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In this topic, we build on the concept of LP duality to derive an alternative optimality criterion for a pair
of feasible solutions of a primal-dual pair of LPs, called complementary slackness. The complementary
slackness conditions have the interesting property that they establish the optimality of two solutions
without inspecting their objective function values. Complementary slackness is at the heart of the
primal-dual schema, a beautiful technique for solving a range of optimtization problems. We will see
it in action later in the course in algorithms for finding maximum flows, for finding minimum-weight
perfect matchings, and for finding approximate solutions of NP-hard problems.

This chapter is organized as follows: Sec. 1 introduces complementary slackness. When we introduced
LP relaxations, we presented an ILP formulation of the MST problem that we claimed had integrality
gap 1, but we lacked the tool to prove this. Complementary slackness is this tool. § 2 will apply
complementary slackness to prove that this ILP formulation of the MST problem does indeed have
integrality gap 1. At the end of the previous topic, we discussed how to construct the dual of an LP
not in canonical form. We finish the discussion of complementary slackness by exploring, in ??, how
complementary clackness applies to an LP not in canonical form, and its dual.

1 COMPLEMENTARY SLACKNESS

Once again, consider a primal LP
Maximize cx

s.t. Ax ≤ b

x ≥ 0

(1)

and its dual
Minimize bT y

s.t. AT y ≥ cT

y ≥ 0.

(2)

DEFINITION 1 (Complementary Slackness). Let x̂ be a feasible solution of (1), and let ŷ be a feasible
solution of (2). These two solutions are said to satisfy complementary slackness if

Primal complementary slackness: For all 1≤ j ≤ n,

x̂ j = 0 or
m
∑

i=1

ai j ŷi = c j and
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Dual complementary slackness: For all 1≤ i ≤ m,

ŷi = 0 or
n
∑

j=1

ai j x̂ j = bi .

We call an inequality constraint
∑n

j=1 ai j x j ≤ bi tight for a given feasible solution x̂ if
∑n

j=1 ai j x̂ j =
bi—there is no slack, we cannot increase

∑n
j=1 ai j x̂ j without violating this constraint. With this ter-

minology, primal complementary slackness states that for every primal variable x j, either its primal
non-negativity constraint is tight or the dual constraint corresponding to x j is tight. Dual complementary
slackness states that for every dual variable yi, either its dual non-negativity constraint is tight or the
primal constraint corresponding to yi is tight. This explains the name “complementary slackness”: the
non-negativity constraint of a (primal or dual) variable and the corresponding (dual or primal) constraint
in the other LP cannot both have slack; their slackness is complementary.

THEOREM 2. Let x̂ be a feasible solution of (1), and let ŷ be a feasible solution of (2). Then x̂ is an optimal
solution of (1) and ŷ is an optimal solution of (2) if and only if x̂ and ŷ satisfy complementary slackness.

Proof. Since x̂ is a feasible primal solution, we have Ax̂ ≤ b. Since ŷ is a feasible dual solution, we have
AT ŷ ≥ cT , that is, ŷ T A≥ c. Therefore,

c x̂ ≤ ŷ T Ax̂ ≤ ŷ T b = bT ŷ .

By strong LP duality, x̂ and ŷ are optimal solutions of (1) and (2) if and only if c x̂ = bT ŷ. Thus,
x̂ and ŷ are optimal solutions if and only if

c x̂ = ŷ T Ax̂ and ŷ T Ax̂ = ŷ T b,

which is equivalent to
�

ŷ T A− c
�

x̂ = 0 and ŷ T (b− Ax̂) = 0.

Next observe that every entry x̂ j of x̂ is non-negative because x̂ is a feasible primal solution. Every
entry of ŷ T A− c is non-negative because ŷ T A≥ c. Thus,

�

ŷ T A− cT
�

x̂ is the inner product of two vectors
with non-negative coordinates and is zero if and only if for all 1≤ j ≤ n,

�∑m
i=1 ŷiai j − c j

�

x̂ j = 0, that is,
x̂ j = 0 or
∑m

i=1 ŷiai j = c j . In other words,
�

ŷ T A− c
�

x̂ = 0 if and only if primal complementary slackness
holds for x̂ and ŷ .

An analogous argument shows that ŷ T (b − Ax̂) = 0 if and only if for all 1 ≤ i ≤ m, ŷi = 0 or
bi −
∑n

j=1 ai j x̂ j = 0, that is, if and only if dual complementary slackness holds for x̂ and ŷ .

Since x̂ and ŷ are optimal if and only if both
�

ŷ T A− c
�

x̂ = 0 and ŷ T (b− Ax̂) = 0, we have that x̂
and ŷ are optimal if and only if both primal and dual complementary slackness hold for x̂ and ŷ .

2 AN ILP FORMULATION OF THE MST PROBLEM WITH INTEGRALITY GAP 1*

As an application of complementary slackness, let us return to the minimum spanning tree problem.
Complementary slackness provides the tool to prove our claim that the LP relaxation of the following ILP
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formulation of the minimum spanning tree problem has an integral optimal solution:

Minimize
∑

e∈E

we xe

s.t.
∑

e∈E

xe ≥ n− 1

∑

(u,v)∈E
u,v∈S

xu,v ≤ |S| − 1 ∀; ⊂ S ⊆ V

xe ∈ {0,1} ∀e ∈ E.

(3)

PROPOSITION 3. The LP relaxation of the ILP (3) has an integral optimal solution.

Proof. This is in fact an alternative (and quite a bit less intuitive) correctness proof of Kruskal’s algorithm.
Recall how Kruskal’s algorithm works: It initializes the MST to have no edges; T = (V,;). Then it sorts
the edges in G by increasing weight and inspects them in order. Every edge (u, v) whose endpoints
belong to different connected components of T at the time this edge is inspected is added to T , thereby
merging these two connected components.

We can observe how the connected components of T change over the course of the algorithm. Let
〈e1, . . . , em〉 be the sorted sequence of edges, let Ei = {e1, . . . , ei}, let Gi = (V, Ei), and let Ti be the state
of T after the ith iteration of the algorithm, that is, after the algorithm has inspected the edges e1, . . . , ei .
Then the connected components of Gi and Ti have the same vertex sets. For every subset S ⊆ V with
|S| ≥ 2, let c(S) be the minimal index and let d(S) be the maximal index such that Gc(S), . . . , Gd(S)−1

have connected components with vertex set S. In other words, c(S) is the “creation time” of the first
connected component with vertex set S, graphs Gc(S)+1, . . . , Gd(S)−1 may add more edges but no vertices
to this component, and d(S) is the “destruction time” of the last connected component with vertex set S,
by forming a larger connected component from S and some other component of Gd(S)−1. For S = V ,
d(V ) =∞ because once we have obtained a connected componenent of T with vertex set V (T is a
spanning tree at this time), we never merge this component with another component to create an even
larger component. If |S|< 2 or there exists no index 1≤ i ≤ m such that S is the vertex set of a connected
component of Gi , then c(S) = d(S) =∞. Intuitively, ec(S) is the last edge with both endpoints in S that
is added to the MST T , and ed(S) is the first edge with exactly one endpoint in S that is added to T .

Now let us turn to the LP formulation. The primal LP is the LP relaxation of (3):

Minimize
∑

e∈E

we xe

s.t.
∑

e∈E

xe ≥ n− 1

∑

(u,v)∈E
u,v∈S

xu,v ≤ |S| − 1 ∀; ⊂ S ⊆ V

xe ≥ 0 ∀e ∈ E.

(4)

Technically, the constraint xe ∈ {0, 1} from (3) becomes 0≤ xe ≤ 1 in the LP relaxation, but the xe ≤ 1
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part is redundant and can be omitted: if e = (u, v), then the constraint
∑

(u,v)∈E
u,v∈S

xu,v ≤ |S| − 1 for S = {u, v}

already ensures that xe ≤ 1.
The dual of (4) is

Maximize (n− 1)y0 −
∑

;⊂S⊆V

(|S| − 1)yS

s.t. y0 −
∑

;⊂S⊆V
u,v∈S

yS ≤ wu,v ∀(u, v) ∈ E

y0 ≥ 0

yS ≥ 0 ∀; ⊂ S ⊆ V.

(5)

Here, y0 is the dual variable corresponding to the first constraint in (4) and for each ; ⊂ S ⊆ V , yS is
the dual variable corresponding to the constraint

∑

(u,v)∈E;u,v∈S xu,v ≤ |S| − 1. Note that the dual is a
maximization LP because the primal is a minimization LP, and the coefficients of yS both in the dual
objective function and in all dual constraints that involve yS are negated because the primal constraint
∑

(u,v)∈E;u,v∈S x(u,v) ≤ |S| − 1 is an upper bound constraint but should be a lower bound constraint, given
that the primal is a minimization LP.

Now let T be the MST computed by Kruskal’s algorithm. By Lemma 4 in our discussion of LP
relaxations, the vector x̂ defined as

x̂e =

(

1 if e ∈ T

0 otherwise

is a feasible solution of (4) (because it is a feasible solution of (3), and (4) is the LP relaxation of (3)).
Next we show that the following is a feasible solution of (5) and that x̂ and ŷ satisfy complementary
slackness:

ŷS =











wed(S)
−wec(S)

if d(S)<∞

−wec(V )
if S = V and wec(V )

≤ 0

0 otherwise

ŷ0 =

(

wec(V )
if wec(V )

≥ 0

0 otherwise

Thus, by Thm. 2, x̂ and ŷ are optimal solutions of (4) and (5), respectively. Since x̂ is integral, this
proves the proposition.

First, we prove that ŷ is a feasible solution of (5). The definitions of ŷ0 and ŷV explicitly ensure that
ŷ0 ≥ 0 and ŷV ≥ 0. For ; ⊂ S ⊂ V , if ŷS ̸= 0, then ŷS = wed(S)

−wec(S)
and d(S)<∞. By the definitions

of c(S) and d(S), c(S)< d(S), so wec(S)
≤ wed(S)

, that is, wed(S)
−wec(S)

≥ 0. This proves that all entries of
ŷ are non-negative.

Next, consider any edge (u, v) ∈ E. Let S be the set of all subsets S ⊆ V such that |S| ≥ 2 and S is the
vertex set of a connected component of some graph Gi , and let Su,v = {S ∈ S | u, v ∈ S}. We have ŷS = 0
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for all S /∈ S. Thus,
ŷ0 −
∑

S⊆V
u,v∈S

ŷS = ŷ0 −
∑

S∈Su,v

ŷS .

Let Su,v = {S1, . . . , Sk} such that S1 ⊂ · · · ⊂ Sk = V , and let fi = ec(Si), for all 1 ≤ i ≤ k. Then fk = ec(V )

and fi = ed(Si−1) for all 1< i < k. Thus,

k
∑

i=1

ŷSi
=

k−1
∑

i=1

ŷSi
+ ŷV

=
k−1
∑

i=1

�

wed(Si )
−wec(Si )

�

+ ŷV

=
k−1
∑

i=1

�

w fi+1
−w fi

�

+ ŷV

= w fk
−w f1 + ŷV

ŷ0 −
k
∑

i=1

ŷSi
= ( ŷ0 − ŷV ) +w f1 −w fk

= w fk
+w f1 −w fk

= w f1 .

Now let i be the index such that ei = (u, v). If (u, v) ∈ T , then c(S1) = i and f1 = (u, v), so ŷ0−
∑k

i=1 ŷSi
=

wu,v. If (u, v) /∈ T , then c(S1) < i because Gi has a connected component that includes both u and v.

Thus, w f1 ≤ wei
= wu,v, that is, ŷ0 −

∑k
i=1 ŷSi

≤ wu,v. In both cases, ŷ satisfies the constraint in (5)
corresponding to the edge (u, v). Since this argument holds for every edge (u, v) ∈ E, this shows that ŷ
is a feasible solution of (5).

It remains to prove that x̂ and ŷ are optimal solutions of (4) and (5), respectively. To this end, it
suffices to prove that they satisfy complementary slackness. As just observed, if (u, v) ∈ T , that is, if
x̂u,v ̸= 0, then ŷ0 −

∑k
i=1 ŷSi

= wu,v . Thus, x̂ and ŷ satisfy primal complementary slackness.
Next consider dual complementary slackness. Since x̂ is a feasible solution of (4), we have

∑

e∈E x̂e ≥
n− 1 and
∑

e∈E x̂e ≤ n− 1, that is,
∑

e∈E x̂e = n− 1 and the primal constraints corresponding to both y0

and yV are tight. If ŷS ̸= 0 for some ; ⊂ S ⊂ V , then S is a connected component of some graph Gi and
thus of Ti . Since every connected graph on |S| vertices has at least |S| − 1 edges, this shows that

∑

(u,v)∈E
u,v∈S

x̂u,v ≥ |S| − 1.

Since x̂ is a feasible solution of (4), we also have
∑

(u,v)∈E
u,v∈S

x̂u,v ≤ |S| − 1.
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Thus,
∑

(u,v)∈E
u,v∈S

x̂u,v = |S| − 1,

and the primal constraint corresponding to yS is tight. Thus, x̂ and ŷ satisfy dual complementary
slackness.

Since x̂ and ŷ satisfy both primal and dual complementary slackness, Thm. 2 shows that they are
optimal solutions of (4) and (5), respectively.
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