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Linear programs always come in pairs. Every LP P has an associated LP D called its dual. If P is a
maximization LP, then D is a minimization LP. These two LPs have the remarkable property that any
feasible solution of P has an objective function value that is no greater than the objective function value
of any feasible solution of D. What’s more, any optimal solution of P has exactly the same objective
function value as any optimal solution of D.

This relationship between an LP and its dual has many applications. First, we can use it to verify that
a given solution of an LP is optimal. Second, when designing approximation algorithms, we can often
consider the LP formulation of the problem we are trying to solve and construct a feasible solution of
the dual LP whose objective function value differs from the solution produced by our algorithm by only
a small factor. This then proves that the solution produced by our algorithm is a good approximation
of an optimal solution for the given problem instance. This technique is called dual fitting and will
be discussed in more detail later in this course. Third, and probably most importantly, there exists an
algorithmic technique, called the primal-dual schema, which focuses on simultaneously finding optimal
solutions to an LP and its dual. We will see numerous examples of this technique, for finding maximum
flows, for finding minimum-weight perfect matchings, and for finding approximate solutions of NP-hard
problems.

This chapter is organized as follows: Sec. 1 introduces the concept of the dual of an LP and proves
that the optimal solutions of an LP and its dual always have the same objective function value. The
concept of LP duality applies to LPs in canonical form. When using LP duality to reason about the
correctness of numerous optimization algorithms, however, the LPs that arise are not in canonical
form. A perfectly correct way to obtain the duals of such non-canonical LPs is to first convert them
into canonical form—remember, this is always possible—construct the dual, and then “convert the dual
back”. I encourage you to do this with a few non-canonical LPs until you are comfortable with duality,
but overall, this is a rather tedious method to construct the dual of a non-canonical LP. Sec. 2 discusses
how to obtain the dual of an arbitrary LP, one not necessarily in canonical form.

1 LP DUALITY

Consider a maximization LP P in canonical form:

Maximize cx

s.t. Ax ≤ b

x ≥ 0

(1)

1



In the context of LP duality, we call P the primal LP. Its corresponding dual LP is

Minimize bT y

s.t. AT y ≥ cT

y ≥ 0.

(2)

If you write both LPs in tabular form, similar to a tableau, then the dual LP is obtained by transposing
the primal LP:

c1 c2 · · · cn

b1 a11 a12 · · · a1n

b2 a21 a22 · · · a2n
...

...
...

. . .
...

bm am1 am2 · · · amn

x1 x2 · · · xn

Primal

⇐⇒

b1 b2 · · · bm

c1 a11 a21 · · · am1

c2 a12 a22 · · · am2
...

...
...

. . .
...

cn a1n a2n · · · amn

y1 y2 · · · ym

Dual

Given that every column of the dual is the transpose of a row of the primal and vice versa, it is often
convenient to think about each dual variable yi (corresponding to the ith column of the dual) as being
associated with the ith constraint of the primal (corresponding to the ith row of the primal), and about
each primal variable x j (corresponding to the jth column of the primal) as being associated with the
jth constraint of the dual (corresponding to the jth row of the dual). This association is important, for
example, in the theory of complementary slackness, discussed in the next topic.

Something that often hampers the understanding of LP duality is to ask “what the dual means”. This
is particularly tempting when expressing other optimization problems as LPs and then constructing the
dual, for example, when using the primal-dual schema. It is sometimes possible to attach an intuitive
interpretation to the dual, and this intuitive interpretation can be very helpful. However, as one of the
leading researchers in approximation algorithms, Vijay Vazirani, once put it, much of the power of LP
duality stems from the fact that it is a purely mechanical transformation of the given LP. Asking what
the dual means is sometimes helpful but is often the wrong thing to do. Take this advice seriously.

The first, useful and not all that difficult to prove, observation is that the objective function value
of any solution of the dual LP is an upper bound on the objective function value of any solution of the
primal LP.

LEMMA 1 (Weak Duality). Let x̂ be a feasible solution of the primal LP (1), and let ŷ be a feasible solution
of the dual LP (2). Then c x̂ ≤ bT ŷ .
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Proof. We have

n
∑

j=1

c j x̂ j ≤
n
∑

j=1

� m
∑

i=1

ai j ŷi

�

x̂ j

�

by (2), c j ≤
m
∑

i=1

ai j ŷi ∀1≤ j ≤ n

�

=
m
∑

i=1

 

n
∑

j=1

ai j x̂ j

!

ŷi

≤
m
∑

i=1

bi ŷi

 

by (1),
n
∑

j=1

ai j x̂ j ≤ bi ∀1≤ i ≤ m

!

.

An immediate consequence of Lem. 1 is the following corollary.

COROLLARY 2. Let x̂ be a feasible solution of the primal LP (1) and let ŷ be a feasible solution of the dual
LP (2). If c x̂ = bT ŷ , then both x̂ and ŷ are optimal solutions of their respective LPs.

Cor. 2 states a sufficient condition for a primal solution x̂ and a dual solution ŷ to be optimal. The
following theorem states that this is also a necessary condition:

THEOREM 3 (Strong Duality). Let x̂ be a feasible solution of the primal LP (1) and let ŷ be a feasible
solution of the dual LP (2). x̂ is an optimal solution of (1) and ŷ is an optimal solution of (2) if and only if
c x̂ = bT ŷ .

Proof. By Cor. 2, if c x̂ = bT ŷ , then x̂ and ŷ are optimal solutions of (1) and (2), respectively. We need
to prove that if c x̂ < bT ŷ, then at least one of these two solutions is not optimal. To this end, we
show that there exist solutions x̃ and ỹ of (1) and (2), respectively, such that c x̃ = bT ỹ. By Lem. 1,
c x̂ ≤ bT ỹ = c x̃ ≤ bT ŷ. If c x̂ < bT ŷ, this implies that either either c x̂ < cT x̃ or bT ỹ < bT ŷ (or both).
Thus, at least one of x̂ and ŷ is not an optimal solution, as required.

To find x̃ and ỹ, we convert (1) into an LP in standard form, and solve this LP using the Simplex
Algorithm. The primal solution x̃ will be the optimal primal solution found by the Simplex Algorithm
(minus the slack variables introduced by the conversion to standard form). We will extract the dual
solution ỹ from the final tableau produced by the Simplex Algorithm, which has the optimal primal
solution as its BFS.

So consider the primal LP (1). Its corresponding LP in standard form is

Maximize cx

s.t. Iz + Ax = b

x , z ≥ 0,

(3)

where z1, . . . , zm are slack variables corresponding to the m constraints of (1).
Now recall that the Simplex Algorithm produces a sequence of LPs tableaux T (0), . . . , T (t) representing

LPs equivalent to (3) and that the solution (z̃, x̃) it outputs is the BFS of T (t). Let the LP represented by
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T (t) be
Maximize c′z + c′′x + d ′

s.t. A′z + A′′x = b′

x , z ≥ 0.

Recall that since (z̃, x̃) is the BFS of T (t), its objective function value is d ′. Since the LP represented by
T (t) is equivalent to (3), the objective function of (3) assigns the same objective function value to (z̃, x̃):

c x̃ = d ′

Since z̃ ≥ 0, we have Ax̃ ≤ b, that is, x̃ is a feasible solution of (1). Its objective function value as a
solution of (1) is also d ′, because (1) and (3) have the same objective function.

It remains to demonstrate that there exists a feasible dual solution ỹ with the same objective function
value. We show that the solution

ỹ = −c′

(the value of each dual variable yi is the negation of the objective function coefficient c′i of the slack
variable zi in T (t)) is such a solution.

For any solution (ż, ẋ) of (3), we have

n
∑

j=1

c j ẋ j =
m
∑

i=1

c′i żi +
n
∑

j=1

c′′j ẋ j + d ′

= d ′ +
m
∑

i=1

(− ỹi)

 

bi −
n
∑

j=1

ai j ẋ j

!

+
n
∑

j=1

c′′j ẋ j

=

�

d ′ −
m
∑

i=1

bi ỹi

�

+
n
∑

j=1

�

c′′j +
m
∑

i=1

ai j ỹi

�

ẋ j .

(4)

The first equality holds because (3) and the LP represented by T (t) are equivalent, and thus assign the
same objective function value to the solution (ż, ẋ). The second inequality follows by subsituting − ỹi for
c′i , and bi −

∑n
j=1 ai j ẋ j for żi . This is valid because we defined ỹ = −c′ and, being a feasible solution of

(3), (ż, ẋ) satisfies żi = bi −
∑n

j=1 ai j ẋ j . The last equality is obtained by rearranging terms.
By substituting (z̃, x̃) for (ż, ẋ) in (4), we obtain that

n
∑

j=1

c j x̃ j =

�

d ′ −
m
∑

i=1

bi ỹi

�

+
n
∑

j=1

�

c′′j +
m
∑

i=1

ai j ỹi

�

x̃ j . (5)

Next observe that, for any index 1≤ k ≤ n and any real value ∆, the vector (z̆, x̆) defined as

x̆ j =

(

x̃ j +∆ if j = k

x̃ j otherwise,

z̆i = bi −
n
∑

j=1

ai j x̆ j = bi −
n
∑

j=1

ai j x̃ j − aik∆= z̃i − aik∆
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is also a (not necessarily feasible) solution of (3). Thus, this solution also satisfies (4), and we obtain

n
∑

j=1

c j x̆ j =

�

d ′ −
m
∑

i=1

bi ỹi

�

+
n
∑

j=1

�

c′′j +
m
∑

i=1

ai j ỹi

�

x̆ j

n
∑

j=1

c j x̃ j + ck∆=

�

d ′ −
m
∑

i=1

bi ỹi

�

+
n
∑

j=1

�

c′′j +
m
∑

i=1

ai j ỹi

�

x̃ j +

�

c′′k +
m
∑

i=1

aik ỹi

�

∆.

By subtracting (5), we obtain that

ck∆=

�

c′′k +
m
∑

i=1

aik ỹi

�

∆.

Since this is true for all ∆ ∈ R, this implies that

ck = c′′k +
m
∑

i=1

aik ỹi . (6)

Since this holds for all 1≤ k ≤ n, we can substitute this equality into (5) and obtain

n
∑

j=1

c j x̃ j =

�

d ′ −
m
∑

i=1

bi ỹi

�

+
n
∑

j=1

�

c′′j +
m
∑

i=1

ai j ỹi

�

x̃ j

=

�

d ′ −
m
∑

i=1

bi ỹi

�

+
n
∑

j=1

c j x̃ j

and, hence,

d ′ −
m
∑

i=1

bi ŷi = 0.

Thus, the objective function value of ỹ as a solution of (2) is

m
∑

i=1

bi ỹi = d ′′,

as claimed. To see that ỹ is a feasible solution of (2), observe that T (t) satisfies c′ ≤ 0 and c′′ ≤ 0
(otherwise, the Simplex Algorithm would continue pivoting). Thus, ỹ = −c′ ≥ 0, and (6) together with
c′′ ≤ 0 implies that

c ≤ AT ỹ .

Therefore, ỹ is a feasible solution of (2).
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2 THE DUAL OF A NON-CANONICAL LP

We defined the dual of an LP in canonical form, a maximization LP

Maximize cx

s.t. Ax ≤ b

x ≥ 0,

(7)

as the minimization LP
Minimize bT y

s.t. AT y ≥ cT

y ≥ 0.

(8)

What if the LP is not in canonical form? Can we still easily define its dual?
Let’s start with a warm-up exercise. Every mathematician expects any duality construction to be

its own inverse: if we take the dual of the dual, we should get back the primal. LP duality meets this
expectation:

Observe that the dual LP (8) can easily be converted into canonical form by negating the objective
function and all constraints:

Maximize −bT y

s.t. −AT y ≤ −cT

y ≥ 0.

The dual of this LP is
Minimize −cx

s.t. −Ax ≥ −b

x ≥ 0.

But that’s just our primal (7) written as a minimization LP via negation. So the dual of a maximization LP
is a minimization LP, the dual of a minimization LP is a maximization LP, and LP duality is well-behaved:
the dual of the dual of an LP is just the original LP.

Next let us tackle the problem of constructing the dual of an arbitrary maximization LP. We can
partition its constraints into three groups: upper bound constraints, lower bound constraints, and equality
constraints. We can also partition its variables into three groups: non-negative variables, non-positive
variables, and completely unconstrained variables. Thus, a general maximization LP can be written like
this:

Maximize c1 x+ + c2 x− + c3 x±

s.t. A1 x+ + A2 x− + A3 x± ≤ b1

A4 x+ + A5 x− + A6 x± ≥ b2

A7 x+ + A8 x− + A9 x± = b3

x+ ≥ 0

x− ≤ 0.

(9)

Note that c1, c2, c3 are row vectors and b1, b2, b3, x+, x−, x± are column vectors, not numbers.
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The canonical form of (9) is

Maximize c1 x+ − c2 x ′− + c3 x ′± − c3 x ′′±
s.t. A1 x+ − A2 x ′− + A3 x ′± − A3 x ′′± ≤ b1

−A4 x+ + A5 x ′− − A6 x ′± + A6 x ′′± ≤ −b2

A7 x+ − A8 x ′− + A9 x ′± − A9 x ′′± ≤ b3

−A7 x+ + A8 x ′− − A9 x ′± + A9 x ′′± ≤ −b3

x+, x ′−, x ′±, x ′′± ≥ 0.

Here, x ′− = −x− and x ′± − x ′′± = x±.
The dual of this LP is

Minimize bT
1 y+ − bT

2 y ′− + bT
3 y ′± − bT

3 y ′′±
s.t. AT

1 y+ − AT
4 y ′− + AT

7 y ′± − AT
7 y ′′± ≥ cT

1

−AT
2 y+ + AT

5 y ′− − AT
8 y ′± + AT

8 y ′′± ≥ −cT
2

AT
3 y+ − AT

6 y ′− + AT
9 y ′± − AT

9 y ′′± ≥ cT
3

−AT
3 y+ + AT

6 y ′− − AT
9 y ′± + AT

9 y ′′± ≥ −cT
3

y+, y ′−, y ′±, y ′′± ≥ 0.

(10)

Here, y+ is the vector of dual variables corresponding to the original upper bound constraints, y ′− is the
vector of dual variables corresponding to the original lower bound constraints, y ′± is the vector of dual
variables corresponding to the upper bound constraints derived from the equality constraints, and y ′′±
is the vector of dual variables corresponding to the lower bound constraints derived from the equality
constraints.

Here comes the cool part. First, we can flip the signs of the second and last groups of constraints in
(10):

Minimize bT
1 y+ − bT

2 y ′− + bT
3 y ′± − bT

3 y ′′±
s.t. AT

1 y+ − AT
4 y ′− + AT

7 y ′± − AT
7 y ′′± ≥ cT

1

AT
2 y+ − AT

5 y ′− + AT
8 y ′± − AT

8 y ′′± ≤ cT
2

AT
3 y+ − AT

6 y ′− + AT
9 y ′± − AT

9 y ′′± ≥ cT
3

AT
3 y+ − AT

6 y ′− + AT
9 y ′± − AT

9 y ′′± ≤ cT
3

y+, y ′−, y ′±, y ′′± ≥ 0.

This LP is equivalent to:
Minimize bT

1 y+ − bT
2 y ′− + bT

3 y ′± − bT
3 y ′′±

s.t. AT
1 y+ − AT

4 y ′− + AT
7 y ′± − AT

7 y ′′± ≥ cT
1

AT
2 y+ − AT

5 y ′− + AT
8 y ′± − AT

8 y ′′± ≤ cT
2

AT
3 y+ − AT

6 y ′− + AT
9 y ′± − AT

9 y ′′± = cT
3

y+, y ′−, y ′±, y ′′± ≥ 0.

Second, we can replace every occurrence of y ′± − y ′′± in the objective function or in any constraint with
y± = y ′± − y ′′±. While y ′±, y ′′± ≥ 0, y± is unconstrained; any value we assign to y± can be written as the
difference of two non-negative vectors assigned to y ′± and y ′′±. We can also replace every occurrence of
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y ′− with −y− = y ′−. Since y ′− ≥ 0, we have y− ≤ 0. This gives our final dual LP:

Minimize bT
1 y+ + bT

2 y− + bT
3 y±

s.t. AT
1 y+ + AT

4 y− + AT
7 y± ≥ cT

1

AT
2 y+ + AT

5 y− + AT
8 y± ≤ cT

2

AT
3 y+ + AT

6 y− + AT
9 y± = cT

3

y+ ≥ 0

y− ≤ 0.

(11)

If you refer back to the primal LP (9) that we started with, you can observe that, just as in the dual
of an LP in canonical form, the coefficients of the dual objective function are the right-hand sides of
the primal constraints, the right-hand sides of the dual constraints are the coefficients of the primal
objective function, and the matrix of coefficients in the dual constraints is the transpose of the matrix of
coefficients in the primal constraints. What differs is that some dual variable are now constrained to be
non-positive or completely unconstrained, and some constraints are upper bound constraints or equality
constraints instead of lower bound constraints. By looking at (9) and (11), we can easily discern the
rules that govern which constraint should be an upper bound, lower bound or equality constraint:

• The dual constraint corresponding to any non-negative primal variable is a lower bound constraint
(the constraints corresponding to variables x+ in our example).

• The dual constraint corresponding to any non-positive primal variable is an upper bound constraint
(the constraints corresponding to variables x− in our example).

• The dual constraint corresponding to any unconstrained primal variable is an equality constraint
(the constraints corresponding to variables x± in our example).

Similarly, our example tells us which dual variables are non-negative, non-positive or unconstrained:

• Every dual variable corresponding to an upper bound constraint in the primal is non-negative (the
vector y+ in our example).

• Every dual variable corresponding to a lower bound constraint in the primal is non-positive (the
vector y− in our example).

• Every dual variable corresponding to an equality constraint in the primal is unconstrained (the
vector y± in our example).

These rules apply when the primal is a maximization LP and, consequently, the dual is a minimization
LP. We observed before that

• The dual of a maximization LP is a minimization LP and the dual of a minimization LP is a
maximization LP.

If the primal is a minimization LP and we convert it into a dual that is a maximization LP, however, the
rules above are reversed: Unconstrained primal variables still translate into equality constraints in the
dual and equality constraints in the primal still translate into unconstrained dual variables. However,
upper bound and lower bound constraints in the primal now translate into non-positive and non-negative
dual variables, respectively, and non-negative and non-positive primal variables now translate into upper
bound and lower bound constraints in the dual, respectively.
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