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Most of this course is concerned with developing algorithms to solve optimization problems, and
virtually all optimization problems we study in this course can be expressed as linear programs (LPs).
This topic introduces you to optimization problems and linear programs.

We are interested in linear programs primarily as a language to formally define optimization problems.
Apart from providing an unambiguous definition of the problem we aim to solve, the linear program is
often the starting point for efficient algorithms to solve the problem it defines. In an upcoming topic, we
will discuss the Simplex Algorithm as a general algorithm to solve arbitrary linear programs. The Simplex
Algorithm can be viewed as a numerical algorithm that has no understanding of the problem described
by the linear program it is given as input. More often, we are interested in purely combinatorial, problem-
specific algorithms. Interestingly, the LP formulation—especially via LP duality, a concept discussed in
an upcoming topic—often reveals valuable information about the structure of the problem, which can be
exploited to obtain efficient combinatorial algorithms for the problems we are interested in.

1 OPTIMIZATION PROBLEMS

An optimization problem has possibly many “correct” solutions. Our goal is to pick the best solution
among them according to some quality measure associated with each solution. More precisely, I should
say “a best solution” because, in general, there can be more than one solution that are all equally good
and better than all other solutions.

Consider the problem of sorting a list of numbers in increasing order. There is only one correct
output for any given input, so this is not an optimization problem. On the other hand, designing a sorting
algorithm can be viewed as an optimization problem: There are many correct sorting algorithms, but our
goal usually is to choose the algorithm with the lowest running time. Our quality measure in this case is
the running time of the algorithm, and our goal is to find a solution—that is, a sorting algorithm—that
minimizes this quality measure.

Formally, we describe an optimization problem as the problem of assigning real values to a set
of variables xi,...,x, such that some objective function f(x,...,X,) is maximized or minimized,
subject to some constraints that the values assigned to these variables must satisfy. If our goal is to
maximize f(xi,...,Xx,), then we call the problem a maximization problem; if our goal is to minimize
f(x;,...,x,), a minimization problem. We usually write the list of variables more compactly as a
(column) vector x = (xy,...,x,)’.} We will then also treat f simply as a function of this vector, f(x).

The next bit of terminology is something to get used to, so pay attention: A solution of the op-
timization problem is simply an assignment of values to the variables xq,...,x,. It does not need to

1xT is the transpose of the vector x.



minimize or maximize f(x); it doesn’t even need to satisfy the constraints imposed by the problem.
We refer to such a solution as a vector X = (X1, ...,X,), where X; is the value assigned to variable x;,
for all i € [n].? We call  a feasible solution if it satisfies all the constraints imposed by the problem.
A feasible solution is an optimal solution if at maximizes or minimizes f (X), according to whether the
problem is a maximization or minimization problem.

Here is a really simple example that illustrates all of these concepts. Every rectangular prism in 3-d
can be described by its three side lengths x, y,z. These are our variables. Now let us assume that we
want a prism whose total side length x + y + 2 is at most 15. In addition side lengths obviously cannot
be negative. We can express these conditions using four constraints:

x+y+2z<15
x=0
y=0
220

Our objective is to find a rectangular prism that satisfies these four constraints and has maximum volume.
Thus, our objective function is

flx,y,2)=x-y-2.

Since our goal is to maximize this objective function, the problem is a maximization problem. The
following three are all solutions of this problem:

(%,7,2)" =(15,-3,20)"
(%,7,5)" =(3,4,8)"
(x,7,2)" =(5,5,5)"

(%,¥,2)T is not a feasible solution because ¥ < 0 and £ + y +2 > 15. (%, 7,%)T and (x, y,2)" are both
feasible solutions. Since 3-4-8 =96 < 125 =5-5-5, (%,¥,%)! is not an optimal solution. Using
a bit of calculus, we would be able to verify that (x, y,2)” is an optimal solution. This just captures
the well-known fact that given fixed bound on its total side length, the rectangular prism of maximum
volume is a cube.

2 LINEAR PROGRAMS

A linear program (LP) is an optimization problem in which the objective function is a linear combination
of the variables, and all constraints are linear inequalities.
A linear combination of variables x1, ..., X, is an expression of the form

n

z :aixi’

i=1

where a,,...,qa, are arbitrary constants. If you remember linear algebra, then this is nothing but the

2Throughout this course, we will use the notation [n] = {1,...,n} and [n], = {0,...,n}.



inner product

where a = (ay,...,a,)".
A linear inequality is an expression of the form

f(xl)"')xn):C:

f(xq1,...,xp) <cor

f(xl)"')xn)2C7

where f(xq,...,Xx,) is a linear combination of x;,...,x, and c is a constant. Note that we disallow strict
inequalities. This is because, in general, we can guarantee that there exists an optimal solution only if
the space of feasible solutions is a closet subset of R".

Our cube finding problem from the previous section is not an LP Its constraints are all linear
inequalities, but its objective function x - y - z is not a linear combination of the three variables x,
y, and z.

The following is a linear program (with only two variables x and y), is you can easily verify that the
objective function is a linear combination of x and y, and all constraints are linear constraints:

Maximize x + 2y

s.t. (subject to) x>0
y=0
(D
3x+y <26
4x —y <31
2y—x <4

3 THE GEOMETRY OF LINEAR PROGRAMS

Every solution X = (X1, ...,%,)T of an LP with n variables can be interpreted as a point in R", and every
point in R" can be interpreted as a solution of such an LP. This raises the question of which points in R"
are feasible solutions, and which points are optimal solutions of the LP This geometric view of feasible
and optimal solutions is at the heart of the Simplex Algorithm and of virtually every general algorithm
for solving linear programs.

Let us start with a single constraint. If it is is an equality constraint a’ x = b, and we assume that
a # 0,2 then the points that satisfy this constraint form an (n — 1)-dimensional subspace of R", also

3Throughout this course, we will write 0 and 1 to denote vectors 0 = (0,...,0)" and 1 = (1,...,1) of the appropriate
dimensions. We will also write
1 0 O 0
0 1 O 0
1|0 0 1 of
o o0 o0 ... 1

that is, 1 may also denote the identity matrix. Whether 0 or 1 refers to a single value, a vector or a matrix will be clear from
the context.
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Figure 1: The three lines defined by the constraints x = 3 (black), 2y = 8 (blue), 2x + 3y = 6 (red),
and 5x — y = —1 (green). Note in particular that the last two eqations can be rewritten in a form that
may feel more familiar: y = —x/3+2and y —x/5+1.
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Figure 2: The line 5x — y = —1 slices the plane into two halves composed of all points satisfying
5x —y <—1and 5x —y = —1, respectively.

called a hyperplane. Fig. 1 shows a few examples in n = 2 dimensions, where a hyperplanet is simply a
line.

We usually do not care about the case when a = 0, as this means that the values assigned to the
variables have no impact on whether the constraint is satisfied or not. If the constraint is 07 x = 0, then
all solutions satisfy this constraint, that is, the constraint imposes no restrictions on the set of feasible
solutions and can be omitted. If the constraint is 07 x = ¢, for some ¢ # 0, then no solution satisfies this
constraint, that is, there is no feasible solution. Therefore, both types of constraints are quite useless.

If the constraint is an inequality, then the solutions that satisfy this constraint form an n-dimensional
halfspace, that is, the set of all points on one side of a hyperplane. In n = 2 dimensions, this is easy
to visualize once again. A hyperplane is a line in this case. This line slices R? into two halves, the two
halfspaces on either side of the line. Fig. 2 illustrates this.

Now, a linear program usually has more than one constraint. Assuming these constraints are all
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Figure 3: The feasible region of the LP (1) and the optimal solution (red dot). Each of the blue lines is
defined by the equation x + 2y = c, for some constant c, that is, all of the points on such a line achieve
the same objective function value c. As we move these lines upwards, the objective function value
increases. As long as a line x + 2y = ¢ has an intersection with the feasible region of the LB there exists
a feasible solution with objective function value c. In particular, if the line intersects the interior of the
feasible region, there exists a feasible solution with obljective function value greater than c, which lies
on a blue line just slightly above the current line. The optimal solution is obtained as soon as the current
blue line intersects only the boundary of the feasible region. In this example, this intersection is a single
point, that is, this LP has exactly one optimal solution. This is not always the case.

inequality constraints, the points that satisfy each constraint form a halfspace, as just observed. The
points that satisfy all constraints are exactly the intersection of these halfspaces. The intersection of
halfspaces is easily seen to form a convex polytope in R". We call this region the feasible region of
the LB because a point in R" is a feasible solution of the LP if and only if it lies inside this region. Fig. 3
shows the feasible region of the LP (1).

The optimal solution of this LP is the red point (4—78, %) in Fig. 3 with objective function value
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Figure 4: The feasible region of the LP (2). Note that this feasible region is unbounded, as it extends
infinitely in the +y-direction. Since the objective function value increases as we move in the direction of
the red arrow, this means that for every feasible solution, there exists a better feasible solution that is
slightly above it. Therefore, this LP does not have an optimal solution.

4 EXISTENCE AND PROPERTIES OF AN OPTIMAL SOLUTION

Since we are interested in finding optimal solutions of LPs, it is helpful to understand when such solutions
exist and, if they exist, what properties characterize them.

First, if the feasible region of the LP is empty, then by definition, there exists no feasible solution and,
therefore, no optimal solution. We call the LP infeasible in this case. A trivial example is an LP with two
constraints x < 1 and x > 2. Clearly, there is no solution that satisfies both constraints. Geometrically,
these two constraints define two disjoint halfspaces, so their intersection is empty. In general, infeasible
LPs arise from more complex interactions between constraints. It is often the case that any two of the
constraints have feasible regions with a non-empty intersection, but once we intersect the feasible regions
of all constraints, this intersection is empty.

When the LP is infeasible, there is no optimal solution because of a lack of feasible solutions. We
may also be unable to find an optimal solution because of an overabundance of feasible solutions. If we



drop the two constraints 3x + y < 26 and 2y — x < 4 from the LP (1), then we obtain the following LP:

Maximize x + 2y
s.t. (subject to) x>0
y=0
4x —y <31

(2)

Its feasible region is shown in Fig. 4. This feasible region extends infinitely in the direction that increases
the objective function. Thus, for every feasible solution, we can find a better feasible solution; there is
no upper bound on the objective function values of feasible solutions. We call such an LP unbounded
because it has no bound on the achievable objective function value.

While every unbounded LP has an unbounded feasible region, the converse is not true. For example,
if we dropped the two constraints x > 0 and y = O from the LP (1), then the feasible region of the LP
would extend infinitely in the —x and —y-directions. Thus, the feasible region is unbounded. However,
you can verify that the red point in Fig. 3 remains the optimal solution of the LP because the constraints
we did not eliminate still limit how far we can move in the direction that improves the objective function
value while keeping the solution feasible.

Let us assume then that the LP we want to solve is feasible and bounded. Then we have

PROPOSITION 1. All optimal solutions of a feasible and bounded LP with a non-constant objective function
are points on the boundary of the feasible region of the LP

Proof. Consider a feasible solution X that is not on the boundary of the feasible region R of the LP Then
there exists a small radius ¢ > 0 such that every solution X at distance at most ¢ from X is also feasible.
Formally, any such solution satisfies

Let the objective function of the LP be ¢’ x. Since the objective function is non-constant, there exists
a variable x; whose objective function coefficient c; is non-zero. Assume w.l.o.g. that ¢; > 0 and that our
goal is to maximize the objective function ¢’ x. Then consider the solution % defined as

Xj+e ifj=i

X otherwise.

Its objective function value is

cTx=cTf+ce>cT%.

This proves that any feasible solution X not on the boundary of R is not an optimal solution. Its



contrapositive is the lemma.



