
MINIMUM-WEIGHT PERFECT MATCHING AND

MAXIMUM-WEIGHT MATCHING IN

BIPARTITE GRAPHS,
AND THE PRIMAL-DUAL SCHEMA

CSCI 4113/6101
INSTRUCTOR: NORBERT ZEH

OCTOBER 27, 2025

In this topic, we discuss the Hungarian algorithm for finding a minimum-weight perfect matching in a
bipartite graph. We will use this algorithm as an example to introduce the primal-dual schema. This
is a general technique based on complementary slackness to obtain optimal solutions to a range of
optimization problems. Using a relaxed version of complementary slackness, it also gives one of the most
elegant techniques for obtaining efficient approximation algorithms for a range of problems. With the
Hungarian algorithm in hand, we discuss a general reduction of the maximum-weight matching problem
to the minimum-weight perfect matching problem. Thus, the Hungarian algorithm can also be used
to find a maximum-weight matching in a bipartite graph. While the reduction from maximum-weight
matching to minimum-weight perfect matching works also for non-bipartite graphs, the Hungarian
algorithm is specific to bipartite graphs. It as possible to find a minimum-weight perfect matching in an
arbitrary graph in the same running time as achieved by the Hungarian algorithm, but this requires ideas
beyond the scope of this course. The second, optional half of these notes discusses how to obtain faster
implementations of the Hungarian algorithm, which then also produces equally improved algorithms for
the maximum-weight matching problem.

1 THE PRIMAL-DUAL SCHEMA

Remember complementary slackness. We proved that if we have a feasible solution of an LP and a
feasible solution of its dual, then both solutions are optimal solutions of their respective LPs if and
only they satisfy the complementary slackness conditions. This motivates the following beautiful idea
for solving optimization problems that can be formulated as LPs: The algorithm starts with a usually
infeasible primal solution and with a feasible dual solution that satisfy complementary slackness. It then
iteratively updates the primal and dual solutions to

• Move the primal solution closer to feasibility,
• Keep the dual solution feasible, and
• Maintain complementary slackness.

At some point, the algorithm obtains a feasible primal solution. At this point, since the dual solution
is feasible at all times and the primal and dual solutions satisfy complementary slackness at all times,

1

the primal solution is an optimal solution (as is the dual solution, but we usually care about the dual
solution only as a helper in the search for an optimal primal solution).

You will sometimes hear the primal-dual schema described as maintaining an optimal but, until the
algorithm terminates, infeasible primal solution and a feasible dual solution. I tend to describe it like
this in class as well, because the combo of optimal primal solution and feasible dual solution is easy to
remember. However, formally, it doesn’t make much sense to talk about an optimal infeasible primal
solution: if the solution is infeasible, that is, it violates the constraints of the LP, what prevents us from
choosing the values assigned to the variables in the LP completely arbitrarily to achieve an arbitrarily
good objective function value? The term “optimal” in this description should be understood to mean
that the primal solution satisfies some condition with respect to the dual solution that guarantees that
the primal solution is optimal if it is feasible.

Complementary slackness is one such condition, and many applications of the primal-dual schema
employ optimality conditions directly derived from complementary slackness. The Hungarian algorithm
does exactly this. However, technically, any condition will do that ensures that once the primal solution
is feasible, it is an optimal solution. In this sense, the push-relabel algorithm for computing a maximum
flow can also be viewed as an application of the primal-dual schema. We proved that a feasible flow f
is a maximum flow if there does not exist any st-path in the residual network G f. We also proved that
maintaining a valid height function ensures that there never exists an st-path in the residual network of
the current preflow. Thus, the push-relabel algorithm can be seen as maintaining an “optimal” preflow
f in the sense that there does not exist an st-path in G f. It then updates the flow to move it closer to
feasibility and uses the height function to guide these updates to ensure that there never exists an st-path
in G f. Thus, once f becomes a feasible flow, it is a maximum flow.1

2 MINIMUM-WEIGHT PERFECT MATCHING AS AN ILP

If G = (U , W, E) is a bipartite graph, then it has a perfect matching only if |U | = |W | because every vertex
in U must have its mate in W and vice versa. We use n = |U | = |W | throughout this topic. This is a
necessary condition but not a sufficient one. Consider, for example, the bipartite graph G = (U , W,;)
with |U | = |W |. This graph has no perfect matching because there are no edges in G at all. Thus, to
keep things simple, we assume for now that the input is a complete bipartite graph G = (U , W, E) with
|U | = |W |. This guarantees that there always exists a perfect matching, n! perfect matchings to be precise.
The problem is not to decide whether there exists a perfect matching but to find one of minimum weight
with respect to a weight function w : E→ R given as part of the input.

The Hungarian algorithm has a simple, purely combinatorial proof of correctness. The proof we
discuss here is quite a bit more complicated but has the advantage that it makes it perfectly clear that the
Hungarian algorithm is a direct application of the primal-dual schema. The combinatorial proof does not

1Remember that we proved that the dual of the LP formulation of the maximum flow problem is an LP formulation of the
minimum cut problem, which gives us the Max-Flow Min-Cut Theorem as a direct consequence of strong LP duality. I tried to
prove that the height function itself can be construed as a strange representation of the dual of the maximum flow LP itself.
In essence, the height function needs to be interpreted as (a scaled version of) a feasible solution of the minimum cut LP,
or at a minimum, it should be true that the cut defined by all vertices reachable from s in G f should be a cut that satisfies
complementary slackness with respect to the current preflow f. I didn’t get this to work. Thus, the push-relabel algorithm
should be viewed as employing the spirit of the primal-dual schema but probably not as a literal example of the primal-dual
schema.

2

shed any light on why the vertex potentials the algorithm maintains constitute a feasible solution of the
dual of the minimum-weight perfect matching problem and why the current matching and these vertex
potentials satisfy complementary slackness at all times. Indeed, when I first learned about the Hungarian
algorithm, its use of vertex potentials to guide the search for a perfect matching of minimum weight
seemed to be magical and appear out of thin air. Deriving the algorithm directly from complementary
slackness makes it much clearer how one might arrive at this algorithm without invoking magic.

To derive the Hungarian algorithm from complementary slackness, we need an ILP formulation of
the minimum-weight perfect matching problem as a starting point. We associate a variable xe with
every edge. An assignment x̂ of values in {0, 1} to these variables naturally represents a subset of edges
M = {e ∈ E | x̂e = 1}. We want to choose M to be a minimum-weight perfect matching. Thus, we want
to minimize the objective function

∑

e∈E

we xe,

subject to appropriate constraints that guarantee that M is a perfect matching. If n= |U |= |W |, then a
perfect matching has size n:

∑

e∈E

xe = n.

M is a matching if it contains at most one of the edges incident to each vertex:
∑

v∈W

xu,v ≤ 1 ∀u ∈ U,

∑

u∈U

xu,v ≤ 1 ∀v ∈W.

This gives the following ILP formulation of the minimum-weight perfect matching problem:

Minimize
∑

e∈E

we xe

s.t.
∑

e∈E

xe ≥ n

∑

v∈W

xu,v ≤ 1 ∀u ∈ U

∑

u∈U

xu,v ≤ 1 ∀v ∈W

xe ∈ {0,1} ∀e ∈ E.

(1)

We turned the equality constraint
∑

e∈E xe = n into an inequality
∑

e∈E xe ≥ n because the upper bound
∑

e∈E xe ≤ n is redundant: If
∑

e∈E xe ≥ n and
∑

w∈W x(u,w) ≤ 1, for all u ∈ U, then we must have
∑

e∈E xe = n,
∑

w∈W x(u,w) = 1, for all u ∈ U, and
∑

u∈U x(u,w) = 1, for all w ∈W.

3

The LP relaxation of (1) is
Minimize
∑

e∈E

qe xe

s.t.
∑

e∈E

xe ≥ n

∑

v∈W

xu,v ≤ 1 ∀u ∈ U

∑

u∈U

xu,v ≤ 1 ∀v ∈W

xe ≥ 0 ∀e ∈ E.

(2)

Note that we omitted the upper bound constraint xe ≤ 1, for every edge e ∈ E. This constraint is
redundant because, for all {u, v} ∈ E, xu,v ≤ 1 follows from the constraints

∑

v′∈W xu,v′ ≤ 1 and xu,v′ ≥ 0,
for all {u, v′} ∈ E.

The Hungarian Algorithm finds an integral optimal solution of (2). Thus, it is also an optimal solution
of (1) and is therefore a minimum-weight perfect matching.

The dual of (2) is
Maximize nz −

∑

u∈U

yu −
∑

v∈W

yv

s.t. z − yu − yv ≤ wu,v ∀{u, v} ∈ E

yu ≥ 0 ∀u ∈ U

yv ≥ 0 ∀v ∈W

z ≥ 0.

(3)

Here, z is the dual variable corresponding to the first primal constraint, yu is the dual variable corre-
sponding to the constraint

∑

v∈W xu,v ≤ 1 associated with the vertex u ∈ U, and yv is the dual variable
corresponding to the constraint

∑

u∈U xu,v ≤ 1 associated with the vertex v ∈W.
The goal of the Hungarian algorithm is to find an integral feasible primal solution x̂ of (2) and a

feasible dual solution (ẑ, ŷ) of (3) that satisfy complementary slackness. The complementary slackness
conditions for the two LPs (2) and (3) are

∑

e∈E

xe = n or z = 0 (4)

∑

v∈W

xu,v = 1 or yu = 0 ∀u ∈ U (5)

∑

u∈U

xu,v = 1 or yv = 0 ∀v ∈W (6)

z − yu − yv = wu,v or xu,v = 0 ∀{u, v} ∈ E. (7)

As observed above, conditions (4) to (6) are satisfied by every feasible primal solution, so we can ignore
them. This leaves us with (7).

Let us clean up the dual a little. Let us associate a new variable πu = z − yu with every vertex u ∈ U

4

and a new variable πw = −yw with every vertex w ∈W . Substituting these variables into (3) gives the LP

Maximize
∑

u∈U

πu +
∑

v∈W

πv

s.t. πu +πv ≤ wu,v ∀{u, v} ∈ E

πv ≤ 0 ∀v ∈W.

(8)

With the same substitution, the complementary slackness condition (7) becomes

πu +πv = wu,v or xu,v = 0 ∀{u, v} ∈ E.

We can consider π to be a function assigning a potential πv to every vertex of G. Since we have
the constraint πu + πv ≤ wu,v, for every edge {u, v} ∈ E, it is natural to call an edge {u, v} tight if
πu +πv = wu,v . Since our primal LP encodes that the subset of edges M ⊆ E we want to find is a perfect
matching, we can interpret the complementary slackness condition as: Find a perfect matching M ⊆ E
and a potential function π such that M contains only tight edges.

LEMMA 1. A perfect matching M in a bipartite graph G = (U , W, E) is a minimum-weight perfect matching
if and only if there exists a feasible potential function π such that every edge in M is tight with respect to π.

3 THE HUNGARIAN ALGORITHM

Based on Lem. 1, the Hungarian algorithm maintains a matching M and a feasible potential function π
such that every edge in M is tight with respect to π. Then it iteratively updates the matching and the
potential function. When updating the matching, the matching becomes bigger while ensuring that the
matching contains only tight edges. Whenever we cannot grow the matching without adding a non-tight
edge to it, we update the potential function to create more tight edges. We will show that after at most
n iterations of updating the potential function, we can grow the matching by one edge. Thus, after at
most n(n+ 1) iterations, we obtain a matching of size n, which is a perfect matching. Since all edges in
M are tight, Lem. 1 shows that M is a minimum-weight perfect matching at this time. It remains to fill
in the details of the Hungarian algorithm. Fig. 1 shows an example of running this algorithm.

Initially, the algorithm sets

M = ;,

πv = 0 ∀v ∈W, and

πu =min{wu,v | v ∈W} ∀u ∈ U.

This makes M an infeasible primal solution because it is not a perfect matching yet. The potential
function π is a feasible dual solution because πv ≤ 0, for all v ∈W, and, for every edge {u, v},

πu +πv =min{wu,v′ | v′ ∈W}+ 0≤ wu,v .

Since M = ;, M and π trivially satisfy the invariant that every edge in M is tight with respect to π.
Each iteration of the algorithm constructs the subgraph H = (V, E′) ⊆ G, where E′ is the set of all

tight edges of G with respect to the current potential function π. Since G is bipartite, so is H. Thus,

5

7

8

4

4

4

0

0

0

0

0

9

7 12

9
8 7

7

4 5

4
5

4

Augment

7

8

4

4

4

0

0

0

0

0

9

7 12

9
8 7

7

4 5

4
5

4

Augment

7

8

4

4

4

0

0

0

0

0

9

7 12

9
8 7

7

4 5

4
5

4

Augment

7

8

4

4

4

0

0

0

0

0

9

7 12

9
8 7

7

4 5

4
5

4

Adjust

7

9

5

5

5

0

0

0

−1

−1

9

7 12

9
8 7

7

4 5

4
5

4

Augment

7

9

5

5

5

0

0

0

−1

−1

9

7 12

9
8 7

7

4 5

4
5

4

Adjust

7

9

6

5

6

0

0

0

−1

−2

9

7 12

9
8 7

7

4 5

4
5

4

Adjust

8

10

7

5

7

0

−1

0

−2

−3

9

7 12

9
8 7

7

4 5

4
5

4

Adjust

9

11

8

6

8

0

−2

−1

−3

−4

9

7 12

9
8 7

7

4 5

4
5

4

Augment

9

11

8

6

8

0

−2

−1

−3

−4

9

7 12

9
8 7

7

4 5

4
5

4

Final matching

Figure 1: Illustration of the Hungarian Algorithm. Black edge labels are edge weights. Red vertex labels
are vertex potentials. In each iteration, the sets X and Y are shaded red; the sets X̄ and Ȳ are shaded
grey. Matched edges are red. Unmatched tight edges are blue. Non-tight edges are grey. Each iteration
is labelled “Adjust” or “Augment”. Each “Adjust” iteration adjusts the potential function by increasing
the potentials of the vertices in X and decreasing the potentials of the vertices in Y by the slack of the
tightest edge between X and Ȳ, which is highlighted in green. Each “Augment” iteration augments the
matching using an augmenting path of tight edges. The unmatched edges on the path are highlighted in
green.

6

we can use alternating BFS in H from the unmatched vertices in U to try to find an augmenting path
for M in H. If we find such a path P, then M ⊕ P is a matching of size |M ⊕ P| = |M |+ 1. Moreover,
M ⊕ P = (M \ P)∪ (P \M) ⊆ M ∪ P. Every edge in M is tight with respect to π. P is a path in H, so every
edge in P is also tight with respect to π. Thus, every edge in M ⊕ P is tight with respect to π. Therefore,
replacing M with M ⊕ P grows M by one edge and maintains the invariant that every edge in M is tight
with respect to π.

If we do not find an augmenting path for M in H but M is not a perfect matching yet, then we update
π to create more tight edges. Let F be the alternating forest found by the application of alternating BFS,
let X be the set of vertices in U that belong to F, let Y be the set of vertices in W that belong to F, let
X̄ = U \ X , let Ȳ =W \ Y, and let

δ =min
�

wu,v −πu −πv

�

�u ∈ X , v ∈ Ȳ
	

.

Then we replace π with the potential function π′ defined as

π′v =











πv +δ if v ∈ X

πv −δ if v ∈ Y

πv otherwise.

The next two lemmas prove that π′ is a feasible dual solution and that all edges in M remain tight with
respect to π′.

LEMMA 2. π′ is a feasible solution of (8).

Proof. Since π is a feasible solution of (8), every edge {u, v} in G satisfies wu,v−πu−πv ≥ 0. Thus, δ ≥ 0.
Therefore, every vertex v ∈W satisfies π′v ≤ πv ≤ 0. Thus, π′ satisfies the non-positivity constraints of
all variables πv , v ∈W.

For every edge {u, v} ∈ G, we have π′u +π
′
v ≤ πu +πv ≤ wu,v unless u ∈ X and v ∈ Ȳ. If u ∈ X and

v ∈ Ȳ, then

π′u+π
′
v = πu+δ+πv = πu+πv+min

�

wu′,v′ −πu′ −πv′
�

�u′ ∈ X , v′ ∈ Ȳ
	

≤ πu+πv+wu,v−πu−πv = wu,v .

Thus, π′ satisfies the constraints πu +πv ≤ wu,v, for all edges of G. This makes π′ a feasible solution
of (8).

LEMMA 3. All edges in M are tight with respect to π′.

Proof. Consider any edge {u, v} ∈ M . This edge is tight with respect to π. Thus, if u /∈ X̄ or v /∈ Y, then

π′u +π
′
v ≥ πu +πv = wu,v

because, as observed in the proof of Lem. 2, δ ≥ 0. Since π′ is a feasible solution of (8), by Lem. 2, we
also have

π′u +π
′
v ≤ wu,v

7

Thus,
π′u +π

′
v = wu,v ,

that is, the edge is tight with respect to π′.
To finish the proof of the lemma, we prove that there is no edge {u, v} ∈ M with u ∈ X̄ and v ∈ Y.

Assume for the sake of contradiction that there exists such an edge. Since v ∈ Y, Pv is an alternating
path from rv to v. Since rv ∈ U, v ∈ W, rv is unmatched, and G is bipartite, the last edge in Pv is not
in M . Since {u, v} ∈ M , this makes P = Pv ◦ 〈u〉 an alternating path from rv to u. Moreover, this is an
alternating path from rv to u in H because Pv , being a path in F, is a path in H, and {u, v}, being in M , is
tight with respect to π and, therefore, also in H. As we proved in the previous topic, alternating BFS
from the unmatched vertices in U discovers all vertices reachable from unmatched vertices in U via
alternating paths. Thus, u ∈ X , which is the desired contradiction.

If we split the iterations of the algorithm into two types, those that grow the matching and those
that adjust the potential function, then it it clear that the algorithm terminates after at most n iterations
that grow the matching, because we obtain a perfect matching after the nth such iteration. To bound
the running time of the algorithm, we need to bound the number of iterations that adjust the potential
function. We prove that between any two consecutive iterations that grow the matching, there are at
most n iterations that adjust the potential function. The key do doing so is the following lemma:

LEMMA 4. Let π and π′ be the potential functions before and after an iteration that updates the vertex
potentials, let H and H ′ by the tight subgraphs of G with respect to π and π′, respectively, and let Y and Y ′

be the vertices in W reachable from unmatched vertices in U via alternating paths in H and H ′, respectively.
Then Y ′ ⊃ Y.

Proof. Consider some vertex v reachable from an unmatched vertex u ∈ U via an alternating path
P = 〈u = v0, . . . , vk = v〉. Then each vertex vi ∈ P is reachable from u via the alternating path 〈v0, . . . , vi〉.
Therefore, v0, . . . , vk ⊆ X ∪ Y. More specifically, since G is bipartite and u = v0 ∈ U, we have vi ∈ X if i is
even, and vi ∈ Y if i is odd.

Since P is a path in H, all its edges are tight with respect to π. Since π′z = πz + δ if z ∈ X , and
π′z = πz−δ if z ∈ Y, all edges in P are also tight with respect to π′. This shows that P is also an alternating
path from u to v in H ′. Since this is true for every vertex v ∈ X ∪ Y, this shows that X ⊆ X ′ and Y ⊆ Y ′.

Now consider the vertices u ∈ X and v ∈ Ȳ such that δ = wu,v −πu−πv . By the definition of δ, such
a pair of vertices exists. Since π′v = πv and π′u = πu+δ, we have π′u+π

′
v = wu,v , that is, the edge {u, v}

is tight with respect to π′. Moreover, all edges in M are tight with respect to π, therefore belong to H,
and alternating BFS either adds both endpoints of an edge in M to F or neither. Thus, every edge in M
either has its endpoints in X and Y or in X̄ and Ȳ. Since u ∈ X and v ∈ Ȳ, this shows that {u, v} /∈ M .

Since u ∈ X , we have u ∈ F. The alternating path Pu from ru to u in F is an alternating path from
ru to u in H. As just observed, it as also an alternating path from ru to u in H ′. Since ru is unmatched,
Pu starts with an unmatched edge. Since ru, u ∈ U, Pu has even length. Thus, the last edge in Pu is in M .
Finally observe that all vertices in Pu belong to X ∪ Y. Therefore, v /∈ Pu. Since {u, v} /∈ M , this makes
Pu ◦ 〈v〉 an alternating path from ru to v in H ′, that is, v ∈ Y ′. Since v /∈ Y and we have already shown
that Y ⊆ Y ′, this shows that Y ⊂ Y ′.

By Lem. 4, every time we update π, the set Y grows by at least one vertex. Thus, we can update π at

8

most n times before Y =W. On the other hand, as long as M is not a perfect matching, there exists an
unmatched vertex in W. Thus, after updating π at most n times, Y contains an unmatched vertex in W.
However, Y is the set of vertices in W that belong to the alternating forest F in each iteration. Therefore,
when this happens, alternating BFS finds an alternating path Pv from an unmatched vertex rv ∈ U to an
unmatched vertex v ∈W, and the current iteration grows the matching by one edge. This immediately
implies that the algorithm finds a perfect matching after at most (n+ 1)n iterations. We are ready to
prove our first main result in this topic:

THEOREM 5. A minimum-weight perfect matching in a bipartite graph can be found in O
�

n4
�

time.

Proof. Lems. 2 and 3 prove that π is always a feasible potential function and that all edges in M are
tight with respect to π. Thus, by Lem. 1, once the algorithm obtains a perfect matching and returns it,
this matching is a minimum-weight perfect matching.

We have just argued that the algorithm finds such a matching after at most (n+ 1)n iterations. Thus,
to argue that the algorithm runs in O

�

n4
�

time, we need to argue that every iteration takes O
�

n2
�

time.
Note that each iteration needs to construct H, run alternating BFS in H, test whether F contains an
unmatched vertex in v ∈W, and either compute M ⊕ Pv , if such a vertex exists, or update π, if it doesn’t.
To update π, it needs to inspect all edges between vertices in X and Ȳ to determine δ, and then it needs
to update the potentials of all vertices in X and Y. We observed that alternating BFS takes linear time in
the size of the graph to which we apply it. All the other steps clearly also take linear time in the number
of vertices or edges of G. Since G is a complete bipartite graph with 2n vertices, it has n2 edges. Thus,
each iteration does indeed take O

�

n2
�

time, and the whole algorithm runs in O
�

n4
�

time.

4 MAXIMUM-WEIGHT MATCHING

Having shown that we can find a minimum-weight perfect matching in a bipartite graph in O
�

n4
�

time,
we are ready to prove that a maximum-weight matching can be found in the same amount of time. More
generally, we prove that

PROPOSITION 6. If there exists an algorithm that computes a minimum-weight perfect matching in any
arbitrary graph in T (n, m) time, then there exists an algorithm that computes a maximum-weight matching
in any arbitrary graph in O(n+m+ T (n, m)) time.

Proof. First observe that computing a maximum-weight matching in a graph G is the same as computing
a minimum-weight matching in G after negating all edge weights. To compute a minimum-weight
matching in G, we construct a graph G′′ composed of G and an identical copy G′ of G. In addition,
for every vertex u ∈ G, G′′ has an edge (u, u′) of weight zero, where u′ is the copy of u in G′. This is
illustrated in Fig. 2. G′′ has a trivial perfect matching {(u, u′) | u ∈ G}. Since G′′ has 2n vertices and
2m+ n= O(m) edges, we can compute a minimum-weight perfect matching M ′′ of G′′ in O(T(n, m))
time. As we show next, the matching M = {(u, v) ∈ M ′′ | u, v ∈ G} is a minimum-weight matching of G.
Since the construction of G′′ from G can clearly be carried out in O(n+m) time, as can the construction
of M from M ′′, this shows that a minimum-weight matching in G can be computed in O(n+m+ T (n, m))
time.

Let M∗ be a minimum-weight matching of G and consider the two matchings M and M ′ = {(u′, v′) ∈

9

a

b

c

2

3

−1

G

a′

b′

c′

2

3

−1

G′
0

0

0

Figure 2: Construction of the graph G′′ from two copies of G. A trivial perfect matching of G′′ is shown
in red.

M ′′ | u′, v′ ∈ G′}. Since M∗ is a minimum-weight matching of G, M is a matching of G, and M ′ is
a matching of G′, we have q(M) ≥ q(M∗) and q(M ′) ≥ q(M∗). If q(M) > q(M∗), then observe that
q(M ′′) = q(M) + q(M ′) > 2q(M∗) because every edge between G and G′ in G′′ has weight 0. On the
other hand, the matching M ′′′ = {(u, v), (u′, v′) | (u, v) ∈ M∗}∪ {(u, u′) | u ∈ G is unmatched by M∗} is a
perfect matching of G′′ of weight 2q(M∗). Thus, M ′′ is not a minimum-weight perfect matching of G′′, a
contradiction. This shows that q(M)≤ q(M∗). Since q(M)≥ q(M∗), we therefore have q(M) = q(M∗),
that is, M is a minimum-weight matching of G.

Note that Prop. 6 provides a reduction from maximum-weight matching to minimum-weight perfect
matching for arbitrary graphs, not only for bipartite graphs, but it also requires the existence of an
algorithm that can compute a minimum-weight perfect matching in an arbitrary graph. We only discussed
how to find minimum-weight perfect matchings in bipartite graphs. The next proposition shows that if
we want to compute a maximum-weight perfect matching in a bipartite graph, we only need an algorithm
to compute a minimum-weight perfect matching in bipartite graphs.

PROPOSITION 7. If there exists an algorithm that computes a minimum-weight perfect matching in any
bipartite graph in T (n, m) time, then there exists an algorithm that computes a maximum-weight matching
in any bipartite graph in O(n+m+ T (n, m)) time.

Proof. We use the same reduction from maximum-weight matching to minimum-weight perfect matching
as in the proof of Prop. 7. If G = (U , W, E) is bipartite, then so is G′ = (U ′, W ′, E′), and it is easily verified
that every edge of G′′ has one endpoint in U ∪W ′ and the other in U ′ ∪W. Thus, G′′ is bipartite, and we
can use a minimum-weight perfect matching algorithm for bipartite graphs to compute such a matching
in G′′.

Since the Hungarian algorithm computes a minimum-weight perfect matching in O
�

n4
�

time, we
immediately obtain the following corollary:

COROLLARY 8. A maximum-weight matching in a bipartite graph can be computed in O
�

n4
�

time.

10

5 FASTER MINIMUM-WEIGHT PERFECT MATCHING AND MAXIMUM-WEIGHT

MATCHING*

Our goal in this section is to reduce the running time of the Hungarian Algorithm to O
�

n3
�

. Recall that
the current running time of O

�

n4
�

is the result of the algorithm executing up to (n+ 1)n iterations,
each of which costs O

�

n2
�

time. Also recall that there are n iterations that grow the matching, and the
remaining up to n2 iterations adjust the potential function to allow the matching to grow. Our faster
implementation of the Hungarian algorithm groups these iterations into phases. Each phase ends with
an iteration that grows the matching. All iterations in a phase before the last iteration are iterations
that adjust the potential function. Thus, the algorithm has n phases. The key to obtaining a faster
algorithm then is to show that we need to find an alternating forest only once per phase, instead of
once per iteration. Since the O

�

n2
�

cost of computing an alternating forest is the most costly part of
the algorithm, performing this step only once per phase, n times in total, instead of once per iteration,
reduces the running time of the algorithm to O

�

n3
�

.
The reason why we can get away with building the alternating forest once per phase is stated in the

last paragraph of the proof of Lem. 4. This paragraph observes that because every edge in F connects a
vertex in X with a vertex in Y, each such edge remains tight. This implies that every time we update π,
we do not need to compute F from scratch but can simply add the vertices reachable via newly tight
edges to the forest obtained before updating π. Thus, we can think of the implementation of a phase
as running a single search for tight alternating paths (not necessarily in breadth-first order, which is
important only if we want to find shortest augmenting pathe) until we find an unmatched vertex in W,
and updating π on the fly as necessary to allow us to reach such a vertex. To implement this, we need a
few simple pieces of information.

Each phase explicitly maintains the sets X , Y, X̄ , and Ȳ while running the alternating search. Initially,
all unmatched vertices in U are roots of the forest F and no other vertices are in F yet, because we have
not explored any edges yet. Thus, X contains all unmatched vertices in U , X̄ = U \ X , Y = ;, and Ȳ =W.

For each vertex v ∈ X ∪ Y, the algorithm stores its parent pv in F. If v is an unmatched vertex in U,
then it has no parent in F, so pv = NULL. Once we add an unmatched vertex v ∈ W to F, we can use
these parent pointers starting from v to collect the edges in Pv and “flip” their membership in M .

For each vertex v ∈ Ȳ, we store two pieces of information:

δv =min{wu,v −πu −πv | u ∈ X }

and the vertex pv ∈ X such that wpv ,v −πpv
−πv = δv .

Finally, we maintain a queue Q of all those vertices v ∈ Ȳ with δv = 0. We use this queue to
implement the construction of an alternating forest in the tight subgraph H of G. As long as Q is not
empty, there exists a vertex v ∈ Q ⊆ Ȳ such that the edge {pv , v} is tight. Since pv ∈ X ⊆ U , Ppv

is an
alternating path of even length from rpv

to pv . In particular, the last edge of Pv is in M . Since v ∈ Ȳ, that
is, v /∈ F, this last edge is not the edge {pv , v}. Since M is a matching, this implies that {pv , v} /∈ M and
Pv = Ppv

◦ 〈v〉 is a tight alternating path from rv = rpv
to v. Thus, we can add v to F by moving v from Ȳ

to Y and deleting v from Q. We do not update pv because pv is now the parent of v in F.
If v is unmatched, then Pv is an augmenting path, we replace M with M ⊕ Pv, and the phase ends.

Otherwise, there exists an edge {u, v} ∈ M , which is tight because all edges in M are tight. Thus,

11

Pu = Pv ◦ 〈u〉 is a tight alternating path from rv to u. We set pu = v to make u a child of v in F and move
u from X̄ to X . This requires us to update the δv′ values of all vertices in Ȳ as well as the queue Q. For
each vertex v′ ∈ Ȳ, the edge {u, v′} may be the new tightest edge connecting v′ to a vertex in X . This is
the case if wu,v′ −πu −πv′ < δv′ . In this case, we set δv′ = wu,v′ −πu −πv′ and pv′ = u. If δv′ = 0 now
(but not before), then we add v′ to Q.

This process ends when we add an unmatched vertex v ∈W to F or the queue Q becomes empty
before discovering such a vertex v ∈W. In the latter case, we need to update the vertex potentials to
create new tight edges that can be explored. We inspect all vertices in Ȳ , and calculate

δ =min
�

δv

�

� v ∈ Ȳ
	

,

add δ to πu, for all u ∈ X , and subtract δ from πv , for all v ∈ Y. Since

δv =min{wu,v −πu −πv | u ∈ X },

for all v ∈ Ȳ , increasing πu by δ, for all u ∈ X , decreases δv by δ, for all v ∈ Ȳ. Thus, we iterate over the
vertices in Ȳ a second time, decrease each δv value by δ, and add each vertex v ∈ Ȳ that now satisfies
δv = 0 to Q. Note that the definition of δ ensures that there exists at least one such vertex, that is, each
time we update the vertex potentials, we are able to add at least one more vertex in Ȳ to F.

This algorithm implements exactly the same search for a minimum-weight perfect matching as the
algorithm in the previous section, with the one difference that it does not visit vertices in breadth-first
order. However, the correctness proof of the algorithm in the previous section does not rely on the
augmenting paths it finds being shortest paths. Thus, the algorithm just described does find a minimum-
weight perfect matching. To prove the following theorem then, we need to argue that it runs in O

�

n3
�

time.

THEOREM 9. A minimum-weight perfect matching or maximum-weight matching in a complete bipartite
graph can be computed in O

�

n3
�

time.

Proof. Since each phase grows the matching by one edge, there are n phases. Thus, it suffices to prove
that each phase takes O

�

n2
�

time.
Initializing X , X̄ , Y , and Ȳ at the beginning of a phase is easily done in linear time. Next, we iterate

over the vertices in Ȳ. For each v ∈ Ȳ, we iterate over the vertices in X to compute δv and pv . This clearly
takes O(n) time per vertex in Ȳ, O

�

n2
�

time for all vertices in Ȳ. The queue Q can be initialized in the
process by adding every vertex v ∈ Ȳ with δv = 0 to Q.

As long as Q is non-empty, we add some vertex v in Q to Y. This takes constant time per vertex. If v
is matched, we also move its mate from X̄ to X . This also takes constant time. In addition, we inspect
all edges incident to u to identify those vertices v′ ∈ Ȳ whose δv′ and pv′ values need to be updated.
This takes constant time per edge incident to u, O(n) time in total. In summary, every time we remove a
vertex from Q, we add one or two vertices to F, and doing so costs at most O(n) per vertex. Since we can
add at most 2n vertices to F, the cost of adding vertices to F is O

�

n2
�

per phase.
Finally, updating vertex potentials requires finding the minimum of all δv values, for all v ∈ Ȳ, and

then updating πv, for all v ∈ X ∪ Y, and δv, for all v ∈ V. This takes O(n) time. We also need to add
all those vertices in Ȳ to Q for which δv drops to 0. This costs constant time per vertex, O(n) time for
all vertices in Ȳ. Thus, updating vertex potentials takes linear time every time the queue Q becomes

12

empty during a phase. Every time this happens, at least one edge between X and Ȳ becomes tight with
respect to the updated vertex potentials, allowing us to move at least one vertex from Ȳ to Y. Thus, after
updating the vertex potentials at most n times, all vertices in W are in F, that is, we must be able to
reach an unmatched vertex in W via a tight alternating path. Thus, we update vertex potentials at most
n times per phase. The total cost of updating vertex potentials per phase is thus O

�

n2
�

.
Since all parts of a phase can be implemented in O

�

n2
�

time and the algorithm executes n phases,
the whole algorithm runs in O

�

n3
�

time.
The Hungarian algorithm computes a minimum-weight perfect matching. By Prop. 7, we can find a

maximum-weight matching in the same amount of time.

The Hungarian Algorithm does not use the fact that the input graph is complete in any way. We even
used an incomplete graph to illustrate the algorithm in Fig. 1. Completeness only guarantees that the
graph has a perfect matching. Thus, we can use the Hungarian algorithm to try to find a minimum-weight
perfect matching (or a maximum-weight matching via the reduction from Prop. 7) even in not necessarily
complete bipartite graphs. One way to do this is to find a maximum matching first, which can be done in
O
�

m
p

n
�

time. If this maximum matching is not perfect, then there is no perfect matching. Otherwise,
there exists a perfect matching, and we can now run the Hungarian algorithm to find a minimum-weight
perfect matching in O

�

n3
�

time. Exer. 1 provides the means to avoid computing a maximum matching
first, by giving a condition that can be used to test for the non-existence of a perfect matching while the
Hungarian algorithm runs.

Now, if the graph is complete, then it has n2 edges. Thus, the cost per phase of the Hungarian
algorithm is in fact linear in the size of the graph. If the number of edges is m ∈ o

�

n2
�

though, then there
is no obvious reason why it should take O

�

n2
�

time to find a tight augmenting path in each phase. Can
this cost be reduced to O(m), resulting in an O(nm)-time minimum-weight perfect matching algorithm?
Almost. By using appropriate data structures, the cost per phase can be reduced to O(n lg n+m), which
gives a minimum-weight perfect matching algorithm with running tim O

�

n2 lg n+ nm
�

. This algorithm
uses the same strategy as the implementation of the Hungarian algorithm disussed in this section, only
it maintains vertex potentials and the slack values δv for the vertices in Ȳ in a way that the minimum
δv value can be determined in O(lg n) time and all δv values and vertex potentials of vertices in X ∪ Y
can be updated in bulk in constant (!) time. The main data structure to achieve this is a priority queue
storing the δv values plus a range-sum data structure storing the vertex potentials. A detailed discussion
of this faster implementation of the Hungarian algorithm is beyond the scope of this course.

EXERCISES

EXERCISE 1. Consider running the O
�

n3
�

-time implementation of the Hungarian algorithm on an
arbitrary bipartite graph G. Prove that G has no perfect matching if and only if the algorithm reaches a
situation where all vertices in Y are matched and none of the vertices in Ȳ has a neighbour in X .

13

