ASSIGNMENT 8

CSCI 4113/6101
INSTRUCTOR: NORBERT ZEH
SOLUTIONS

QUESTION 1

Since G is connected, so is H. Thus, there exists a path P = <v1 = ViV, = vi> from v; to v; in H, for

-
all i € [2,n]. Assume that P is a shortest path from v, to v;. Let h € [t] such that j, = max{ji,...,j.}.
If h =t, then j,._; < j, =i. Since v;_ is a neighbour of v; in H, this shows that v; € Ng(v;), that
is, H(v;) # 0.
If h #¢t,then1 < h < t, because j; = 1 < jy, for all k' € [2,t]. Thus, v;, has a predeces-
sor v; . and a successor v; in P, and they satisfy jj_1,j,i1 < jp- This implies that v; S

J Jh+1

v.
h—17 " Jh+1
Ng (th)' Therefore, since H [Ng (th)] is a clique, the edge {vjh—l’ th+1} is an edge of H. This makes
(le’ sV o Vs VJ}> a path from v; to v; in H, one with fewer edges than P. Since P is a shortest

path from v; to v; in H, no such path can exist. Thus, the case when h # t cannot arise.

QUESTION 2

Since v, is the root of T, all vertices of G are descendants of v; in T. Thus, G; = G and X; = V(G). In
particular w,(I) = w(I), for every independent set I of G. Since v, is the first vertex in o, Nj(v;) =0
and N [v,]= {v;}. Thus, there exist exactly two subsets of N[v;], {v;} and @. Since w;(I) = w(I), for
every independent set I of G, I[1,{v;}] is the maximum weight of all independent sets of G; = G that
contain v;, and I[1, 0] is the maximum weight of all independent sets of G; = G that do not contain v;.
Since every independent set of G either contains v; or not, the weight of a maximum-weight independent
set of G is max(I[1,0],I[1, {v;}]), which can clearly be computed in constant time.

QUESTION 3

If v; is a leaf of T, then it has no proper descendants. Thus, X; = {v;} and G; = G[Nj[v;]]. Moreover,
every neighbour v; of v; in H satisfies j < i. Assume the contrary, that is, there exists a neighbour v; of
v; with j > i, and choose this neighbour so that j is minimized. Since v; is not the parent of v; in T (v; is
a leaf), there exists a neighbour v, of v; in H with i <h < j. This implies that v;, v; € Njj(v;) though.
Since N (v;) is a clique, v, is a neighbour of v; in H. Since i < h < j, this contradicts the choice of v;.
Since every neighbour v; of v; in H satisfies j < i, we have Njj[v;] = Ny[v;]. Thus, since [Nj[v;]| <k,
we can identify Nij[v;] in O(k) time simply by scanning the adjacency list of v; in H and collecting the
vertices it contains plus v; itself. As already observed, this is the vertex set V; of G;. To identify the edge
set E; of G;, we scan the list of all edges in G and add all those edges to E; that have both endpoints



in V;. This takes O(m) time. Thus, G; can be constructed in O(k + m) time.

Now, if I is an independent set of G; with I NN [v;] = U, then I = U because Nj[v;] = V(G;). Thus,
there exists such an independent set if and only if U itself is an independent set of G;, a condition we
can test in O(m) time by scanning all edges of G; and testing for each whether it has both endpoints in U.
If U is independent, then I[i, U] = w(U NX;) = w(U N {v;}). In particular, I[i,U] = w(v;) if v; € U, and
I[i,U] = 0 otherwise. If U is not independent, then there is no independent set of G; that contains U, so
I[i,U] = —o0. Whichever case applies, I[i, U] can be computed in constant time after testing whether
U is idependent.

The total cost of all steps just described adds to O(k + m), so I[i, U] can be computed in O(k + m)
time, as claimed.

QUESTION 4

Now consider a vertex v; that is not a leaf of T, and let v; ,...,v;, be its children in T. Then X; =
{vi}UX; U---UX;,, and all these subsets of X; are disjoint. We start by proving a number of claims that
we will use to relate independent sets of G; and Gj,, ..., Gj, to each other, which is the key to computing
I[i, U] from appropriate table entries associated with the children of v; in T.

CramM 1. For all j € [d], N§ (v;,) S NS [v;].

Proof. Assume the contrary. Then there exists a vertex v, € N; (th) \ NS [v;]. We have a # i because
v; € N [v;]. We also have a < i because, by the definition of T, v; is the vertex with maximum index i in
Ng (th)' Thus, a < i.

Since v;,v, € Nj (th) and H [Ng (th)] is a clique, H contains the edge {v,,v;}, that is, v, € Ny,(v;).
Therefore, since a < i, v, € N;(v;), a contradiction. This shows that N (th) C Ng[v;]. O

CLAIM 2. For dll j €[d], G, € G;.

Proof. By Clm. 1, we have Nj (th) C N [v;]. Since v; is a child of v; in T, we also have X; C X;. Thus,

G, =G[Ng[v; Jux; ]S G[NFv]UX;]=G:. O
Next, we prove the claim hinted at in the assignment, that each set N;7[v;] is a separator.
CLAIM 3. For all i € [n], every edge {v,, vy} € G with v, ¢ G; and v}, € G; satisfies v, € N[ v;].

Proof. Assume the contrary. Then there exists an edge {v,,v,} with v, ¢ G; and v, € X; \ {v;}. This
implies in particular that v, is a proper descendant of v; in T. Now we distinguish two cases.

Case 1: v, is an ancestor of v; in T. Then a <i. Since v; € G; but v, ¢ G;, we have in fact that a < i.
Since v}, is a proper descendant of v;, the path P = (v; = v; ,...,v; = v) from v; to v, in T satisfies
i=j; <---<j,=b. Thus, since a < i, we also have that a < j; <--- < j, = b. H contains the edge

{va, Vi, }

We use induction on t to prove that {v,,v;} € H. Thus, since a < i, this implies that v, € N (v;) and,
therefore, that v, € G;. This is the desired contradiction.

If t =1, then the claim follows immediately because, in this case, i = j;, and H contains the edge

{Va,Vjt}.



If t > 1, then v, and v;,_, are neighbours of v; . Since a < j,_; < ji, this implies that v,,v; €
Ng (VJ})' Since H [NI‘; (VJ})] is a clique, this implies that {va,vjt_ 1} is an edge of H. By the induction
hypothesis, this implies that {v,,v;} € H.

Case 2: v, is not an ancestor of v; in T. Let v, be the lowest common ancestor of v, and v; in T.
Since v, is not an ancestor of v; in T, v, is a proper ancestor of v,. Since vy, is a proper descendant of v;,
4 1s also a proper ancestor of v;. Let P = <vq = Vjgs Vjps s Vj, = vb> and Q = (vq = Vigs Vigs e s Vi, = va>
be the paths from v, to v;, and v, in T, respectively. H contains the edge {v,, v} = {vis, Vjt}' We use
induction on s + t to prove that this leads to a contradiction. We assume w.l.0.g. that i; < j,. The case
when i; > j, is analogous, with the roles of v; and v; swapped. Since {Vis’vjt} is an edge of H, the
assumption that i; < j, implies that v; € Ny (ij)'

If t =1, then v, is the parent of v; in T. Since v, is a proper ancestor of v; , ¢ < i;. Since v; € Ny (VJ})’

q
this shows that v, is not the vertex with maximum index q in Ny (VJ})’ that is, v, is not the parent of v;,

v

in T, which is the desired contradiction.

If t > 1, then i, j,_; < j, and j,_; # q. Since H contains both {vis’vjt} and {vjt—l’vjt}’ this shows
that v;,v; | € Nj (VJ})' Since H [Ng (VJ})] is a clique, this shows that {vis, ij} is an edge of H. By the
induction hypothesis, this leads to a contradiction. O

Now consider any subset I C V(G;), let U =INNg[v;], and, forallh € [d], let [, =INV (Gjh) and
Up=I,nNg [v; |-

CramM 4. Forallh € [d], U, = (UNNg (v;))u(1n{v;}).
Proof. We have
Up=1nV(G;)nNg [v;, ]=1nN7 [v;, [=1n (N7 (v, ) u{v, = nNg (v, ) u(in{y,}). @
By Clm. 1, N (v;,) € Ng[v;]. Thus,
INNg (v, ) =InNS[vINNg (v, )=UNNg (v;,)- (2)
The claim follows by substituting (2) into (1). O

The following claim is the heart of the dynamic programming algorithm.

CLAIM 5. I is an independent set of G; if and only if U is an independent set of G; and I, is an independent
set of G;,, for all h € [d].

Proof. First, observe that I =U UI, U---UI,. Indeed, every vertex of G; belongs either to N;7[v;] or to
X; \ {v;}. Any vertex in I N Nj[v;] belongs to U. Any vertex in I N (X; \ {v;}) belongs to X , for some
h € [d], and, thus, to I;,. This proves that ] CUUI; U---UI,. Since U, I;,...,I; are all subsets of I, the
converse inclusion is trivial.

The “only if” direction of the claim is trivial now. Since U C I, U is an independent set of G; if I is an
independent set of G;. Since G;, € G; and I, € I, I is independent in G;, if I is independent in G;, for
allh e [d].



For the “if” direction, assume I is not an independent set. Then there exists an edge {v,,v,} € G € H
with v, vy, € I. If vy, vy, € U, then U is not an independent set. So assume that v, ¢ U. Then v, € I, \ U,
for some h € [d], and, therefore, v, € Gj,- If v, € I, then [ is not an independent set. Thus, we can also
assume that v;, ¢ I, and, therefore, v, ¢ G;, . By Clm. 3, this implies that v, € U,. By Clm. 4, this implies
that v, € U. But we just assumed that v, ¢ U, so the case when v, € I, \ U and v}, ¢ I, cannot arise. [J

Now let U € Ng[v;]. If U is not an independent set, then there is no independent set I 2 U with
INNg[v;]=U. Thus, I[i,U] = —o0 in this case. Otherwise, let U}’l =UNNf (vjh), forall h € [d]. Then

d
Cram 6. I[i,UT=w(U N {v;}) + > max (I [, Uy ], 1 [jn. U U {v;, }]).
h=1

Proof. Since U is independent, there exists an independent set I 2 U of G; with INNJ[v;]=U: I =U
does the trick. Assume that I has maximum weight w;(I) among all such independent sets. Then
I[i, U] = w;(I).

By Clm. 5, I4,...,I; as defined before Clm. 4 are independent sets of G; , ..., G;,, respectively. Since
{vi},X;,...,X;, form a partition of X;, the sets I N {v;},I NX;,...,I NX; form a partition of I N X;.

However, since the vertex set of Gj, includes X iy We have INX i =IhnX;, for all h € [d]. Therefore,

d

d
wi()=wInX)=wlI 0 v+ > w(nX; ) =wUn{v}D+> w1
h=1 h=1

Since I, is an independent set of G;,, for all h € [d], we have w; (I},) < I[jy, U], for Uy, as defined before
Clm. 4. Thus, since I[i, U] = w;(I), we have

d
10, UL < w(U N i)+ D I, Uyl
h=1

Now, by Clm. 4,

U= (WNg ()0 (10 () = U0 (0 v} € (U7, 00 (v, 1. ®

for all h € [d]. Thus, I[j,, U,] < max (I [ j, U,’l],l [jn» U, U {th}])’ for all h € [d]. This implies that

d
I[i, U1 <w(UnNn{v;}) +Zmax(l Lino Up 11 Lins Up U {v;, 1) - 4)
h=1

Now, since I}, is an independent set of G, with I NN [th] = Uy, for all h € [d], (3) shows that
there exists an independent set I” of G, with I’ "N [th] e{U, U, U {vjh}}, for all h € [d]. Choose I}
from among all independent sets I }’l’ of Gy, that satisfy this condition so that w;, (I }’1) is maximized, for all
h € [d]. Then w;, (I,’l) = max (I [jh, U}’l],I [jh, U, U {vjh}]), for all h € [d].

Now let I'’=UU Uizl I;. Then, similar to the partition of I NX; into U N {v;},I; NX;,...,IsNX;,,



the sets U N {v;},1; NX;,...,I; NX;, form a partition of I’ N X;. Thus,

d d
w; (I') = w(U N {v}) + ijh (1) =w(Un{v;})+ Zmax([ Ui U 11 i Up u {v;, 1)
h=1 h=1

Next, we prove that I’ is an independent set of G; and that I' "N [v;] = U. Thus, S[i,U] > w; (1') and

d

1[i, Ul = w(U N {v;}) +Zmax (I UL LI [ns U U vy, ) - (5)
h=1

Together, (4) and (5) prove the claim.

Since U C I’ and U € Nj[v;], we immediately conclude that I’NNj[v;] 2 U. For each h € [d], we
have I;\Ng [v; | € {U;, U] u{v; }}. Thus, ;NG (v;, ) = U, CU. Since I, = (I; N"Ng (v; ))u(I; nX;,
and X;, NN [v;] =0, this shows that I; "N [v;] C U, for all n € [d]. Thus, we also have I'NN7[v;] C U,
thatis, I'NNy[v;] S U.

Since I; C I’, for all h € [d], we have I’ N V(Gjh) D I;. If this is not an equality, then there
exists a vertex x € (I'n V(Gjh)) \ I;. Since X; N (vu V(th,)) = (@, for all ' # h, this vertex x
must belong to N (th) and, therefore, to NJ[v;]. Since I’ NJ[v;] = U, this shows that x € U.
However, U; = UNNg (th) and Uy =I; NNg (th) CI;. Thus, x €I, a contradiction. This shows that
I'nv(G;)=1I;,forall he[d].

Since U, I {, | é are all independent sets, Clm. 5 shows that I’ is an independent set of G;. This
finishes the proof. O

To compute I[i, U], we need to test whether U is an independent set of G. If not, then S[i,U] = —o0.
Otherwise, we need to apply the formula in Clm. 6 to compute I[i,U]. To do the latter, we need to
identify U7, ..., Uc’i. Testing whether U is an independent set is a matter of marking all vertices in G that
belong to U, which can be done in O(|U|) = O(k) time. Then we scan the edges of G and test for each
whether both its endpoints belong to U or not. This takes O(m) time. If we find such an edge, then U is
not independent in G and, therefore, not in G; either. We set I[i, U] = —oo in this case. Otherwise, U is
independent in G and, therefore, also in G;. Since U}’l =UNNg (vjh), for all h € [d], we can scan the
adjacency list of v; in H and collect all those neighbours of v; that are marked as belonging to U. The
resulting set is U,;. This construction of Ui/1 takes O (degH (vjh)) time. Summed over all h € [d], this is
O(m). Given U{, el U(’i, the expression in Clm. 6 can be evaluated in O(d) time. Thus, we can compute
I[i,U]in O(d + m) time.!

QUESTION 5

The equation for I[i,U] in Clm. 6 depends only on table entries associated with the children of v;
in T. Thus, if we visit the nodes of T in postorder, from the leaves towards the root, then the table
entries needed to compute I[i,U], for each i € [n], are available when we compute I[i,U]. Since
ING[vi]l <k +1, for all i € [n], there are at most 2k+1 subsets U € N [v;] to be considered for every

'When I wrote the assignment, I thought there more than two table entries to consider for each j,, up to 2 in fact. Hence
the less strict expectation in the assignment.



vertex v;. Therefore, the cost of computing all table entries for all pairs (i, U) is bounded by

Z 0(2%(k +d; +m)),

i€[n]

where d; is the number of children of v; in T. This is bounded by

> 0(2"m) =0 (2%nm)

i€[n]

because k,d; < n and, since G is connected, n € O(m). As shown in the answer to Question 2, the weight
of a maximum-weight independent set can be computed from the entries in I in constant time. What we
still have to figure out is how to find an actual independent set of this weight. For this, we retrace the
steps the algorithm took to compute this weight.

We find an independent set of G of maximum weight by making recursive calls on the nodes of T.
Each recursive call on a node v; is given as input a set U € Nj[v;] and returns the set I; = I N X;, where
I is an independent set of G; that includes U and satisfies w;(I) = S[i, U].

For the root v; of T, we observed in the answer to Question 2 that Nj[v;] = {v;} and X; = V(G),
and that the maximum-weight independent set of G has weight max(I[1,0],1[1,{v;}]). Let U C Nj[v;]
such that I[1, U] is maximized. The recursive call on v with argument U then returns an independent
set I 2 U with w(I) =w,(I) =1I[1,U], that is, I as a maximum-weight independent set.

We need to figure out how to implement each recursive call.

Ifv; is a leaf, then X; = {v;} € U. Thus, for any independent set I 2 U of G;, we have INn{v;} = UN{v;}.
Thus, if v; € U, we have I N X; = {v;}. Otherwise, we have I NX; = @. Thus, the invocation tests whether
v; € U and accordingly returns {v;} or 0.

If v; as an internal node with children v; ,...,v; , then, by Clm. 6,

J Jja?

d
I[i,U]=w(Un{v;}) +Zmax(1 [y, Up )1 Ui Up U {v;, 1)
h=1

where
U, =UnNg[v;] Vheldl

The proof of Clm. 6 arrived at this equation by observing that, for any independent set I of G; with
INNg[vi]=U, INX; decomposes into the sets UN{v;},I NX;,...,INX;,, and that U, = INNg [th] €
{u/,uru {th}}' Thus, if we choose Uy, € {U;,U; U {vjh}} such that I[jj,, U] is maximized, for all
n € [d], then we can find the sets I NXj,...,I NX;, by making recursive calls on v;,...,v; with
arguments Uy, ..., U, respectively. The set U N {v;} is trivial to compute.

Overall, we spend constant time to compute the set U passed to the initial invocation on the root.
Then we spend O(k) time per node v; to compute its input set U from the input set of its parent and
NZ[v;]. This takes O(kn) time in total. Given each node’s input set, we decide in constant time whether
to add v; to the independent set I based on whether v; € U or not.

This shows that, given the table I, wa can compute an independent set of maximum weight in O(kn)
time. Since we argued that we can fill in this table in O (anm) time, wa can find an independent set of
maximum weight in O (anm) time.



