1

As the two examples in the previous section show, integrality matters for all the ILP formulations of the
MST problem discussed so far. The following extension of (1) finally is an ILP whose LP relaxation has

1For the sake of simplicity, we write x i j instead of xvi ,v j
in this example and the next two.
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Figure 2: The graph used in Ex. 3. The edge labels are edge weights.

an optimal integral solution, that is, this ILP formulation has integrality gap 1:

Minimize
∑

e∈E

we xe

s.t.
∑

e∈E

xe ≥ n− 1

∑

(u,v)∈E
u,v∈S

xu,v ≤ |S| − 1 ∀; ⊂ S ⊆ V

xe ∈ {0,1} ∀e ∈ E.

(5)

This is an extension of (1) because it does not only require that at most k− 1 edges of every k-vertex
cycle in G are chosen as part of the spanning tree but that at most k− 1 edges between any subset of
k vertices are chosen. Given that not including any cycle in T is what makes T a tree, it is surprising
that this seemingly unimportant strengthening of the LP ensures that the LP relaxation has an integral
optimal solution. Let’s first establish the correctness of the ILP (5).

LEMMA 4. For any undirected edge-weighted graph (G, w), x̂ is an optimal solution of the ILP (5) if and
only if the subgraph T = (V, E′) of G with E′ = {e ∈ E | x̂e = 1} is an MST of (G, w).

Proof. By Lem. 2 in our discussion of the MST problem, we only need to prove that w(E′) =
∑

e∈E we x̂e

and that x̂ is a feasible solution of (5) if and only if T = (V, E′) is a spanning tree of G. The former is
obvious. So let us prove the latter.

First note that, if x̂ is a feasible solution of (5), then E′ contains at least n− 1 edges, and it contains
at most |C | − 1 edges from every cycle C in G because it contains at most |C | − 1 of the edges between
the vertices in C whether these edges are part of the cycle or not. For the set S = V , (5) ensures that E′

contains at most |V | − 1= n− 1 of the edges connecting vertices in V . But that’s all edges of G, that is,
E′ contains at most n− 1 edges. Since E′ contains at least n− 1 edges, it therefore contains exactly n− 1
edges. Thus, T = (V, E′) is an acyclic graph with n− 1 edges, that is, it is a spanning tree of G.

Conversely, if T = (V, E′) is a spanning tree of T ′, then it contains exactly n− 1 edges, that is, x̂
satisfies the first constraint of (5). To prove that x̂ also satisfies the other constraints of (5), consider any
non-empty subset S ⊆ V . Since T is acyclic, so it T[S] = (S, {(u, v) ∈ E′ | u, v ∈ S}) (we call T[S] the
subgraph of T induced by S). Therefore, T[S] is a forest. Each tree in this forest has one less edge
than vertices. Thus, T [S] has at least one less edge than vertices. But the vertex set of T [S] is S, and the
edges of T[S] are exactly the edges in T connecting vertices in S. Thus, x̂ satisfies the constraint of (5)
corresponding to S. Since this is true for every non-empty subset S ⊆ V , x̂ is a feasible solution of (5).
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Figure 3: A graph whose relaxation of (5) has a fractional optimal solution.

By Lem. 2 in the discussion of the MST problem, this implies that the set E′ corresponding to an
optimal solution x̂ of (5) defines an MST T = (V, E′) of G.

As the following example shows, if there are edges of equal weight in (G, w), then the LP relaxation
of (5) may once again have an optimal fractional solution.

EXAMPLE 5. Consider the graph in Fig. 3. The corresponding LP is

Minimize 3x12 + 2x13 + x24 + 3x34

s.t. x12 + x13 + x24 + x34 ≥ 3

x12 + x13 + x24 + x34 ≤ 3

x12 + x13 ≤ 2

x12 + x24 ≤ 2

x13 + x34 ≤ 2

x24 + x34 ≤ 2

0≤ xe ≤ 1 ∀e ∈ E

which has the optimal fractional solution

x12 = α x34 = 1−α x13 = x24 = 1,

for any 0≤ α≤ 1.

However, it is easily verified that, at least in this example, any optimal fractional solution has the
same objective function value as an optimal integral solution, that is, the optimal solution of the ILP is
also an optimal solution of its relaxation. To prove that this is always the case, we will need the concept
of complementary slackness, which we will discuss in an upcoming lecture. We will revisit this ILP
formulation then and prove that its integrality gap is indeed 1.

This ILP formulation has an even stronger property, which we will not prove: If we use the Simplex
Algorithm to find a solution of the LP relaxation of (5), the computed solution is always integral. The
proof uses two facts that we do not prove here: (1) Recall that the feasible region of an LP is a convex
polytope in Rn. A geometric view of the Simplex Algorithm is that it moves between vertices of this
polytope until it reaches a vertex that represents an optimal solution. (2) Every vertex of the polytope
defined by the LP relaxation of (5) represents an integral solution.
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