
MAXIMUM MATCHING IN ARBITRARY GRAPHS

CSCI 4113/6101
INSTRUCTOR: NORBERT ZEH

OCTOBER 31, 2025

In this topic, we return to the problem of computing a maximum matching. So far, however, our focus
for all the matching problems we have studied has been on how to solve them on bipartite graphs. We
learned that the general strategy for finding a maximum matching is to find augmenting paths. We
proved that for such a path P, M⊕P is a matching that is bigger than M , and that a matching is maximum
if it does not have an augmenting path. These results were independent of the graph being bipartite. We
also showed that augmenting paths are the main tool for finding a minimum-weight perfect matching,
only we need to be careful about the edges we allow to be included in an augmenting path.

The part of the algorithms we have discussed so far that does rely on the graph being bipartite is how
we find augmenting paths. We proved that, in a bipartite graph, alternating BFS finds an augmenting
path if such a path exists, and we mentioned already when discussing maximum matching in bipartite
graphs that alternating BFS may fail to find an augmenting path even if one exists if the graph is not
bipartite. Thus, our focus in this topic is to discuss how to find augmenting paths in non-bipartite graphs.
The algorithm we discuss, called Edmonds’s algorithm is far from the fastest algorithm for this problem.
It highlights the basic ideas for dealing with non-bipartite graphs though and forms the basis of numerous
significantly faster maximum matching algorithms described in the literature.

1 WHY IS FINDING AUGMENTING PATHS HARD?

So what makes finding an augmenting path in non-bipartite graphs hard? Clearly, there is no subdivision
of the vertices into two subsets U and W such that every edge has one endpoint in U and the other
in W. Thus, we cannot start alternating BFS from the unmatched vertices in U and hope to discover an
unmatched vertex in W. This simply does not make sense when the graph isn’t bipartite. This is not the
real problem though because, as we will see, we can simply run alternating BFS from all unmatched
vertices, and then, if we are lucky, we can take two vertices v and w connected by an edge not in M and
obtain an augmenting path from Pv , Pw, and this edge {v, w}.

The real problem is that non-bipartite graphs contain odd cycles. Indeed, this is the one property that
sets bipartite graphs apart from non-bipartite graphs: all cycles in bipartite graphs have even length. As
the example in Fig. 1 shows, it is odd cycles that may prevent alternating BFS from finding an augmenting
path even if one exists.

2 EDMONDS’S ALGORITHM

Edmonds’s algorithm finds a maximum matching in any graph G. Just as the basic matching algorithm
for bipartite graphs, it does so by starting with any matching M , repeatedly looking for an augmenting

1

a

b

c

d

e

Figure 1: A search that follows the path 〈a, b, c, d〉 (as a BFS does and a DFS might) turns d into an odd
vertex. Since alternating BFS does not explore edges not in M that are incident to odd vertices, the edge
{d, e} is never explored. Thus, alternating BFS from a fails to find the red augmenting path. The problem
is the odd cycle shaded in grey. In a sense, alternating BFS happens to walk around this cycle the wrong
way. If we use alternating DFS and we are lucky, we may traverse this cycle in the counter-clockwise
direction. This makes d an even vertex and allows us to find the augmenting path. Still, we can’t just
rely on luck when designing algorithms.

path to grow the current matching, and declaring the current matching to be a maximum matching if no
such path can be found.

Since we just argued that alternating BFS may fail to find an augmenting path even if the current
matching M is not maximum, Edmonds’s algorithm must employ a more complicated, and more costly,
strategy to find an augmenting path. This strategy starts by computing a maximal alternating forest F
again, this time with all unmatched vertices in G as its roots. The following lemma provides a sufficient
(but not necessary) condition for the current matching to be maximum:

LEMMA 1. Let G be a graph, let M be a matching of G, and let F be a maximal alternating forest with
respect to M. Then M is a maximum matching if there exists no edge {u, v} in G such that u and v are both
even vertices in F.

Proof. We prove the contrapositive. Assume that M is not a maximum matching. Then, as shown
in our discussion of maximum matching in bipartite graphs, there must exist an augmenting path
P = 〈v0, . . . , vk〉 for M . We will prove that one of the edges in P must have two even endpoints.

Since all unmatched vertices of G are roots of F, and v0 and vk are unmatched, both v0 and vk are
even. In particular, there exists a largest even index i ∈ [k]0 such that vi is even. If i = k− 1, then both
endpoints of the edge {vv−1, vk} are even. So assume that i < k− 1.

Since i is even, the edge {vi−1, vi} is in M , so the edge {vi , vi+1} is not in M , and the edge {vi+1, vi+2}
is in M . When alternating BFS dequeues vi , it explores all edges not in M incident to vi . Thus, it adds the
edge {vi , vi+1} to F unless vi+1 is already in F. This shows that vi+1 ∈ F. When alternating BFS discovers
an endpoint of an edge in M , it adds both endpoints of the edge to M . Thus, vi+1 ∈ F implies that
vi+2 ∈ F, and one is the parent of the other. Therefore, one of vi+1 and vi+2 is even, and the other is odd.
By the choice of vi , vi+2 is odd. Thus, vi+1 is even, that is, the edge {vi , vi+1} has two even endpoints.

2

u v

ru rv

Pu Pv

Figure 2: An augmenting path found by Edmonds’s algorithm. The edge (u, v) that joins the two even
paths from u to ru and from v to rv is drawn dashed.

The next thing after computing an alternating forest F that Edmonds’s algorithm does in its search
for an augmenting path for M is to inspect all edges of G. If it does not find any edge with two even
endpoints, then Lem. 1 shows that M is a maximum matching, so the algorithm exits and reports the
current matching as a maximum matching. If it does find an edge {u, v} with two even endpoints, then
it may be able to identify an augmenting path for M , based on the following lemma, illustrated in Fig. 2:

LEMMA 2. Let G be a graph, let M be a matching of G, let F be a maximal alternating forest with respect
to M, and let {u, v} be an edge with two even endpoints. If ru ≠ rv, then Pu ◦ P r

v is an augmenting path
for M, where P r

v denotes the reversal of Pv .

Proof. If ru ̸= rv , then Pu and Pv are disjoint, because they belong to different trees Tu and Tv in F. Pu is
a path from ru to u. Pv is a path from rv to v. Thus, P r

v is a path from v ro rv . Since {u, v} is an edge in G,
the path P = Pu ◦ Pv is a path in G. Both Pu and Pv are alternating paths. Since u and v are both even,
the last edges in Pu and Pv are both in M . Thus, the edge {u, v} is not in M . This makes P an alternating
path. Since ru and rv , being roots of F, are both unmatched, P is an augmenting path for M .

After Edmonds’s algorithm finds an edge {u, v} with two even endpoints, it can check whether ru ̸= rv

by following parent pointers in F from u and v to trace Pu and Pv and find ru and rv. This takes linear
time. Thus, if ru ̸= rv , Edmonds’s algorithm succeeds in finding an augmenting path for M in O(n+m)
time.

This leaves the case when the algorithm finds an edge {u, v} with two even endpoints but ru = rv.
In this case, Lem. 1 cannot be used to declare the current matching to be a maximum matching, nor can
Lem. 2 be used to construct an augmenting path for M . This is when Edmonds’s algorithm needs to try
harder to decide whether M is a maximum matching and, if not, find an augmenting path for M .

Since ru = rv, we have Pu = 〈z0, . . . , zh, u1, . . . , uk = u〉 and Pv = 〈z0, . . . , zh, v1, . . . , vℓ = v〉, where
{z0, . . . , zh}, {u1, . . . , uk}, and {v1, . . . , vk} are disjoint sets of vertices. Since both {zh, u1} and {zh, v1}
are edges in F but every odd vertex in F has only its mate as a child, zh is even, {zh−1, zh} ∈ M , and

3

u

v

blossom B

stem Pz

base z

root ru = rv

Figure 3: A flower composed of blossom and stem. The edge {u, v} that closes the blossom is drawn
dashed. The blossom is shaded red. Its stem is shaded grey.

{zh, u1}, {zh, v1} /∈ M . Since u and v are both even, we have {uk−1, uk}, {vℓ−1, vℓ} ∈ M . This makes
B = 〈zh, u1, . . . , uk, vℓ, . . . , v1, zh〉 and odd-length cycle whose edges alternate between being in M and
not being in M , except that the two edges incident to zh are not in M . Moreover, S = 〈z0, . . . , zh〉 is an
even alternating path from z0, which is unmatched, to zh, and this path shares only zh with B. We call
B ∪ S a flower with blossom B and stem S, as one can squint at B ∪ S and see a tulip with blossom B
and stem S. We call zh the base of B. This is illustrated in Fig. 3.

The following lemma demonstrates the significance of blossoms for finding an augmenting path. In
this lemma and in the remainder of this topic, we use the notation G/B to denote the graph obtained
from G by contracting the blossom B. This graph is obtained from G by deleting all vertices in B and
their incident edges and adding a new vertex vB. There exists an edge {u, vB} in G/B if and only if there
exists an edge {u, v} in G with u /∈ B and v ∈ B. Similarly, let M/B be the edge set obtained from M by
deleting all those edges from M that have both endpoints in B. Note that only the base z of B may have
an incident edge {u, z} ∈ M with u /∈ B. If there exists such an edge in M , then this edge is replaced by
the edge {u, vB} in M/B. This is illustrated in Fig. 4.

LEMMA 3. Let G be a graph, let M be a matching of G, and let B∪S be a flower in G with respect to M, with
blossom B and stem S. Then M is a maximum matching in G if and only if M/B is a maximum matching in
G/B. Moreover, given an augmenting path P ′ for M/B in G/B, an augmenting path P for M in G can be
found in O(n) time.

Proof. First assume that there exists an augmenting path P ′ for M/B in G/B. If P ′ does not contain vB,
then P ′ is also an augmenting path for M in G, as all edges of P ′ are edges of G in this case, and each
edge of P ′ is in M/B if and only if it is in M . This is illustrated in Fig. 5a.

The case when If P ′ contains vB is illustrated in Fig. 5b. Let u and v be the endpoints of P ′. Since
P ′ has odd length, we can assume w.l.o.g., that the subpath P ′u of P ′ from u to vB has even length, and
the subpath P ′v of P ′ from vB to v has odd length. Since u and v are unmatched, this implies that either

4

B

contract B

vB

Figure 4: Contracting the blossom B creates a new vertex vB. Every edge with exactly one endpoint in B
is now incident to vB. Duplicate edges are removed. Each edge in G/B is matched if its corresponding
edge in G is matched. Edges in F and in flowers are drawn solid. All other edges are drawn dashed.

u v

vB

u vyx

vB P ′vP ′u

expand B expand B

u v

B

u

vy

x

z

y ′B Pv

Pu

Q

(a) (b)

Figure 5: (a) The augmenting path remains unchanged after expanding the blossom B if vB is not on the
path. (b) Construction of an augmenting path in G from the subpaths P ′u (red) and P ′v (blue) of P ′ before
and after vB and an even path Q (green) from the base z of the blossom to a neighbour y ′ ∈ B of y.

5

u= vB (P ′u is empty) or the last edge in P ′u is in M/B.
If u= vB, S must be empty (contain no edges) because otherwise, the last edge {x , z} ∈ S would be

in M , that is, M/B would contain the edge {x , vB}. Since S is empty, the base z of B is unmatched. In
this case, we define Pu = 〈z〉, which makes Pu an even alternating path from an unmatched vertex to z
in G.

If P ′u is non-empty, then let Pu be the path obtained from P ′u by replacing vB with z. Let {x , vb} be
the last edge in P ′u, which is in M because u is unmatched and P ′u has even length. Thus, {x , z} ∈ M .
Since all other edges of Pu are edges of both G/B and G and are in M if and only if they are in M/B, this
implies that Pu is an even alternating path in G from an unmatched vertex to z also in this case.

Now let {vB, y} be the first edge of P ′v . Since this is an edge of G/B, G contains an edge {y ′, y}, for
some y ′ ∈ B. Since P ′v has odd length and v is unmatched, we have {vB, y} /∈ M/B. Thus, {y ′, y} /∈ M .
This makes the path Pv obtained from P ′v by replacing vB with y ′ an odd alternating path from y ′ to v,
because all vertics of P ′v , except vB, are vertices of G, and every edge of P ′v , except {vB, y}, is an edge of
G and belongs to M/B if and only if it belongs to M .

Now observe that there exists an even-length alternating path Q ⊆ B from z to y ′ because B has odd
length and is alternating, with z the only vertex with two incident edges in B that are not in M . The first
edge in this path Q is not in M . The last edge is.

Finally, note that all vertices in Q are in B, z is the only vertex in Pu that belongs to B, y ′ is the only
vertex in Pv that belongs to B, and Pu and Pv share only vertices in B because P ′u and P ′v share only vB.
Thus, P = Pu ◦Q ◦ Pv is a path in G. Its endpoints are the unmatched endpoints of Pu and Pv . The edges
in P alternate between being in M and not being in M because Pu and P ′′ are alternating paths of even
length, and Pv is an alternating path of odd length. This makes P an augmenting path for M .

This proves that M is not maximum if M/B is not maximum. Moreover, the construction of an
augmenting path P for M from an augmenting path P ′ for M/B can clearly be implemented in O(n)
time, given that P ′ and B both have size O(n).

To finish the proof, assume that M is not a maximum matching. We need to prove that M/B is not
a maximum matching. Observe that M ′ = M ⊕ S is a matching of G of size |M ′| = |M | because S is
an alternating path of even length and with an unmatched endpoint. See Fig. 6. Thus, since M is not
maximum, neither is M ′. Also, since M and M ′ contain the same edges from B, M ′/B is a matching of
G/B of size |M ′/B| = |M/B|. Thus, to prove that M/B is not a maximum matching of G/B, it suffices to
prove that M ′/B is not a maximum matching of G/B.1

If M ′ is not maximum, then there exists an augmenting path P for M ′. If this path does not contain
any vertex in B, then P ′ = P is an augmenting path for M ′/B, that is, M ′/B is not maximum either. If P
contains a vertex from B (see Fig. 7), then note that P has two unmatched endpoints but B contains
only one unmatched vertex, z. Thus, one of the endpoints of P is not in B. Call this endpoint u. Let
x be the vertex closest to u that belongs to B, let P ′ be the subpath of P from u to x , and let y be the
neighbour of x in P ′. Then the path P ′′ obtained by replacing x with vB in P ′ is a path from u to vB in
G/B. Since P ′ is an alternating path with respect to M ′, P ′′ is an alternating path with respect to M ′/B.
Since u /∈ B and u is unmatched by M ′, it as also unmatched by M ′/B. Since z is unmatched by M ′, the
only edges in M ′ incident to vertices in B are edges of B. Thus, vB is unmatched by M ′/B. This makes

1The reason why we reason about M ′ and M ′/B instead of M and M/B is that B is a blossom also with respect to M ′, but
M ′ leaves the base z of B unmatched, that is, the flower with blossom B with respect to M ′ has an empty stem. This ensures
that no augmenting path for M ′ can contain any vertices of this stem other than z, something that is not necessarily true for M
unless S is empty, in which case M ′ = M .

6

Pz

z

B

contract B

vB

Figure 6: The matching M ′ = M ⊕ Pz obtained from the matching M in Fig. 4. The blossom B is
shaded grey. Its stem Pz is shaded pink. The matching on the right is the matching M ′/B obtained after
contracting the blossom B. It has the same size as the matching M/B in Fig. 4.

u v

z

x
BP ′

P

contract B

u v

vBP ′′

Figure 7: Contraction of a blossom in an augmenting path P in the proof of Lem. 3. The path P is shaded.
The subpath P ′ and its corresponding path P ′′ in G/B are shaded pink.

P ′′ an alternating path with respect to M ′ with two unmatched endpoints, that is, P ′′ is an augmenting
path for M ′/B, and M ′/B is not maximum.

We are ready to discuss Edmond’s algorithm in its entirety. It starts with an arbitrary matching M , just
like any other maximum matching algorithm. Then it calls a procedure AUGMENT(G, M). This procedure
either returns an augmenting path P for M or reports that M is a maximum matching. In the former
case, the algorithm replaces M with M ⊕ P and then continues trying to grow this matching by calling
AUGMENT(G, M) again. This continues until AUGMENT(G, M) reports that M is a maximum matching.
When this happens, the algorithm exits and outputs M . Since the initial matching has size at least 0
and any matching of G has at most n/2 edges, the algorithm terminates after calling AUGMENT(G, M) at

7

most n/2+ 1 times. Next, we show that AUGMENT(G, M) correctly reports an augmenting path for M or
reports that M is maximum, and that it takes O(nm) time to do so. Thus, Edmonds’s algorithm finds a
maximum matching in O

�

n2m
�

time.
Consider an invocation AUGMENT(G, M). This invocation starts by computing an alternating forest F

with respect to M and with all unmatched vertices as its roots. If there is no edge {u, v} with two even
endpoints, then Lem. 1 shows that M is maximum, so the algorithm exits and reports M as a maximum
matching. If there is such an edge, then the algorithm follows parent pointers from u and v to find Pu

and Pv. If ru ̸= rv, then Lem. 2 shows that P = Pu ◦ P r
v is an augmenting path for M . AUGMENT(G, M)

constructs this path from Pu and Pv and returns it. If ru = rv, then AUGMENT(G, M) computes the
blossom B of Pu ∪ Pv ∪ {{u, v}} and constructs G/B and M/B. It recursively calls AUGMENT(G/B, M/B).
If this recursive call reports that M/B is a maximum matching for G/B, then Lem. 3 shows that M
is a maximum matching for G, so AUGMENT(G, M) exits and reports that M is a maximum matching.
If AUGMENT(G/B, M/B) returns an augmenting path P ′ for M/B, then AUGMENT(G, M) uses the second
part of Lem. 2 to construct an augmenting path P for M from P ′, and returns this path P. This is illustrated
in Figs. 8 and 9.

The correctness of this procedure follows immediately from Lems. 1–3. To prove that Edmonds’s
algorithm runs in O

�

n2m
�

time, we need to prove that AUGMENT runs in O(nm) time. Excluding the
recursive call AUGMENT(G/B, M/B) possibly made by the invocation AUGMENT(G, M), the invocation
AUGMENT(G, M) constructs an alternating forest F, inspects all edges to check whether one of them
has two even endpoints, traces the paths Pu and Pv in F, and, if ru = rv, constructs and contracts the
blossom B to obtain G/B and M/B. It is easily verified that, if we represent graphs using an adjacency
list representation, all of these steps can be implemented in O(n+m) time. Since a blossom is a cycle
of odd length, it has length at least 3. Contracting the blossom replaces the vertices in the blossom
with a single vertex, so G/B has at least 2 vertices fewer than G. Thus, if T (n, m) is the running time of
AUGMENT(G, M) on a graph G with n vertices and m edges, then we have the following recurrence:

T (n, m)≤ O(n+m) + T (n− 2, m)

A graph with at most 2 vertices does not contain any odd-length cycles. Thus, we have T (n, m) = O(1),
for n≤ 2. This means that the recursion tree of this recurrence has size at most n/2, with the cost of each
invocation bounded by O(n+m). Thus, AUGMENT(G, M) takes O

�

n2 +mn
�

time. We can reduce this
running time to O(nm) by performing a one-time preprocessing step at the beginning of the algorithm that
removes all vertices without incident edges. This takes O(n+m) time and ensures that AUGMENT(G, M)
takes O(nm) time because the input graph now has at most twice as many vertices as edges. The total
running time of Edmond’s algorithm thus is O

�

n+ n2m
�

, which is bounded by O
�

n2m
�

if the input
graph has at least one edge. If the graph has no edges at all, it takes constant time to test this and output
the empty matching. Thus, we obtain the following theorem:

THEOREM 4. A maximum-cardinality matching in an arbitrary graph G can be found in O
�

n2m
�

time.

8

a

b

c
y

z

x

w u

s

q

p

rt

v

l

k

d
f

e

j

n o

m

g

i

h

Figure 8: A matching in a graph that leaves the two red vertices unmatched. This matching is not a
maximum matching, as the shaded augmenting path shows. Figure 9 shows how Edmonds’s algorithm
finds this augmenting path.

9

a

b

c

e

f

g

h i

j l

m

o

n

k

d

p q

r s

t u

v w

x

y

z a

b

c

e

vB1

n

o

l

m

k

d

p q

r s

t u

v w

x

y

z a

b

vB2
x

y

z

v w

t u

r s

p q

a

b

vB2
vB3

y

z

a

b

c

e

f

g

h i

j l

m

o

n

k

d

p q

r s

t u

v w

x

y

z a

b

c

e

vB1

n

o

l

m

k

d

p q

r s

t u

v w

x

y

z a

b

vB2
x

y

z

v w

t u

r s

p q

a

b

vB2
vB3

y

z

Contract blossoms (recursion)

Expand paths through blossoms (backtracking)

Figure 9: Illustration of Edmonds’s algorithm. The top row shows the alternating forests (shaded)
for G, G/B1, G/B1/B2, and G/B1/B2/B3, where B1 = { f , g, h, i, j} is a blossom in G, B2 =
{c, e, vB1

, n, o, m, l, k, d} is a blossom in G/B1, and B3 = {x , v, t, r, p, q, s, u, w} is a blossom in G/B1/B2.
The bottom row shows how the algorithm finds an alternating path 〈a, b, vB2

, vB3
, y, z〉 in G/B1/B2/B3,

then expands vB3
to the path 〈vB2

, v, t, r, p, q, s, u, w, x〉 through B3 in G/B1/B2, expands vB2
to the path

〈c, e, vB1
, n, o, m, l〉 through B2 in G/B1, and finally expands vB1

to the path 〈 f , g, h, i, j〉 through B1 in G.

10

