THE FORD-FULKERSON ALGORITHM AND
THE MAX-FLOW MIN-CUT THEOREM

CSCI 4113/6101
INSTRUCTOR: NORBERT ZEH
SEPTEMBER 21, 2025

The first class of maximum flow algorithms uses a fairly natural strategy for finding maximum flows:
start by sending no flow at all along any edge—this is clearly a feasible flow—and then repeatedly find
paths along which we can send more flow from s to t. By sending flow along such a path, we increase,
or augment, the amount of flow sent from s to t. Therefore, these algorithms are called augmenting
path algorithms.

In this topic, we discuss the Ford-Fulkerson algorithm, which is the most elementary augmenting
path algorithm. All other augmenting path algorithms can be viewed as variants of the Ford-Fulkerson
algorithm. The Ford-Fulkerson algorithm has the property that it finds a maximum flow if it terminates.
Unfortunately, the Fold-Fulkerson algorithm may not always terminate, as we will illustrate using a
carefully crafted example. In the next topic, we will discuss the Edmonds-Karp algorithm, whose only
difference to the Ford-Fulkerson algorithm is that it sends flow along the shortest available augmenting
path in each iteration. We will be able to prove that this ensures that the Edmonds-Karp algorithm runs
inO (nmz) time, where n is the number of vertices, and m is the number of edges of the graph. To prove
the correctness of any maximum flow algorithm, we need the Max-Flow Min-Cut Theorem. We will
prove this theorem in this topic and use it to prove that (any variant of) the Ford-Fulkerson algorithm
does compute a maximum flow, if it terminates.

This topic is organized as follows. In § 1, we introduce the concept of a residual network, which is a
tool used by all maximum flow algorithms and which we will use here to define what an augmenting
path is. Sec. 2 discusses the Ford-Fulkerson algorithm. Sec. 3 presents an example that demonstrates
that the Ford-Fulkerson algorithm may not terminate. We prove the correctness of the Ford-Fulkerson
algorithm in two parts: Sec. 4 proves that at all times during the execution of the Ford-Fulkerson algorithm,
the current flow is a feasible flow. Sec. 6 proves that if the Ford-Fulkerson algorithm terminates, then
the flow it returns is a maximum flow. To prove this, we need the Max-Flow Min-Cut Theorem presented
in § 5. The final, optional section, § 7, looks at the Max-Flow Min-Cut Theorem through the lens of linear
programming and demonstrates that it is in fact simply an application of LP duality.

1 THE RESIDUAL NETWORK AND AUGMENTING PATHS

Assume we are given a network G = (V, E) along with edge capacities u : E — R, as well as a feasible
flow f : E — Ry in G. Augmenting path algorithms are based on two key observations:

(i) Assume there exists a path from s to t such that every edge e € P satisfies u, — f, > 0. In other
words, the flow f does not use any of the edges in P to its full capacity. Then P is an augmenting

path in the sense that we can send additional flow along this path: If 6 = min{u, — f, | e € P},
then the st-flow f defined as

fe otherwise

fo+6 ifeepP
fe/:{

is feasible and satisfies F, > F;. See Figs. 1a,b.

(i) An augmenting path can also move flow “backwards” along an edge (x, y), from y to x, if f, , > 0.
Indeed, this amounts to sending some of the flow currently flowing from x to y back to x, that
is, reducing the flow f, , along the edge (x,y) and diverting the sent-back flow to a different
out-neighbour of x. See Figs. 1c,d.

Based on these two observations, the set of edges along which we can try to move more flow from s
to t is the set

Ef = {(x:_)’) €E |fx,y < Cx,y}U{(y:x) | (x,y) EE:fx,y > 0}.

We define the residual network of G with respect to f as G/ = (V, Ef) (see Fig. 1e). The name “residual
network” refers to the fact that it tells us how much capacity of an edge remains to be used. The residual

capacity u{(,y of an edge (x,y) € E/ defines how much flow we can move along the edge (x, y). It is
defined as

u{(’y =Uyy _fx,y +fy,x>

that is, as the amount of flow we can still move from x to y along the edge (x, y) plus the amount of flow
we can move back from x to y along the edge (y, x). The graph G may contain both edges (x, y) and
(¥, x). With this definition of the residual network in place, we can define an augmenting path formally:

DEFINITION 1 (Augmenting path). Given a feasible st-flow f in G, an augmenting path P is a path from
s to t in the residual network G

NoOTE 2. Here, we defined the residual network with respect to a feasible flow, one that respects the
edge capacities and flow conservation. It should be obvious that flow conservation is irrelevant to this
definition: As long as the flow along every edge is non-negative and does not exceed the capacity of
the edge, the residual capacity of every edge is non-negative. This will be important for the discussion
of push-relabel algorithms, discussed in an upcoming topic, which use a different strategy to find a
maximum flow. As long as such an algorithm has not found a maximum flow yet, the current flow
satisfies the capacity constraints but does not satisfy flow conservation.

2 THE FORD-FULKERSON ALGORITHM

Every augmenting path algorithm follows the template in the MAXFLOW procedure on page 5. The
algorithm starts with a feasible st-flow f that sends no flow along any edge. Then, as long as there exists
an st-path P in G/, the algorithm sends more flow from s to ¢ along this path P. We prove in § 6 that
once there is no st-path in G/, f is a maximum st-flow in G. So the algorithm terminates and reports f.

The details of sending flow along an augmenting path P are implemented as a separate procedure
AUGMENT. This procedure initializes the augmented flow f’ to be the same as the current flow f. Then it
inspects all edges in P and finds the minimum residual capacity 6 of all edges in P. This is the maximum

4/5s_wlT INS/7 5/5 w. Ji~_6/7
/ 4/4 \ / 4/4 \
se 3/5 2/4 ot se 3/5 2/4 ot
6/9 6/9
(a) An augmenting path that uses only (b) The flow obtained by sending one unit
edges in G of flow along the path in Fig. 1a
7/11 7/11

4/5 _w T JING)7
/ 4/4 \
3/5 2/4 ot
%

S o

o——— o0 4/4

— -
6/9 6/9
(c) An augmenting path that uses an edge (d) The flow obtained by sending two
of G in reverse units of flow along the path in Fig. 1c
4
o= *

(e) The residual network G/ corresponding to the flow in Figs. 1a,c. The augmenting paths in Figs. 1a,c
are directed paths in G (red).

Figure 1: Augmenting paths and the residual network

amount of flow we can send along P without violating the capacity constraint of any edge. Finally,
AUGMENT sends 6 units of flow along P, by reducing the flow of any edge (y, x) such that (x, y) € P by
min(é,fy’x) and increasing the flow along any edge (x, y) such that (x, y) € P by max(O, o —fy’x). The
resulting flow f is the new flow to be used in the next iteration of MAXFLOW.

The procedures MAXFLOW and AUGMENT together constitute the Ford-Fulkerson algorithm. For
the sake of clarity, the MAXFLOW procedure constructs the residual network G/ from G and f in each
iteration of the loop. An actual implementation of the algorithm initializes G/ = G at the beginning of
the algorithm (because the flow is zero initially) and then, in each iteration, updates only the edges in G/
involved in the augmenting path P found in the current iteration, since these are the only edges whose
residual capacities or presence or absence in G/ are affected by changing the flow along the edges in P.

As we show in the next section, the Ford-Fulkerson algorithm may not terminate if it happens to
choose the augmenting path along which to send more flow from s to t poorly. There are various
strategies for choosing this path carefully in each iteration, to guarantee that the algorithm terminates,
and to ensure that it does so after only a small number of iterations. One such strategy is to send
flow along a shortest path from s to t in G/ in each iteration. This is the strategy employed by the
Edmonds-Karp algorithm, discussed in the next topic.

3 FORD-FULKERSON MAY NOT TERMINATE

The following example shows that the Ford-Fulkerson algorithm may not terminate on some inputs.
Consider the network in Fig. 2a, where p = @ and X > 2. The red edges are edges used by the
maximum flow in this network: we send X units of flow along the left and right path, and one unit of
flow along the middle path. Thus, the maximum flow sends 2X + 1 units of flow from s to t.

Since the initial flow in the Ford-Fulkerson algorithm is O along all edges, the network is its own
residual network initially. Since the Ford-Fulkerson algorithm may choose to send flow along any
augmenting path it finds in G, it may choose to send flow along the middle path first. This is shown in
Fig. 2b. Sending one unit of flow along this path produces the residual network shown in Fig. 2c for
i = 1; the capacities of the edges incident to s or t are not shown in Figs. 2¢c—f because X is large enough
that these edges are not the ones that limit the amount of flow sent along any augmenting path used in
this example.

Next we show that given the residual network in Fig. 2¢, for some integer i, the next four iterations
of the Ford-Fulkerson algorithm produce the exact same residual network, only i is increased by 2. Thus,
the algorithm produces residual networks whose augmenting paths have smaller and smaller capacities,
but there is always an augmenting path left, so the algorithm never terminates:

* The red path in Fig. 2c is an augmenting path of capacity p! If the Ford-Fulkerson algorithm
chooses this path and moves p! units of flow along this path, this produces the residual network in
Fig. 2d.

* The red path in Fig. 2d is an augmenting path of capacity p! If the Ford-Fulkerson algorithm
chooses this path and moves p! units of flow along this path, this produces the residual network in
Fig. 2e.

* The red path in Fig. 2e is an augmenting path of capacity p'*’ If the Ford-Fulkerson algorithm
chooses this path and moves p'*! units of flow along this path, this produces the residual network

in Fig. 2f.

Procedure MAXFLOW(G, u, s, t)

Input: A directed graph G = (V, E), a capacity labelling u : E — Rg of its edges, and a pair of
vertices (s, t)
Output: A maximum st-flow f : E — R} in G

—_

forall e € E do

2 L fe=0

3 loop

4 G/ = residual network of G w.rt. f

5 if there exists an st-path P in G/ then
6 | f =AUGMENT(G,u, f,P)

7 else

8 t return f

Procedure AUGMENT(G,u, f, P)

Input: A directed graph G = (V, E), a capacity labelling u : E — R, a feasible st-flow
f :E— R, and an st-path P in G/
Output: An augmented st-flow f’

forall e € E do

e | fl=fe

3 5=min{u£|e€W}

4 forall (x,y)e P do

5 L fy”x = fyx —min(5,fx)y)
f;,y = fry + max(O,] —fy,x)

return f’

A

N

(a) The network and a maximum
flow

(c) Step 1 of a phase

S

@
mo p—p'
./'\./‘\ 7 A

i+1

P

(e) Step 3 of a phase

AR

N

(b) The initial network

(d) Step 2 of a phase

//

(f) Step 4 of a phase

Figure 2: A non-terminating example for the Ford-Fulkerson algorithm

* The red path in Fig. 2f is an augmenting path of capacity p'™. If the Ford-Fulkerson algorithm
chooses this path and moves p'™! units of flow along this path, this produces the residual network
in Fig. 2¢, with i increased by 2.

The Ford-Fulkerson algorithm is an example of an iterative optimization algorithm. These algorithms
start with an arbitrary feasible solution and improve this solution in each iteration while maintaining
its feasibility. Many algorithms of this type make rapid progress towards an optimal solution in early
iterations. As the algorithm progresses, the improvements become smaller and smaller. A good strategy
to limit the running time of such an algorithm then is to terminate the algorithm after a fixed number of
iterations. The solution the algorithm has found up to this point may not be an optimal solution, but
it is often a very good solution, as the early iterations make the greatest progress towards an optimal
solution.

Unfortunately, as this example shows, this strategy works poorly for the Ford-Fulkerson algorithm:
The initial iteration of the algorithm in this example moves one unit of flow from s to t. Each group of
four iterations after this initial iteration moves 2(p’ 4+ p*1) units of flow froms to t, fori = 1,3,5,....
Thus, the total amount of flow moved from s to t converges to

oo oo
: : 4
1+ 2pi=) 2p'—1= —1<5

while the maximum st-flow shown in Fig. 2a has the value 2X + 1 > 5. By using a large value of X, the
gap between the maximum st-flow and the limit of the st-flows produced by the algorithm can be made
arbitrarily large.

4 FORD-FULKERSON MAINTAINS A FEASIBLE FLOW

The first half of the correctness proof of the Ford-Fulkerson algorithm is to show that the flow f maintained
by the algorithm is a feasible flow. Since the initial flow satisfies f, = 0, for all e € G, it is certainly a
feasible flow. Thus, to prove this claim, it suffices to prove that the flow returned by AUGMENT is feasible
if the flow given as input to AUGMENT is feasible.

LEMMA 3. If f is a feasible st-flow in G, then so is the flow f’ returned by AUGMENT.

S _ / . . . o) _ / .
Proof. Let f° = f’— f, that is, for every pair of vertices x,y € V, we have fx,y = fx,y — fx,y- It's okay if
theses values are negative. There is no expectation that £ is a valid flow. Then

max(O, o —fy’x) if(x,y)ep
fxéyy = —min(5,fx,y) if (y,x)eP

0 otherwise.

Since f is a valid flow, and thus satisfies flow conservation, and f’ = f + f°, f’ if satisfies flow
conservation if f° does. In other words, we need to prove that

D(£8,—£8.)=0 V¥xev\{st} 1)

YEV

To prove (1) for all x ¢ P, observe that fxs’y = f}fx = 0 for all x ¢ P and all y € V because

(x,¥),(y,x)¢Pif x ¢P.
To prove (1) for all x € P\ {s, t}, let y be x’s predecessor in P and let z be x’s successor in P. Then

fy‘s’x = maX(O, o —fx,y),
fxg’y = _min(‘S;fx,y):
6 = maX(O, o —fz’x),

x,z

fz‘?x = —min(é',fz,x), and
xﬁ,v = v(?x =0 Vvé{yz}

Thus,

DS o) =F2, +£L - £l —£2,

vev

= —min(é,fx,y) —max(O, 19) —fx’y) +max(0, 19) —fz,x) + min(5,fz,x)
=—6+6
=0.

To prove that f’ respects the capacity constraints, consider any pair of vertices (x, y).
If (x,¥),(y,x) ¢ P then f =f, . Since 0< f, , <u,,, this implies that 0 < f <u
If (x,y) € P, then

X,y

0<fyx —min(5,fy,x) S fyx Suyy

and

0< fx,y < fx,y + max(O, o _fy,x)
< max(fx,y:fx,y + ux,y _fx,y +fy,x _fy,x)
= max(fx,y,ux,y)

= Uy

. . f _ . / —
because f is a feasible st-flow and 0 < 6 <uy , =u, , —f , + fy - Since fx,y =foyt max(O, o —fy’x)
/ _ . . / / / o e
and fy’x =fyx —m1n(5,fy’x), this shows that 0 < fx)y <u,,and 0 < fy,x <u,,. Thus, f’ satisfies the
capacity constraints. Since it also satisfies flow conservation, f’ is a feasible st-flow. O

Since the st-flow f’ returned by Augment is feasible and sends more flow from s to t than f —F; > F,—
we conclude that as long as there exists an augmenting path in G/, f cannot be a maximum flow. Here is
the contrapositive of this statement:

COROLLARY 4. If f is a maximum st-flow in G, then there exists no augmenting path in G

5 THE MAaAX-FLow MIN-CUT THEOREM

Assume now that the Ford-Fulkerson algorithm happens to terminate, or that we use a variant of the
Ford-Fulkerson algorithm that is guaranteed to terminate, such as the Edmonds-Karp algorithm. How
do we prove that the flow it outputs is a maximum flow? We have shown already that at the very least,
the returned flow is a feasible flow. In this section, we develop the Max-Flow Min-Cut Theorem, which
characterizes when a feasible flow is a maximum flow. We use this theorem in the next section to prove
that, if the Ford-Fulkerson algorithm terminates, then the flow it returns is a maximum flow.

Recall the definition of a cut in a graph. This was simply a partition of the vertex set into two
non-empty subsets S and T. Since T =V \ S in this case, the cut is fully characterized by specifying S,
which must be a non-empty proper subset of V for both S and T to be non-empty. Thus, we defined a
cut to be simply a subset S of vertices that satisfies C S C V.

An st-cut is a cut S with s € S and t ¢ S. We define the capacity of this cut as the total capacity of
the edges that cross from Sto T =V \ S:

Us = Z Uy,y

x€S,y¢S

Similarly, the flow from S to T is the total amount of flow across all edges from S to T minus the total
amount of flow across the edges back from T to S:

f% :::E:(fiy'_fbx)

x€S,y¢S

These definitions are illustrated in Fig. 3. Note that the definition of Fg considers the flow across the
“backward edges” from T to S, but the definition of Us considers only the capacities of the “forward
edges” from S to T.

A minimum st-cut is an st-cut of minimum capacity. First, it is helpful to understand how st-cuts
interact with flows from s to t.

LEMMA 5. Let S be an st-cut of G and let f be a feasible st-flow in G. Then F; = Fj.

7/11
4/5 5/7
4/4
s 3/5 2/4 t
5/8 4/4
6/9

Figure 3: An st-flow in a network G and an st-cut S consisting of the vertices in the shaded region. This
cut has capacity Ug = 16. The flow across this cut is Fg = 9.

5/11 6

5/5 7]7 5 7

5
0/4
s 0/5 2/4 t s 2 5| 4/ 2| |2 t

3

6/8 4/4 6 4
6/9 Z

(a) A maximum flow f and a minimum st- (b) The residual network G%. S is the set
cut S (shaded) that satisfy F, = Ug = 11. of vertices reachable from s in G/.

Figure 4: Illustration of the proof of Thm. 6

Proof. The lemma follows directly from flow conservation:

Fs = Z(fs,y _fy,s)

Yev
= Z(fs’y _f%s) + Z Z(fx,y _fy,X)
yev xeS\{s}yeVv

because Zyev(fry — fy’x) = 0 for all x € S\ {s} due to flow conservation (x is neither s, because
x € S\ {s}, nor t, because t ¢ S). Thus,

Fo= 20 D (fuy = fr)

XES yeVv
=2 D (Fey = Fu) + 252 (Fy = i)
X€S yeS X€ES y¢S

The first sum in this last equation is 0 because the flow f,. , across every edge (x, y) with x, y € S occurs
twice in this sum, once with positive sign and once with negative sign. The second sum is Fg. Thus,
FS = Fs. D

The following theorem now characterizes maximum flows:

THEOREM 6 (Max-Flow Min-Cut Theorem). Let f be a feasible st-flow in G and let S be an st-cut of G.
Then f is a maximum st-flow and S is a minimum st-cut if and only if F, = Us.

Proof. Let f* be a maximum st-flow and let S* be a minimum st-cut. By Lem. 5, we have

¥ ok _ x _ rx* * _
x€S*,y¢S* xeS*,y¢S* ueS*,ve¢S*

Thus, if F; = Ug, then F; = F = Us. = U, that is, f is a maximum st-flow (F; = F)") and S is a minimum
st-cut (Ug« = Usg).

Conversely, assume that f is a maximum st-flow and S is a minimum st-cut. By Cor. 4, there exists no
augmenting path in G/ Thus, if we choose S’ to be the set of all vertices reachable from s in G/, thens € §’
and t ¢ S’, that is, S’ is an st-cut; see Fig. 4. Since S is a minimum st-cut, we have F, = Fg < Ug < Uy,
where F; = Fg holds by Lem. 5. We prove that F, = Ug,. Thus, F, = Ug = Ug/.

10

For every edge (x,y) € E with x € S and y ¢ S, f, , = u, , because otherwise, the edge (x,y)
would be an edge of G/ and thus, since x € §’, y would also be in §’. Similarly, if x ¢ S’ and y € §’, then
fx,y = 0 because otherwise, the edge (y, x) would belong to G/ and thus x € S’. Thus,

Fs:FS’:Z(fx,y_fy,x)zzux,y:US" U

xeS’,y¢s’ xeS’,y¢s’

6 THE FORD-FULKERSON ALGORITHM COMPUTES A MAXIMUM FLOw

It remains to prove that
THEOREM 7. If the Ford-Fulkerson algorithm terminates, then it returns a maximum flow.

Proof. By Lem. 3, each iteration of the algorithm maintains that f is a feasible flow. Thus, the flow
returned by Ford-Fulkerson is a feasible flow.

Once the algorithm terminates, there is no more augmenting path in G/. As shown in the proof of
Thm. 6, this implies that there exists an st-cut in G whose capacity equals F, and, hence, f is a maximum
st-flow, by Thm. 6. O

7 THE MAX-FLOW MIN-CUT THEOREM VIA LP DUALITY*

The Max-Flow Min-Cut Theorem can be viewed as a duality result: Cuts are duals of flows in the sense
that an st-flow can never exceed the capacity of an st-cut, and Thm. 6 even shows that the maximum
flow equals the capacity of a minimum cut. We will see more such duality results throughout this course.
Not all duality results are applications of LP duality, but all duality results in this course are. In this
section, we discuss an alternative proof of the Max-Flow Min-Cut Theorem via LP duality. To this end,
we need LP formulations of the maximum flow and minimum cut problems and demonstrate that they
are each other’s dual. The Max-Flow Min-Cut Theorem then follows immediately from strong LP duality.

We already formulated the maximum flow problem as an LP However, we will need an ever so slightly
different LP formulation of it. Yes, many optimization problems have more than one LP formulation,
some more natural than others. The LP formulation of the maximum flow problem we need here is
still rather natural. To arrive at it, it is best to start with an integer LP formulation of the minimum cut
problem. Every subset S C V can be characterized by associating a value x, € {0, 1} with every vertex
v € V and defining S = {v € V | X, = 1}. To ensure that S is an st-cut, we need s € S and t ¢ S, that is,
we need to impose the constraints that X; = 1 and X, = 0. Given such a cut S, the edges from S to T are
exactly those edges (u,v) with X, =1 and X, = 0. Those are the edges that contribute to the capacity of
the cut. All other edges do not contribute to the capacity of the cut, not even negatively. This gives the
following ILP formulation of the minimum cut problem:

11

Minimize E Uy w2y w

v,weV
s.t. 2y, — X, +Xx,20 Yv,weV
X =1 2)
x; =0
x,€{0,1} VveV\{s,t}
Zyw =0 Yv,weV

The constraints on the variables x,, for all v € V, ensure that for every feasible solution (%, £) of this ILB
the set S = {v € V | X, = 1} is an st-cut. The non-negativity constraints on the variables z, ,, ensure that
no edge, not even the ones from V \ S to S, makes a negative contribution to the objective function. The
constraint z,,, — X, + X,, = 0 ensures that z, , = 1—that is, that the capacity of the edge (v, w) is added
to the capacity of the cut—whenever v € S (x, =1) and w ¢ S (x,, = 0). (Technically, the constraint
ensures only that z, , > 1, but an optimal solution minimizes the objective function value, which it
achieves by choosing the smallest value for each variable z,,, it can get away with. Thus, it ends up
setting 2, ,, = 1.)

By the following lemma, we can drop the constraints that x, < 1, for all v € V '\ {s, t}, which gives
the following as the ILP formulation of the minimum cut problem we will use:

Minimize E Uy wyw

v,wev
s.t. 2y, — X, +x, =20 Vv,weV

x, =1
x, =0 3
x, >0 VveV\({st}
x,€Z VYveV\({s,t}

zZ,, =0 VYv,wevV

LEMMA 8. For every feasible solution (X,2) of (4), there exists a feasible solution (&,Z) of ?? with the same
objective function value.

Proof. We define (X, £) by setting Z = £ and X, = min(%,, 1), for all v € V. Since £ = 2, both solutions
clearly have the same objective function value. We have to prove that ¥ is integral and that (X, 7) is
feasible.

Forallv eV \ {s, t}, X, is an integer, so X, = min(x,, 1) is also an integer.

The non-negativity constraints hold because Z =2 > 0 and, for all v € V '\ {s, t}, ¥, = min(x,,1) >
min(0,1) =0.

Finally consider any of the constraints z,,, —x, + x,, 2 0. If X, —X,, <0, then %, ,, — X, + X, =2 0
beccause %, ,, = %,,, = 0. If X, — X, > 0, then X, =1 and X,, = 0. Thus, X, > 1 and %,, = 0, that is,
X, — %, = X, — X,,. Therefore, %,,, — X, +Ww > $%,,, — X, + X, = 0. Since this holds for all v,w €V, (X, %)
is feasible. O

12

The LP relaxation of (3) is
Minimize Z Uy w2y w
v,wev
s.t.z,,—X,+x, =20 Vy,weV
X =1 @
x, =0
x, =0 VveV\{st}
Z,, =20 Vv,weV

The dual of (4) associates a variable f, ,, with every constraint in the first group, a variable F; with
the constraint x, = 1, and a variable F, with the constraint x, = 0. The remaining constraints are
non-negativity constraints and do not have any associated variables in the dual. The naming of the
variables was chosen on purpose because f, ,, ends up being exactly the flow along the edge (v,w) in a
feasible solution of the dual, F, ends up being the net out-flow of s, and F, ends up being the net out-flow

of t. Here is the dual of (4):

Maximize F;

st. fywSu,, Yv,weV

Z(fw,s_fs,w)+Fs =0

wev

Z(fw,t_ft,w)+Ft =0

wev

Dy —Fo) <0 VveV\ist}

wevV

fyw=0 Yv,weV
It is helpful to rearrange the constraints slightly:

Maximize F;

st fyw<u,, Yv,wevV

Z(fs,w_fw,s) =F,

wevV

Z(ft,w_fw,t):Ft)
wev

Do —fun) 20 WveV\{st}

wev

frw=0 Yv,weV

Note that this is almost the LP formulation of the maximum flow problem we developed earlier:

* The constraints f,,, > 0 and f, , <u,, together just express the capacity constraints of all edges

of G.
* The equality constraints F, and F, simply enforce that F; and F, are the net out-flows of s and t.

Therefore, the objective just states that we want to maximize the total out-flow of s, which is

13

exactly the aim of the maximum flow problem.

* If the constraints Zwev(fvw— fwy) = 0 were equality constraints, they would simply express that
a feasible flow must satisfy flow conservation. The weaker constraints in (5) require only that the
total out-flow of every vertex is no less than its total in-flow, that is, that no vertex other than t
absorbs any flow. It is not hard to prove that for an optimal solution of (5), these constraints are
tight, that is, an optimal solution does indeed satisfy flow conservation. We won’t do this here
because we will prove the Max-Flow Min-Cut Theorem in a more direct manner. We will need the
following observation though:

OBSERVATION 9. For every feasible flow f, the solution (f,ﬁs,ﬁt) is a feasible solution of (5) with objective
function value F,.

To prove the Max-Flow Min-Cut Theorem now, let us implicitly extend any feasible flow f to a feasible
solution (f ,E, F,) of (5). This allows us to consider every feasible flow f to be a feasible solution of (5).
Similarly, every st-cut § will be treated to be interchangeable with its corresponding feasible solution
(%,2) of (3) defined as

Xy

1 ifves
0 otherwise

} Vvevy,
(6)

2,w =max(0,x,—x,) Vv,weV

Thus, we can treat every st-cut as a feasible solution of (3).

With this convention, the Max-Flow Min-Cut Theorem states that f is a maximum flow, and $ is a
minimum cut if and only if
Fo= > w8,)
v,wev

The “if* direction is easy to prove: By Obs. 9, f is a feasible solution of (5) with objective function
value F,. Since (4) is the LP relaxation of (3), (%,2) is a feasible solution of (4). Thus, by weak LP
Z <

duality, there cannot be any maximum flow f with F, > E; nor any st-cut S with with Do wer Uyw

v,w
Zv,wev u, w2, - Thus, f is a maximum flow and $ is a minimum cut.

For the “only-if” direction, assume that f is a maximum flow, and $ is a minimum st-cut. Then we
construct from f another st-cut S. such that f and § satisfy the complementary slackness conditions of
(4) and (5). This implies that f and S are optimal solutions of (5) and (4), respectively. By strong LP

duality, this implies that they satisfy (7). However, since $ is a minimum st-cut, we have

E uv,wzv,w < E .yv,wzv,w
v,w

v,wev
and, by weak LP duality,
FS S Z uV,WZV,W‘
v,wev
Since
Fs = Z Uy w2y w>
v,wev
this implies that
Fs = Z Uy w2y w»
v,wevV

14

that is, f and S satisfy (7).
It remains to show how to construct the st-cut § from a maximum flow f and to prove that f and S
satisfy the complementary slackness conditions of (4) and (5).

PROPOSITION 10. Let f be a maximum flow, let (f ,13"%, E,) be the corresponding solution of (5) defined in
Obs. 9, let S be the set of vertices reachable from s in G/ and let (%,%) be the corresponding feasible solution
of (3) defined according to (6). Then (f, E,) and (&, %) satisfy the complementary slackness conditions of
(4) and (5).

Proof. First note that S is an st-cut: Clearly, s € §. Since f is a maximum flow, Cor. 4 states that there is
no path from s to t in Gf: sotéS.

It remains to verify the complementary slackness conditions. First, we verify primal complementary
slackness, taking (5) to be the primal LB and (4) to be the dual LP

The dual constraint corresponding to each variable f, ,, is %, ,, — x,, + x,, = 0. This constraint is tight
for (%,£) unless X, =0, X,, = 1, and %, ,, = 0. Therefore, if this constraint is not tight, then v ¢ S and
w € 8. This implies that (w,v) ¢ G/ and, therefore, that fv,w =0.

The dual complementary slackness conditions are equally easy to verify: Since f satisfies flow

conservation, we have
Z (fv,w _fw,v) =0,

wevV
for all v € V \ {s, t}, that is, the dual complementary slackness condition corresponding to every
variable x,, v e V' \ {s, t}, is satisfied.
The primal constraint corresponding to each variable z,,, is f,,, <u,,. If £, , > 0, then we have

%,=1and ¥, =0,s0v €S and w ¢ §. Therefore, (v,w) ¢ Gf and, thus, fv,w = Uy, O

15

