
MAXIMUM MATCHING IN BIPARTITE GRAPHS

CSCI 4113/6101
INSTRUCTOR: NORBERT ZEH

OCTOBER 27, 2025

In the previous topic, we have shown that a maximum matching in a bipartite graph can be found in
O
�

n2m
�

time via a reduction from maximum matching to maximum flow. In this topic, we show that
finding a maximum matching is in fact much easier than finding a maximum flow, both conceptually
and in terms of the amount of time required to find a maximum matching. We will start with a simple
O(nm)-time algorithm to find a maximum matching. The discussion of this algorithm introduces the
core concepts used by all matching algorithms, also those for minimum-weight perfect matching and
maximum-weight matching. One of these concepts is that of an augmenting path. Just as with
augmenting path algorithms for computing maximum flows, the name “augmenting path” suggests
that we use these paths to augment (i.e., grow) the matching, but an augmenting path for a matching
is defined differently from an augmenting path for a feasible flow. So make sure you keep these two
concepts separate in your head, in spite of the common name. Having introduced the key concepts
needed to find a maximum matching, we will look at a clever algorithm, due to Hopcroft and Karp, that
finds multiple augmenting paths simultaneously. As we will show, this allows the algorithm to finish in
O
�

m
p

n
�

time.

1 A FRAMEWORK FOR FINDING MAXIMUM MATCHINGS

All maximum matching algorithms we will discuss in this course use the same high-level strategy to find
a maximum matching. They start with an arbitrary matching M and then grow this matching iteratively.
Each iteration tests whether M is a maximum matching. If this is the case, the algorithm stops and
returns M . Otherwise, it constructs a larger matching from M and uses this larger matching as the input
to the next iteration.

To turn this outline into a complete algorithm, we need to discuss

• How to find the initial matching M ,
• How to decide whether M is a maximum matching, and
• How to construct a larger matching from M if M is not maximum.

Since any matching is good enough as the initial matching, and M = ; is clearly a matching, this
is a valid starting point. In practice, we may want to start with a maximal matching instead because,
as we discussed in the previous topic, such a matching can be found in O(n + m) time and starting
with a hopefully large matching reduces the number of iterations needed before we obtain a maximum
matching. In theory, this reduces the running time of the algorithm by only a constant factor because
a maximal matching may be as small as half the size of a maximum matching, that is, starting with a
maximal matching instead of the empty matching cuts the number of iterations in half (see Exer. 1).

1

We answer the last two questions together. In the following section, we define the concept of an
augmenting path P for a matching M and prove that (a) M is maximum if it has no augmenting path and
(b) for any augmenting path P of M , M ⊕ P is matching of size |M ⊕ P|= |M |+ 1. We use the notation
A⊕ B to denote the symmetric difference of two sets A and B: A⊕ B = (A\ B)∪ (B \ A). In words, A⊕ B
contains all the elements that are in exactly one of the two sets A and B. When M is a matching and P is
(the set of edges in) a path, then you can think about the construction of M ⊕ P from M as “flipping” the
edges in P: Every edge in P that is not in M is in M ⊕ P, and every edge in P that is in M is not in M ⊕ P.

2 A CHARACTERIZATION OF MAXIMUM MATCHINGS VIA AUGMENTING PATHS

An alternating path in G with respect to a matching M is a path in G whose edges alternate between
being in M and not being in M . We call an alternating path even or odd if it contains an even or odd
number of edges. An alternating cycle is a cycle of even length whose edges alternate between being
in M and not being in M . We call an alternating path P an augmenting path if both endpoints of P
are unmatched. This implies in particular that P must be odd and must start and end with unmatched
edges. These definitions are illustrated in Fig. 1. As this figure illustrates though, it is possible that an
alternating path is odd, starts and ends with unmatched edges, but is not an augmenting path. It is
crucial that the endpoints of the path are unmatched for an alternating path to be an augmenting path.

In this section, we prove that a matching M is maximum if and only if it has no augmenting path.
The “only if” direction is easy to prove:

PROPOSITION 1. If G = (V, E) is a graph, M ⊆ E is a matching, and P is an augmenting path for M, then
M ⊕ P is a matching of size |M ⊕ P|= |M |+ 1.

Proof. Since P is an augmenting path, it is odd, starts with an unmatched edge, and ends with an

Figure 1: Illustration of alternating and augmenting paths for a matching M formed by the red edges. The
red, blue, and yellow paths are alternating. The green path is not, because it contains two consecutive
unmatched edges. The red path R is augmenting because its endpoints are both unmatched. In particular,
M ⊕R is a matching of size |M ⊕R| = |M |+1. The blue path B is not an augmenting path, because it has
even length. However, since B has even length and its vertices have no incident edges in M \ B, M ⊕ B is
a matching of the same size as M . Even though it starts and ends with unmatched edges (the same edge
in this case), the yellow path Y is not an augmenting path because its left endpoint has an incident edge
in M \ Y, which implies that M ⊕ Y is not a matching.

2

unmatched edge. Since P is alternating, this implies that P contains one more edge not in M than edges
in M . Therefore,

|M ⊕ P|= |M \ P|+ |P \M |= |M \ P|+ |M ∩ P|+ 1= |M |+ 1.

It remains to prove that M ⊕ P is a matching.
So consider an arbitrary vertex v ∈ V. If v /∈ P, then it has the same incident edges in M ⊕ P as in M .

Since M is a matching, v has at most one incident edge in M and, thus, at most one incident edge in
M ⊕ P.

If v is an endpoint of P, then v has no incident edges in M because P is an augmenting path for M .
Thus, it has no incident edges in M \ P either, that is, all incident edges of v in M ⊕ P belong to P \M
and, therefore, to P. Since v is an endpoint of P, it has only one incident edge in P and, therefore, at
most one incident edge in M ⊕ P.

If v is an internal vertex of P, then let {u, v} and {v, w} be the two edges in P incident to v. Since
P is an alternating path, w.l.o.g. {u, v} ∈ M and {v, w} /∈ M . Since M is a matching and {u, v} ∈ P, this
implies that v has no incident edges in M \ P. Thus, the only edge in M ⊕ P = (M \ P)∪ (P \M) incident
to v is {v, w}.

Since we have shown that every vertex in G has at most one incident edge in M ⊕ P, M ⊕ P is a
matching.

Prop. 1 immediately implies that M is not a maximum matching if there exists an augmenting path
P for M , because M ⊕ P is a bigger matching. To prove the converse, we need the following lemma,
illustrated in Fig. 2.

LEMMA 2. For two matchings M1 and M2, M1 ⊕M2 is a collection of disjoint paths P1, . . . , Pk and cycles
C1, . . . , Cℓ. If a1 is the number of paths among P1, . . . , Pk that are augmenting for M1, and a2 is the number
of paths among P1, . . . , Pk that are augmenting for M2, then |M1| − |M2|= a2 − a1.

Proof. Every vertex has at most one incident edge in M1 and at most one incident edge in M2. Thus, it
has at most two incident edges in M1 ⊕M2. Since this is true for every vertex, M1 ⊕M2 is a collection of
disjoint paths and cycles.

We have |M1|= |M1 ∩M2|+ |M1 \M2| and |M2|= |M1 ∩M2|+ |M2 \M1|. Thus,

|M1| − |M2|= |M1 \M2| − |M2 \M1|

= |M1 ∩ (M1 ⊕M2)| − |M2 ∩ (M1 ⊕M2)|

=
k
∑

i=1

�

|M1 ∩ Pi| − |M2 ∩ Pi|
�

+
ℓ
∑

i=1

�

|M1 ∩ Ci| − |M2 ∩ Ci|
�

.

Since M1 and M2 are matchings, the edges in every path Pi and every cycle Ci alternate between being
in M1 and M2. Thus, every cycle Ci has even length and contains the same number of edges from M1

and M2, that is, |M1 ∩ Ci| − |M2 ∩ Ci| = 0, for all 1≤ i ≤ ℓ. Similarly, every even-length path Pi contains
the same number of edges from M1 and M2, that is, |M1 ∩ Pi| − |M2 ∩ Pi|= 0, for any such path.

Every odd-length path either contains one more edge from M1 than from M2 or one more edge from
M2 than from M1. Let P1 be the set of paths that contain one more edge from M2 than from M1, and let

3

Figure 2: The symmetric difference M1 ⊕M2 (shaded) of two matchings M1 (red edges) and M2 (blue
edges) is composed of a collection of alternating paths and cycles. In this example, one of the paths is an
augmenting path for M1 and there are no augmenting paths for M2. Thus, |M2|= |M1|+ 1.

P2 be the set of paths that contain one more edge from M1 than from M2. Then

|M1| − |M2|= |P2| − |P1|.

Next we prove that a path among P1, . . . , Pk belongs to P1 if and only if it is an augmenting path for M1.
By symmetry, a path among P1, . . . , Pk belongs to P2 if and only if it is an augmenting path for M2. Thus,
|P1|= a1, |P2|= a2, and |M1| − |M2|= a2 − a2, as claimed.

So consider a path Pi ∈ P1. Since Pi is an alternating path with respect to M1, to prove that Pi is an
augmenting path for M1, we need to prove that its endpoints u and v are unmatched by M1. Consider u.
The proof that v is unmatched is analogous. The edges in Pi alternate between M1 and M2, and Pi

contains one more edge from M2 than from M1. Thus, the edge e in Pi incident to u is in M2. Since
e ∈ Pi ⊆ M1 ⊕M2, this implies that e /∈ M1. Thus, if u were matched by M1, the edge f in M1 incident to
u would have to be a different edge, f ̸= e. Since e ∈ M2 and M2 is a matching, we have f /∈ M2, so
f ∈ M1 ⊕ M2. This shows that u would have two incident edges in M1 ⊕ M2, but being the endpoint
of Pi , it has degree 1 in M1 ⊕M2. This is a contradiction, so u must be unmatched. This shows that Pi is
augmenting for M1.

Now consider a path Pi that is an augmenting path for M1. By the definition of an augmenting path,
Pi is an alternating path with respect to M1 whose endpoints are unmatched by M1. Thus, the first and
last edges of Pi do not belong to M1. This implies that Pi has one more edge from M2 than from M1,
that is, Pi ∈ P1.

4

PROPOSITION 3. If G = (V, E) is a graph, and M ⊆ E is a matching, then M is maximum if and only if
there is no augmenting path in G with respect to M.

Proof. The “only if” direction follows from Prop. 1. For the “if“ direction, assume that M is not maximum,
and let M ′ be a maximum matching. Since |M ′|> |M |, Lem. 2 shows that one of the paths in M ⊕M ′

must be an augmenting path for M .

3 HOW TO FIND AN AUGMENTING PATH IN A BIPARTITE GRAPH

Everything we have discussed so far applies to arbitrary graphs. Even in non-bipartite graphs, the
strategy to find a maximum matching is to start with an arbitrary matching and then repeatedly look
for augmenting paths to grow the matching. By Prop. 3, once we fail to find an augmenting path, the
matching is maximum. To complete the algorithm, we need to discuss how to test whether there exists
an augmenting path and, if so, find one. This is where assuming that the graph is bipartite makes our
life a lot easier. In this section, we show that in a bipartite graph, we can find an augmenting path, or
verify that none exists, in O(n+m) time.

To decide whether there exists an augmenting path with respect to M , we need a structure called
an alternating forest. This is a rooted forest F ⊆ G (i.e., a collection of rooted trees) whose roots are
unmatched and with the property that every path in F from a root of F to one of its descendants is an
alternating path with respect to M . For every node v, we refer to the tree in F that contains v as Tv , to
the root of Tv as rv , and to the path from rv to v in Tv as Pv . We call a vertex odd or even depending on
whether Pv is a path with an odd or even number of edges. See Fig. 3 for an illustration. We call an
alternating forest F maximal if there is no alternating forest F ′ ⊃ F with the same roots.

LEMMA 4. Given a graph G = (V, E), a matching M ⊆ E, and a set R ⊆ V of vertices unmatched by M,
a maximal alternating forest with R as its set of roots can be found in O(n+m) time.

Proof. We use an adaptation of BFS, called alternating BFS. We initialize the BFS queue to contain all
vertices in R and mark these vertices as explored; all other vertices are marked as unexplored. Note that
this implies that the queue contains only even vertices initially. The algorithm maintains the invariant
that the queue contains only even vertices at all times.

When removing an even vertex v from the queue, we inspect all edges not in M incident to v. For
each such edge (v, w) whose other endpoint w is unexplored, we mark w as explored and make it a child
of v in F. This turns w into an odd vertex. If w is matched by an edge (w, x), we mark x as explored and
make x a child of w in F. This makes x an even vertex, and we add x to the queue. (Note that we do not
need to check whether x is explored; since w was unexplored and we always add the two endpoints of a
matching edge to F together, x is explored if and only if w is explored.)

The same analysis as for standard BFS shows that this procedure takes O(n+m) time and it is easily
verified that it outputs an alternating forest F. We need to prove that the alternating forest is maximal.

Let F ′ ⊇ F be a largest alternating forest with R as its set of roots. For each vertex v ∈ F ′, let T ′v be
the tree in F ′ that contains v, let r ′v be the root of T ′v , and let P ′v be the path from r ′v to v in T ′v .

If F ′ = F, then F is maximal. So assume that F ′ ⊃ F. Since all roots of F ′ belong to R, this implies
that there exists a vertex v ∈ F ′ that is not a vertex of F and whose parent u in F ′ is in F.

If v is an odd vertex of F ′, then P ′v has odd length. Since r ′v is unmatched, this implies that neither

5

a
b

c

f

d

g

e

h

i

j

k
l

m
n

o

pq

rs

t

u

v w

b l d f j n p t v

a g o u

c k e i m s w

r

q

h

Figure 3: A bipartite graph (vertices in U are red, vertices in W are blue) and a matching (red edges).
An alternating forest whose roots are the unmatched vertices in U is shaded and, to highlight its rooting,
also drawn separately on the right. Note that, given that we root the alternating forest in the unmatched
vertices in U, and since G is bipartite, all even vertices are in U, and all odd vertices are in W.

the first nor the last edge of P ′v is in M . Since v is odd, u is even. By the choice of v, the path P ′u ⊂ P ′v
from r ′u = r ′v to u in T ′u = T ′v is a path in F. Since this path has even length, this shows that u is even.
Since u ∈ F, this implies that alternating BFS adds u to its queue when discovering it. Therefore, it also
removes u from the queue. At this time, it explores all edges not in M incident to u, including the edge
{u, v}. When exploring this edge, v is added to F unless v is already in F. Thus, v ∈ F, a contradiction.

If v is an even vertex of F ′, then P ′v has even length. Since r ′v is unmatched, this implies that {u, v} ∈ M .
For every edge {x , y} ∈ M , alternating BFS adds either both or none of x and y to F. Thus, since u ∈ F,
v must also be in F, again a contradiction.

Since we arrive at a contradiction if F ′ ⊃ F, we must have F ′ = F, that is, F is a maximal alternating
forest.

Now consider some vertex v such that there exists an alternating path P from a vertex u ∈ R to v.
The next lemma states that, while alternating BFS may not find this particular path P, it always does find
an alternating path from a vertex in R to v and, therefore, adds v to F. This statement is true only if G is
bipartite. Since being able to discover all vertices reachable from unmatched vertices (in U) is the key to
discovering an augmenting path via alternating BFS (see the proof of Lem. 6 below), this is the reason
why finding augmenting paths in arbitrary graphs is harder: alternating BFS may fail to find such a path
even if one exists.

LEMMA 5. Let G = (U , W, E) be a bipartite graph, let M ⊆ E be a matching, let R ⊆ U, and let F be a

6

maximal alternating forest whose roots are the vertices in R. Then v ∈ F if and only if there exists an
alternating path from a vertex in R to v.

Proof. If v ∈ F, then Pv is an alternating path from rv to v.
For the opposite direction, assume that there exists an alternating path A from some vertex u ∈ R

to v. If all vertices in A belong to F, then v ∈ F. Otherwise, there exists a vertex z ∈ A such that z /∈ F but
its predecessor y in A belongs to F. Let A′ be the subpath of A from u to y.

If A′ has odd length, then the last edge in A′ is not in M because u is unmatched. Thus, {y, z} ∈ M .
Since u ∈ U, A′ has odd length, and G is bipartite, we have y ∈W. Thus, since G is bipartite and ry ∈ U,
the path Py must also have odd length. Since ry is unmatched, this implies that Py ends in an edge not
in M . Therefore, since z /∈ F, adding z and the edge {y, z} to F produces an alternating forest F ′ ⊃ F
with R as its set of roots. This is a contradiction because F is a maximal alternating forest with R as its
set of roots.

If A′ has even length, then an analogous argument shows that, once again, there exists an alternating
forest F ′ ⊃ F with R as its set of roots, contradicting the maximality of F.

Since we obtain a contradiction from the assumption that there exists a vertex z ∈ A that is not in F,
this shows that every vertex in A belongs to F, which finishes the proof of the lemma.

The following lemma demonstrates now why alternating forests are useful for finding augmenting
paths:

LEMMA 6. Let G = (U , W, E) be a bipartite graph, let M ⊆ E be a matching, and let F be maximal
alternating forest whose roots are the unmatched vertices in U. Then M is maximum if and only if F contains
no unmatched vertex in W. If F does contain an unmatched vertex w ∈ M, then Pw is an augmenting path
for M.

Proof. First assume that F contains an unmatched vertex w ∈W. Then Pw is an alternating path from
rw to w. Since rw is unmatched, this makes Pw an augmenting path. In particular, by Prop. 3, M is not
maximum.

Conversely, assume that M is not maximum. Then, by Prop. 3, there exists an augmenting path P
for M . This path has odd length and has two unmatched endpoints. Since G is bipartite, this implies
that one of the endpoints must be an unmatched vertex u ∈ U, and the other must be an unmatched
vertex w ∈W. Since P is an alternating path from u to w, Lem. 5 shows that w ∈ F.

By Lem. 4, it takes O(n+m) time to find an alternating forest F whose roots are the unmatched
vertices in U. By Lem. 6, M is maximum if F does not contain an unmatched vertex w ∈ W and, if it
does, then Pw is an augmenting path. Thus, we immediately obtain the following corollary.

COROLLARY 7. Given a bipartite graph G = (U , W, E) and a matching M of G, it takes O(n+m) time to
decide whether there exists an augmenting path P for M and, if so, find such a path.

4 AN O(nm)-TIME MAXIMUM MATCHING ALGORITHM FOR BIPARTITE GRAPHS

We have all the pieces to build our first maximum matching algorithm for bipartite graphs now. The
algorithm starts with an arbitrary matching M and repeatedly looks for an augmenting path to grow

7

the matching. Once it fails to find an augmenting path, it stops and returns the current matching. By
Prop. 3, M is a maximum matching at this point, so the algorithm is correct.

Each iteration of the algorithm takes linear time, by Cor. 7. Thus, to bound the running time of the
algorithm, we need to bound the number of iterations the algorithm executes before M is maximum.
Since G has n vertices, every edge has two endpoints, and no two edges in a matching share an endpoint,
we have the following observation:

OBSERVATION 8. Any matching M in a graph with n vertices has size |M | ≤ n/2.

Since each iteration of the algorithm grows the matching by one edge, Obs. 8 implies that the
algorithm runs for at most n/2 iterations. Since each iteration takes O(n+m) time, we conclude that
the algorithm runs in O(n2 +mn) time. As we show next, we can do a little better:

THEOREM 9. A maximum-cardinality matching in a bipartite graph can be found in O(nm) time.

Proof. We already argued that a maximum matching in a bipartite graph can be found in O(n2 + nm)
time. We usually compute matchings only in graphs with at least as many edges as vertices, in which
case O(n2 + nm) = O(nm). In theory though, n2 + nm /∈ O(nm) if m ∈ o(n). In this case, we can use the
following trick: In constant time, we can test whether the graph as no edges at all. In this case, we output
the empty matching. If G has at least one edge, then we can remove all vertices without incident edges.
This takes O(n) = O(mn) time. These vertices are clearly irrelevant for finding a maximum matching.
In the resulting subgraph G′ ⊆ G, every vertex has at least one incident edge. Since every edge has 2
endpoints, this immediately implies that G′ has at most 2m vertices, and O(n2+ nm) = O(nm). Together
with the preprocessing step to test whether G has any edges at all and to eliminate vertices without
incident edges, the total running time of the algorithm is thus O(1+ nm) = O(nm).

5 THE HOPCROFT-KARP ALGORITHM

If we want to improve on the algorithm in the previous section, then we need to reduce the cost per
iteration or reduce the number of iterations. Without the use of fancy data structures, improving on
the linear cost per iteration is a tall order. As we show next, it is possible to ensure that the algorithm
terminates after at most 2

p
n iterations. Thus, its running time reduces from O(nm) to O

�

m
p

n
�

. This
improvement is due to Hopcroft and Karp.

The basic idea is this: In each iteration, we don’t find only one augmenting path but multiple
disjoint augmenting paths P1, . . . , Pk. As the next lemma shows, M ⊕ (P1 ∪ · · · ∪ Pk) is a matching of
size |M ⊕ (P1 ∪ · · · ∪ Pk)|= |M |+ k. Thus, an iteration may grow the matching by more than one edge,
which clearly reduces the number of iterations needed to obtain a maximum matching. As before, the
algorithm terminates once it fails to find even a single augmenting path. By Prop. 3, the matching is
maximum at this point.

LEMMA 10. If G = (V, E) is a graph, M ⊆ E is a matching, and P1, . . . , Pk are disjoint augmenting paths
for M, then M ⊕ (P1 ∪ · · · ∪ Pk) is a matching of size |M ⊕ (P1 ∪ · · · ∪ Pk)|= |M |+ k.

Proof. For i ∈ [k]0, let Mi = M ⊕ (P1 ∪ · · · ∪ Pi), and let Vi =
⋃i

j=1 V (Pi) be the vertex set of the paths
P1, . . . , Pi. We use induction on i to show that Mi is a matching of size |Mi| = |M |+ i and that every

8

vertex in V \ Vi has the same incident edges in Mi as in M .
For i = 0, we have M0 = M , so M0 is a matching of size |M |+ 0 and every vertex trivially has the

same incident edges in M0 as in M .
For i > 0, the induction hypothesis shows that Mi−1 is a matching of size |M |+ i − 1, and all vertices

in V \Vi−1 have the same incident edges in Mi−1 as in M . Since the paths P1, . . . , Pk are disjoint, we have
V (Pi) ⊆ V \ Vi−1. Thus, all vertices in Pi have the same incident edges in Mi−1 as in M . In particular, Pi ,
being an augmenting path for M , is an augmenting path for Mi−1. Thus, by Prop. 1, Mi = Mi−1 ⊕ Pi is a
matching of size |Mi−1|+ 1 = |M |+ i. Every vertex in V \ V (Pi) has the same incident edges in Mi as
in Mi−1. Since every vertex in V \ Vi−1 has the same incident edges in Mi−1 as in M , this implies, that
every vertex in (V \ Vi−1)∩ (V \ V (Pi)) = V \ (Vi−1 ∪ V (Pi)) = V \ Vi has the same incident edges in Mi as
in M .

To bound the number of iterations of the Hopcroft-Karp algorithm by 2
p

n, we need to choose the
paths P1, . . . , Pk we find in each iteration carefully. Let us call an augmenting path P for M a shortest
augmenting path for M if there is no shorter augmenting path than P for M (a bit obvious really). We
call a set P= {P1, . . . , Pk} of shortest augmenting paths for M inclusion-maximal if the paths in P are
disjoint and every shortest augmenting path for M not in P shares at least one vertex with some path
in P. The Hopcroft-Karp algorithm finds an inclusion-maximal set of shortest augmenting paths in each
iteration. As Lem. 17 below shows, this can be done in O(n+m) time.

Before proving this, we show why finding an inclusion-maximal set of augmenting paths in each
iteration reduces the number of iterations the algorithm executes. We start with the following lemma:

LEMMA 11. Each iteration of the Hopcroft-Karp algorithm increases the length of the shortest augmenting
path with respect to the current matching M.

Proof. Let M be the matching at the beginning of the current iteration, let M ′ be the matching at the
end of the current iteration, let P = {P1, . . . , Pk} be the inclusion-maximal set of shortest augmenting
paths we use to construct M ′ from M , and let ℓ be the length of the paths in P.

Consider any augmenting path P = 〈v0, . . . , vℓ′〉 with respect to M ′. We need to show that ℓ′ > ℓ.
If P is disjoint from all paths in P, then P is also an augmenting path for M , and P∪{P} is a collection

of disjoint augmenting paths for M . Since P is an inclusion-maximal set of shortest augmenting paths
for M , P is not a shortest augmenting path for M , that is, ℓ′ > ℓ.

So assume that P shares a vertex v with at least one path Pi ∈ P. Let S = (P1 ∪ · · · ∪ Pk)⊕ P. Since
M ′ = M ⊕ (P1 ∪ · · · ∪ Pk), we have P1 ∪ · · · ∪ Pk = M ⊕ M ′, that is, S = (M ⊕ M ′)⊕ P = M ⊕ (M ′ ⊕ P).
M ′ ⊕ P is a matching of size |M ′|+ 1= |M |+ k+ 1 because P is an augmenting path for M ′. By Lem. 2,
S forms a collection of paths and cycles that includes at least |M ′ ⊕ P| − |M |= k+ 1 augmenting paths
for M . Since any augmenting path for M has length at least ℓ, the set S thus contains at least ℓ(k+ 1)
edges. Since every vertex in Pi has an incident edge in M ′ and the endpoints of P are unmatched by M ′,
v must be an internal vertex of P. Its incident edge in M ′ belongs to both Pi and P because v has an
incident edge in M ′ that belongs to P and an incident in M ′ that belongs to Pi but M ′ is a matching
and thus contains at most one edge incident to v. Thus, P and Pi share at least one edge. This implies
that |S| ≤ |P1 ∪ · · · ∪ Pt ∪ P| ≤ kℓ+ ℓ′ − 1. Since |S| ≥ ℓ(k+ 1), this gives kℓ+ ℓ′ − 1≥ ℓ(k+ 1), that is,
ℓ′ ≥ ℓ+ 1.

Using Lem. 11, we can prove that

9

LEMMA 12. The Hopcroft-Karp algorithm terminates after at most 2
p

n iterations.

Proof. If the algorithm terminates after fewer than
p

n iterations, the lemma holds. So assume that the
algorithm runs for at least

p
n iterations, and let M be the matching obtained after the (

p
n)th iteration.

By Lem. 11, any augmenting path for M has length at least
p

n.
Now let M ′ be the maximum matching of G produced by the algorithm, and let δ = |M ′|− |M |. Since

every iteration of the Hopcroft-Karp algorithm finds at least one augmenting path (as long as the current
matching is not maximum yet), the algorithm takes at most δ iterations to produce M ′ from M , that is,
the algorithm exits after at most

p
n+δ iterations.

By Lem. 2, M ⊕M ′ is a set of disjoint cycles and paths that includes δ augmenting paths for M . Any
such path has length at least

p
n (because every augmenting path for M does). Since these paths are

disjoint and G has n vertices, we must have δ ≤
p

n. Thus, the algorithm exits after at most
p

n+δ ≤ 2
p

n
iterations.

To finish the discussion of the Hopcroft-Karp algorthm, we need to show how to find an inclusion-
maximal set of shortest augmenting paths for a given matching M . To do so, we need the concept of the
level graph L of G with respect to M (see Fig. 4). Consider the alternating forest F of G with respect to
M and with roots all the unmatched vertices in U, constructed using the algorithm in Lem. 4. Recall the
definitions of the tree Tv, the root rv of Tv, and the path Pv from rv to v in Tv, for every vertex v ∈ F
(see § 3). Let the level ℓv of a vertex v ∈ F be the number of edges in Pv , and let ℓ be the minimum level
of all unmatched vertices in W (ℓ=∞ if F contains no unmatched vertex in W). Then L is a directed
graph containing exactly those vertices v ∈ V (F) with ℓv ≤ ℓ and containing a directed edge (u, v) if and
only if it satisfies the following conditions:

• u, v ∈ F ,
• {u, v} ∈ E(G),
• ℓv = ℓu + 1,
• {u, v} ∈ M if u is odd,
• {u, v} /∈ M if u is even.

Clearly, this graph can be constructed from F in O(n + m) time. Since F can also be constructed in
O(n+m) time (by Lem. 4), constructing L from G and M takes O(n+m) time.

Lem. 16 below shows that the level graph contains all shortest augmenting paths in G with respect
to M . To prove this lemma, we need the following two lemmas first.

LEMMA 13. Let G = (U , W, E) be a bipartite graph, let M ⊆ E be a matching, and let F be a maximal
alternating forest of G with respect to M and with roots some set of unmatched vertices R ⊆ U. If F is
constructed by running alternating BFS from the vertices in R, then every edge {u, v} in G with u, v ∈ F and
ℓv > ℓu + 1 satisfies u ∈W, v ∈ U, and {u, v} /∈ M.

Proof. Consider any edge {u, v} in G with u, v ∈ F and ℓv > ℓu + 1. Then {u, v} /∈ M because otherwise,
u would be v’s parent or vice versa, which would imply that ℓv ∈ {ℓu + 1,ℓu − 1},

Now assume for the sake of contradiction that u ∈ U and v ∈ W. Let z be v’s parent in F. Then
ℓz = ℓv−1> ℓu and both u and z are even. It is easy to verify that alternating BFS enqueues even vertices
by increasing values ℓv . Thus, it also dequeues them by increacing values ℓv . Since ℓu < ℓz , this implies
that u is dequeued before z. Since z is v’s parent in F, v is unexplored at the time when z is dequeued.

10

Thus, v is unexplored also when u is dequeued. When dequeuing u, alternating BFS would explore the
edge {u, v}, would find v to be unexplored, and would make v a child of u, a contradiction.

Using Lem. 13, we can prove that no alternating path makes “big steps forward” in terms of the
levels of its vertices.

LEMMA 14. Let G = (U , W, E) be a bipartite graph, let M ⊆ E be a matching, let F be a maximal alternating
forest of G with respect to M and with roots some set of unmatched vertices R ⊆ U, and let P = 〈v0, . . . , vk〉
be an arbitrary alternating path with v0 ∈ R. If F is constructed by running alternating BFS from the vertices
in R, then ℓvi

≤ ℓvi−1
+ 1, for all i ∈ [k].

Proof. For each edge {vi−1, vi} ∈ P, if vi−1 ∈W and vi ∈ U, then {vi−1, vi} ∈ M because v0 ∈ R ⊆ U and,
since every vertex in R is unmatched, the first edge in P is not in M . Therefore, by Lem. 13, ℓvi

≤ ℓvi−1
+1.

If vi−1 ∈ U and vi ∈W, then, by Lem. 13 once again, ℓvi
≤ ℓvi−1

+ 1.

Throughout the remainder of this topic, we call an alternating path an alternating path from R ⊆ V
to v /∈ R if its endpoints are v and a vertex r ∈ R. A shortest alternating path from R to v is a path of
minimum length among all alternating paths from R to v.

LEMMA 15. Let G = (U , W, E) be a bipartite graph, let M ⊆ E be a matching, and let F be a maximal
alternating forest of G with respect to M and with roots some set of unmatched vertices R ⊆ U. If F is
constructed by running alternating BFS from the vertices in R, then every path Pv with v ∈ F is a shortest
alternating path from R to v.

Proof. Consider an arbitrary vertex v ∈ F, and let Av be a shortest alternating path from R to v. Since Pv

is an alternating path of length ℓv from R to v, we have |Av| ≤ ℓv . We have to prove that |Av| ≥ ℓv .
Let Av = 〈v0, . . . , vk = v〉. By Lem. 14, we have ℓvi

− ℓvi−1
≤ 1, for all i ∈ [k]. This shows that

ℓv = ℓvk
= ℓv0

+
k
∑

i=1

(ℓvi
− ℓvi−1

)≤ ℓv0
+ k.

Since v0 ∈ R, we have ℓv0
= 0. Thus, ℓv ≤ k = |Av|.

LEMMA 16. A path P is a shortest augmenting path with respect to M if and only if it is a directed path in L
from an unmatched vertex u ∈ U to an unmatched vertex w ∈W.

Proof. Let R be the set of all unmatched vertices in U. By Lem. 15, for every vertex v ∈ F, Pv is a shortest
alternating path from U to v. Since this is true for every vertex in F and, by Lem. 5, every vertex reachable
from R via an alternating path is in F, ℓ is the length of a shortest augmenting path for M .

The “if” direction is easy now: If P is a directed path in L from an unmatched vertex u ∈ U to an
unmatched vertex w ∈W, then it has length ℓ because ℓu = 0, ℓw = ℓ, and every edge (x , y) ∈ P satisfies
ℓy = ℓx + 1, by the definition of L. Thus, P is a shortest augmenting path if it is alternating. This,
however, also follows from the definition of L because if (x , y) and (y, z) are two consecutive edges
in P, then either x and z are even, and y is odd, or x and z are odd, and y is even. In the former case,
{x , y} /∈ M and {y, z} ∈ M . In the latter case, {x , y} ∈ M and {y, z} /∈ M . This shows that the edges in
P alternate between being in M and not being in M , that is, P is an alternating path.

11

For the “only if” direction, consider a shortest augmenting path P = 〈v0, . . . , vk〉 for M , with v0 ∈ U
and vk ∈W. Then ℓvk

≥ ℓ. By Lem. 14, ℓvi
≤ ℓvi−1

+ 1, for all i ∈ [k]. If there exists an index i ∈ k with
ℓvi
≤ ℓvi−1

, then

ℓ≤ ℓvk
= ℓv0

+
k
∑

i=1

(ℓvi
− ℓvi−1

)< ℓv0
+ k.

Since v0 ∈ R, we have ℓv0
= 0, so ℓ < k = |P|. Since there exists an unmatched vertex w ∈W with ℓw = ℓ

and Pw is an augmenting path of lengh ℓ, this shows that P is not a shortest augmenting path in this
case. Therefore, if P is a shortest augmenting path, we must have ℓvi

= ℓvi−1
+ 1, for all i ∈ [i]. Since

the edges in P alternate between being in M and not being in M , and the first edge in P is not in M , all
edges in P are directed edges in L, that is, P is a directed path in L.

Lem. 16 now allows us to prove that

LEMMA 17. An inclusion-maximal set of shortest augmenting paths can be found in O(n+m) time.

Proof. By Lem. 4 and the discussion before Lem. 16, the level graph L of G with respect to M can be
found in O(n+m) time.

By Lem. 16, a path P is a shortest augmenting path for M if and only if it is a directed path in L
from an unmatched vertex in U to an unmatched vertex in W. From here on, we call such a path in L a
directed augmenting path in L. Thus, to find an inclusion-maximal set P of shortest augmenting paths
for M , we need to find an inclusion-maximal set of directed augmenting paths in L. To find such a set
of paths, we initialize P= ; and then iterate over the unmatched vertices in U. For each such vertex u,
we run DFS in L from u. This search ends as soon as we have explored all vertices reachable from u
or we have found an unmatched vertex in W, whichever comes first. If we find an unmatched vertex
w ∈W, then the path P from u to w explored by the search is a directed augmenting path from u to w
in L. Thus, we add this path P to P. No vertex in P can be part of another directed augmenting path
in any inclusion-maximal set of directed augmenting paths in L that includes P. Any vertex not in P
that is explored by the search cannot reach any unexplored vertex in W and thus is not part of any
directed augmenting path in L either. Thus, all vertices explored by the current search can be ignored by
subsequent searches for directed paths in L. By removing all vertices explored by the current search and
their incident edges before advancing to the next unmatched vertex in U, we ensure that every vertex
and every edge in L is explored by at most one search from an unmatched vertex in U, and the total cost
of all searches is in O(m).

To see that the set P of paths obtained after the final search in L is an inclusion-maximal set of directed
augmenting paths in L, observe first that removing the vertices in some path P ∈ P from L immediately
after adding P to P explicitly ensures that the paths in P are disjoint. To see that no proper superset of P
is a set of disjoint directed augmenting paths in L, consider an arbitrary directed augmenting path P
in L. Then P is a path in L from an unmatched vertex u ∈ U to an unmatched vertex in W. If P is disjoint
from every path in P, then none of the vertices in P is removed from L before the search from u starts.
Indeed, we argued above that any previous search removes only vertices in augmenting paths found so
far and vertices that cannot reach any unmatched vertex in W. Thus, when we start the DFS from u, P is
still a directed augmenting path in L that starts at u, that is, the search from u finds such a path (not
necessarily P) and adds it to P. This is a contradiction because we assumed that P is disjoint from every
path in P, but it shares u with a path in P.

12

a
b

c

f

d

g

e

h

i

j

k
l

m
n

o

pq

rs

t

u

v w

(a)

d f j p r v

g o i

h

e

w u

c

b

k

l

q

n

s

t

a m

(b)

d f j p r v

c

b

k

l

q

n

s

t

a m

(c)

Figure 4: (a) A bipartite graph G (vertices in U are red, vertices in W are blue) and a matching (red
edges). The alternating forest is shaded and, for clarity also drawn separately (b). (c) The level graph
L of G corresponding to the alternating forest in (b). Edge directions are not shown; edges in L are
directed downward.

13

Let us summarize the Hopcroft-Karp algorithm: Like the basic maximum matching algorithm from § 4,
the Hopcroft-Karp algorithm starts with an arbitrary matching (e.g., the empty matching or a maximal
matching) and then grows this matching in iterations. Each iteration constructs an alternating forest
using the algorithm from Lem. 4. If this forest contains no unmatched vertex in W, then, by Lem. 6, there
is no augmenting path for the current matching and, therefore, by Prop. 3, M is a maximum matching.
The algorithm returns this matching in this case. Otherwise, the algorithm constructs the level graph L
from F, uses Lem. 17 to find an inclusion-maximal set of shortest augmenting paths P1, . . . , Pk, replaces
the current matching M with M ⊕ (P1 ∪ · · · ∪ Pk), and then starts another iteration. By Lem. 17, the cost
per iteration is O(n+m). By Lem. 12, the algorithm terminates after at most 2

p
n iterations. Thus, the

algorithm runs in O
�

(n+m)
p

n
�

time. By using the same preprocessing step as in the proof of Thm. 9, we
can test whether G has any edges at all and, if not, immediately return the empty matching. Otherwise,
we can spend O(n) time to remove all vertices without incident edges. This guarantees that n≤ 2m, so
the running time including the linear cost of the preprocessing step becomes O

�

1+m
p

n
�

= O
�

m
p

n
�

.
We have shown the following theorem:

THEOREM 18. The Hopcroft-Karp algorithm computes a maximum matching in a bipartite graph in
O
�

+
p

nm
�

time.

EXERCISES

EXERCISE 1. Provide an example of a graph G that has a maximal matching M and a maximum matching
M ′ such that |M ′| = 2|M |. Prove that this is the worst possible gap between the size of a maximal
matching and the size of a maximum matching. Specifically, prove that, for every graph G = (V, E), if M
is a maximal matching of G and M ′ is a maximum matching of G, then |M ′| ≤ 2|M |.

14

