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SOLUTIONS

QUESTION 1

Since G is connected, so is H. Thus, there exists a path P =



v1 = v j1 , . . . , v jt = vi

�

from v1 to vi in H, for
all i ∈ [2, n]. Assume that P is a shortest path from v1 to vi . Let h ∈ [t] such that jh =max{ j1, . . . , jt}.

If h= t, then jt−1 < jt = i. Since v jt−1
is a neighbour of vi in H, this shows that v jt−1

∈ NσH (vi), that
is, HσH (vi) ̸= ;.

If h ̸= t, then 1 < h < t, because j1 = 1 < jh′ , for all h′ ∈ [2, t]. Thus, v jh has a predeces-
sor v jh−1

and a successor v jh+1
in P, and they satisfy jh−1, jn+1 < jh. This implies that v jh−1

, v jh+1
∈

NσH
�

v jh

�

. Therefore, since H
�

NσH
�

v jh

��

is a clique, the edge
�

v jh−1
, v jh+1

	

is an edge of H. This makes



v j1 , . . . , v jh−1
, v jh+1

, . . . , v jt

�

a path from v1 to vi in H, one with fewer edges than P. Since P is a shortest
path from v1 to vi in H, no such path can exist. Thus, the case when h ̸= t cannot arise.

QUESTION 2

Since v1 is the root of T, all vertices of G are descendants of v1 in T. Thus, G1 = G and X1 = V (G). In
particular w1(I) = w(I), for every independent set I of G. Since v1 is the first vertex in σ, NσH (v1) = ;
and NσH [v1] = {v1}. Thus, there exist exactly two subsets of NσH [v1], {v1} and ;. Since w1(I) = w(I), for
every independent set I of G, I[1, {v1}] is the maximum weight of all independent sets of G1 = G that
contain v1, and I[1,;] is the maximum weight of all independent sets of G1 = G that do not contain v1.
Since every independent set of G either contains v1 or not, the weight of a maximum-weight independent
set of G is max(I[1,;], I[1, {v1}]), which can clearly be computed in constant time.

QUESTION 3

If vi is a leaf of T, then it has no proper descendants. Thus, X i = {vi} and Gi = G[NσH [vi]]. Moreover,
every neighbour v j of vi in H satisfies j < i. Assume the contrary, that is, there exists a neighbour v j of
vi with j > i, and choose this neighbour so that j is minimized. Since vi is not the parent of v j in T (vi is
a leaf), there exists a neighbour vh of v j in H with i < h < j. This implies that vh, vi ∈ NσH (v j) though.
Since NσH (v j) is a clique, vh is a neighbour of vi in H. Since i < h< j, this contradicts the choice of v j .

Since every neighbour v j of vi in H satisfies j < i, we have NσH [vi] = NH[vi]. Thus, since |NσH [vi]| ≤ k,
we can identify NσH [vi] in O(k) time simply by scanning the adjacency list of vi in H and collecting the
vertices it contains plus vi itself. As already observed, this is the vertex set Vi of Gi . To identify the edge
set Ei of Gi, we scan the list of all edges in G and add all those edges to Ei that have both endpoints
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in Vi . This takes O(m) time. Thus, Gi can be constructed in O(k+m) time.
Now, if I is an independent set of Gi with I ∩NσH [vi] = U, then I = U because NσH [vi] = V (Gi). Thus,

there exists such an independent set if and only if U itself is an independent set of Gi, a condition we
can test in O(m) time by scanning all edges of Gi and testing for each whether it has both endpoints in U.
If U is independent, then I[i, U] = w(U ∩ X i) = w(U ∩ {vi}). In particular, I[i, U] = w(vi) if vi ∈ U, and
I[i, U] = 0 otherwise. If U is not independent, then there is no independent set of Gi that contains U, so
I[i, U] = −∞. Whichever case applies, I[i, U] can be computed in constant time after testing whether
U is idependent.

The total cost of all steps just described adds to O(k+m), so I[i, U] can be computed in O(k+m)
time, as claimed.

QUESTION 4

Now consider a vertex vi that is not a leaf of T, and let v j1 , . . . , v jd be its children in T. Then X i =
{vi} ∪ X j1 ∪ · · · ∪ X jd , and all these subsets of X i are disjoint. We start by proving a number of claims that
we will use to relate independent sets of Gi and G j1 , . . . , G jd to each other, which is the key to computing
I[i, U] from appropriate table entries associated with the children of vi in T.

CLAIM 1. For all j ∈ [d], NσH
�

v jh

�

⊆ NσH [vi].

Proof. Assume the contrary. Then there exists a vertex va ∈ NσH
�

v jh

�

\ NσH [vi]. We have a ≠ i because
vi ∈ NσH [vi]. We also have a ≤ i because, by the definition of T, vi is the vertex with maximum index i in
NσH
�

v jh

�

. Thus, a < i.
Since vi , va ∈ NσH

�

v jh

�

and H
�

NσH
�

v jh

��

is a clique, H contains the edge {va, vi}, that is, va ∈ Nh(vi).
Therefore, since a < i, va ∈ NσH (vi), a contradiction. This shows that NσH

�

v jh

�

⊆ NσH [vi].

CLAIM 2. For all j ∈ [d], G jh ⊆ Gi .

Proof. By Clm. 1, we have NσH
�

v jh

�

⊆ NσH [vi]. Since v jh is a child of vi in T, we also have X jh ⊂ X i . Thus,
G jh = G
�

NσH
�

v jh

�

∪ X jh

�

⊆ G
�

NσH [vi]∪ X i

�

= Gi .

Next, we prove the claim hinted at in the assignment, that each set NσH [vi] is a separator.

CLAIM 3. For all i ∈ [n], every edge {va, vb} ∈ G with va /∈ Gi and vb ∈ Gi satisfies vb ∈ NσH [vi].

Proof. Assume the contrary. Then there exists an edge {va, vb} with va /∈ Gi and vb ∈ X i \ {vi}. This
implies in particular that vb is a proper descendant of vi in T. Now we distinguish two cases.

Case 1: va is an ancestor of vi in T. Then a ≤ i. Since vi ∈ Gi but va /∈ Gi , we have in fact that a < i.
Since vb is a proper descendant of vi, the path P = 〈vi = v j1 , . . . , v jt = vb〉 from vi to vb in T satisfies
i = j1 < · · · < jt = b. Thus, since a < i, we also have that a < j1 < · · · < jt = b. H contains the edge
�

va, v jt

	

.
We use induction on t to prove that {va, vi} ∈ H. Thus, since a < i, this implies that va ∈ NσH (vi) and,

therefore, that va ∈ Gi . This is the desired contradiction.
If t = 1, then the claim follows immediately because, in this case, i = jt , and H contains the edge
�

va, v jt

	

.
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If t > 1, then va and v jt−1
are neighbours of v jt . Since a < jt−1 < jt , this implies that va, v jt−1

∈
NσH
�

v jt

�

. Since H
�

NσH
�

v jt

��

is a clique, this implies that
�

va, v jt−1

	

is an edge of H. By the induction
hypothesis, this implies that {va, vi} ∈ H.

Case 2: va is not an ancestor of vi in T. Let vq be the lowest common ancestor of va and vi in T.
Since va is not an ancestor of vi in T, vq is a proper ancestor of va. Since vb is a proper descendant of vi ,
vq is also a proper ancestor of vb. Let P =




vq = v j0 , v j1 , . . . , v jt = vb

�

and Q =



vq = vi0 , vi1 , . . . , vis = va

�

be the paths from vq to vb and va in T, respectively. H contains the edge {va, vb} =
�

vis , v jt

	

. We use
induction on s+ t to prove that this leads to a contradiction. We assume w.l.o.g. that is < jt . The case
when is > jt is analogous, with the roles of vis and v jt swapped. Since

�

vis , v jt

	

is an edge of H, the
assumption that is < jt implies that vis ∈ NσH

�

v jt

�

.
If t = 1, then vq is the parent of v jt in T. Since vq is a proper ancestor of vis , q < is. Since vis ∈ NσH

�

v jt

�

,
this shows that vq is not the vertex with maximum index q in NσH

�

v jt

�

, that is, vq is not the parent of v jt
in T, which is the desired contradiction.

If t > 1, then is, jt−1 < jt and jt−1 ̸= q. Since H contains both
�

vis , v jt

	

and
�

v jt−1
, v jt

	

, this shows
that vis , v jt−1

∈ NσH
�

v jt

�

. Since H
�

NσH
�

v jt

��

is a clique, this shows that
�

vis , v jt−1

	

is an edge of H. By the
induction hypothesis, this leads to a contradiction.

Now consider any subset I ⊆ V (Gi), let U = I ∩ NσH [vi], and, for all h ∈ [d], let Ih = I ∩ V
�

G jh

�

and
Uh = Ih ∩ NσH
�

v jh

�

.

CLAIM 4. For all h ∈ [d], Uh =
�

U ∩ NσH
�

v jh

��

∪
�

I ∩
�

v jh

	�

.

Proof. We have

Uh = I ∩ V
�

G jh

�

∩ NσH
�

v jh

�

= I ∩ NσH
�

v jh

�

= I ∩
�

NσH
�

v jh

�

∪
�

v jh

	�

=
�

I ∩ NσH
�

v jh

��

∪
�

I ∩
�

v jh

	�

. (1)

By Clm. 1, NσH
�

v jh

�

⊆ NσH [vi]. Thus,

I ∩ NσH
�

v jh

�

= I ∩ NσH [vi]∩ NσH
�

v jh

�

= U ∩ NσH
�

v jh

�

. (2)

The claim follows by substituting (2) into (1).

The following claim is the heart of the dynamic programming algorithm.

CLAIM 5. I is an independent set of Gi if and only if U is an independent set of Gi and Ih is an independent
set of G jh , for all h ∈ [d].

Proof. First, observe that I = U ∪ I1 ∪ · · · ∪ Id . Indeed, every vertex of Gi belongs either to NσH [vi] or to
X i \ {vi}. Any vertex in I ∩ NσH [vi] belongs to U. Any vertex in I ∩ (X i \ {vi}) belongs to X jh , for some
h ∈ [d], and, thus, to Ih. This proves that I ⊆ U ∪ I1 ∪ · · · ∪ Id . Since U , I1, . . . , Id are all subsets of I , the
converse inclusion is trivial.

The “only if” direction of the claim is trivial now. Since U ⊆ I , U is an independent set of Gi if I is an
independent set of Gi. Since G jh ⊆ Gi and Ih ⊆ I , Ih is independent in G jh if I is independent in Gi, for
all h ∈ [d].
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For the “if” direction, assume I is not an independent set. Then there exists an edge {va, vb} ∈ G ⊆ H
with va, vb ∈ I . If va, vb ∈ U, then U is not an independent set. So assume that va /∈ U. Then va ∈ Ih \ U,
for some h ∈ [d], and, therefore, va ∈ G jh . If vb ∈ Ih, then Ih is not an independent set. Thus, we can also
assume that vb /∈ Ih and, therefore, vb /∈ G jh . By Clm. 3, this implies that va ∈ Uh. By Clm. 4, this implies
that va ∈ U. But we just assumed that va /∈ U, so the case when va ∈ Ih \ U and vb /∈ Ih cannot arise.

Now let U ⊆ NσH [vi]. If U is not an independent set, then there is no independent set I ⊇ U with
I ∩NσH [vi] = U . Thus, I[i, U] = −∞ in this case. Otherwise, let U ′h = U ∩NσH

�

v jh

�

, for all h ∈ [d]. Then

CLAIM 6. I[i, U] = w(U ∩ {vi}) +
d
∑

h=1

max
�

I
�

jh, U ′h
�

, I
�

jh, U ′h ∪
�

v jh

	��

.

Proof. Since U is independent, there exists an independent set I ⊇ U of Gi with I ∩ NσH [vi] = U: I = U
does the trick. Assume that I has maximum weight wi(I) among all such independent sets. Then
I[i, U] = wi(I).

By Clm. 5, I1, . . . , Id as defined before Clm. 4 are independent sets of G j1 , . . . , G jd , respectively. Since
{vi}, X j1 , . . . , X jd form a partition of X i, the sets I ∩ {vi}, I ∩ X j1 , . . . , I ∩ X jd form a partition of I ∩ X i.
However, since the vertex set of G jh includes X jh , we have I ∩ X jh = Ih ∩ X jh , for all h ∈ [d]. Therefore,

wi(I) = w(I ∩ X i) = w(I ∩ {vi}) +
d
∑

h=1

w
�

Ih ∩ X jh

�

= w(U ∩ {vi}) +
d
∑

h=1

w jh(Ih).

Since Ih is an independent set of G jh , for all h ∈ [d], we have w jh(Ih)≤ I[ jh, Uh], for Uh as defined before
Clm. 4. Thus, since I[i, U] = wi(I), we have

I[i, U]≤ w(U ∩ {vi}) +
d
∑

h=1

I[ jh, Uh].

Now, by Clm. 4,

Uh =
�

U ∩ NσH
�

v jh

��

∪
�

I ∩
�

v jh

	�

= U ′h ∪
�

I ∩
�

v jh

	�

∈
�

U ′h, U ′h ∪
�

v jh

		

, (3)

for all h ∈ [d]. Thus, I[ jh, Uh]≤max
�

I
�

jh, U ′h
�

, I
�

jh, U ′h ∪
�

v jh

	��

, for all h ∈ [d]. This implies that

I[i, U]≤ w(U ∩ {vi}) +
d
∑

h=1

max
�

I
�

jh, U ′h
�

, I
�

jh, U ′h ∪
�

v jh

	��

. (4)

Now, since Ih is an independent set of Gh with Ih ∩ NσH
�

v jh

�

= Uh, for all h ∈ [d], (3) shows that
there exists an independent set I ′′h of Gh with I ′′h ∩NσH

�

v jh

�

∈
�

U ′h, U ′h ∪
�

v jh

		

, for all h ∈ [d]. Choose I ′h
from among all independent sets I ′′h of Gh that satisfy this condition so that w jh

�

I ′h
�

is maximized, for all
h ∈ [d]. Then w jh

�

I ′h
�

=max
�

I
�

jh, U ′h
�

, I
�

jh, U ′h ∪
�

v jh

	��

, for all h ∈ [d].
Now let I ′ = U ∪

⋃d
h=1 I ′h. Then, similar to the partition of I ∩ X i into U ∩ {vi}, I1 ∩ X j1 , . . . , Id ∩ X jd ,
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the sets U ∩ {vi}, I ′1 ∩ X j1 , . . . , I ′d ∩ X jd form a partition of I ′ ∩ X i . Thus,

wi

�

I ′
�

= w(U ∩ {vi}) +
d
∑

h=1

w jh

�

I ′h
�

= w(U ∩ {vi}) +
d
∑

h=1

max
�

I
�

jh, U ′h
�

, I
�

jh, U ′h ∪
�

v jh

	��

.

Next, we prove that I ′ is an independent set of Gi and that I ′ ∩ NσH [vi] = U . Thus, S[i, U]≥ wi

�

I ′
�

and

I[i, U]≥ w(U ∩ {vi}) +
d
∑

h=1

max
�

I
�

jh, U ′h
�

, I
�

jh, U ′h ∪
�

v jh

	��

. (5)

Together, (4) and (5) prove the claim.
Since U ⊆ I ′ and U ⊆ NσH [vi], we immediately conclude that I ′ ∩ NσH [vi] ⊇ U . For each h ∈ [d], we

have I ′h∩NσH
�

v jh

�

∈
�

U ′h, U ′h ∪
�

v jh

		

. Thus, I ′h∩NσH
�

v jh

�

= U ′h ⊆ U . Since I ′h =
�

I ′h ∩ NσH
�

v jh

��

∪
�

I ′h ∩ X jh

�

and X jh∩NσH [vi] = ;, this shows that I ′h∩NσH [vi] ⊆ U , for all n ∈ [d]. Thus, we also have I ′∩NσH [vi] ⊆ U ,
that is, I ′ ∩ NσN [vi] ⊆ U .

Since I ′h ⊆ I ′, for all h ∈ [d], we have I ′ ∩ V
�

G jh

�

⊇ I ′h. If this is not an equality, then there
exists a vertex x ∈

�

I ′ ∩ V
�

G jh

��

\ I ′h. Since X jh ∩
�

U ∪ V
�

Vjh′

��

= ;, for all h′ ̸= h, this vertex x
must belong to NσH

�

v jh

�

and, therefore, to NσH [vi]. Since I ′ ∩ NσN [vi] = U , this shows that x ∈ U .
However, U ′h = U ∩ NσH

�

v jh

�

and U ′h = I ′h ∩ NσH
�

v jh

�

⊆ I ′h. Thus, x ∈ I ′h, a contradiction. This shows that
I ′ ∩ V
�

G jh

�

= I ′h, for all h ∈ [d].
Since U , I ′1, . . . , I ′d are all independent sets, Clm. 5 shows that I ′ is an independent set of Gi. This

finishes the proof.

To compute I[i, U], we need to test whether U is an independent set of G. If not, then S[i, U] = −∞.
Otherwise, we need to apply the formula in Clm. 6 to compute I[i, U]. To do the latter, we need to
identify U ′1, . . . , U ′d . Testing whether U is an independent set is a matter of marking all vertices in G that
belong to U , which can be done in O(|U |) = O(k) time. Then we scan the edges of G and test for each
whether both its endpoints belong to U or not. This takes O(m) time. If we find such an edge, then U is
not independent in G and, therefore, not in Gi either. We set I[i, U] = −∞ in this case. Otherwise, U is
independent in G and, therefore, also in Gi. Since U ′h = U ∩ NσH

�

v jh

�

, for all h ∈ [d], we can scan the
adjacency list of v jh in H and collect all those neighbours of v jh that are marked as belonging to U . The
resulting set is U ′h. This construction of U ′h takes O

�

degH

�

v jh

��

time. Summed over all h ∈ [d], this is
O(m). Given U ′1, . . . , U ′d , the expression in Clm. 6 can be evaluated in O(d) time. Thus, we can compute
I[i, U] in O(d +m) time.1

QUESTION 5

The equation for I[i, U] in Clm. 6 depends only on table entries associated with the children of vi

in T . Thus, if we visit the nodes of T in postorder, from the leaves towards the root, then the table
entries needed to compute I[i, U], for each i ∈ [n], are available when we compute I[i, U]. Since
|NσH [vi]| ≤ k+ 1, for all i ∈ [n], there are at most 2k+1 subsets U ⊆ NσH [vi] to be considered for every

1When I wrote the assignment, I thought there more than two table entries to consider for each jh, up to 2k in fact. Hence
the less strict expectation in the assignment.
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vertex vi . Therefore, the cost of computing all table entries for all pairs (i, U) is bounded by
∑

i∈[n]

O
�

2k(k+ di +m)
�

,

where di is the number of children of vi in T . This is bounded by
∑

i∈[n]

O
�

2km
�

= O
�

2knm
�

because k, di < n and, since G is connected, n ∈ O(m). As shown in the answer to Question 2, the weight
of a maximum-weight independent set can be computed from the entries in I in constant time. What we
still have to figure out is how to find an actual independent set of this weight. For this, we retrace the
steps the algorithm took to compute this weight.

We find an independent set of G of maximum weight by making recursive calls on the nodes of T .
Each recursive call on a node vi is given as input a set U ⊆ NσH [vi] and returns the set Ii = I ∩ X i , where
I is an independent set of Gi that includes U and satisfies wi(I) = S[i, U].

For the root v1 of T , we observed in the answer to Question 2 that NσH [v1] = {v1} and X1 = V (G),
and that the maximum-weight independent set of G has weight max(I[1,;], I[1, {v1}]). Let U ⊆ NσH [v1]
such that I[1, U] is maximized. The recursive call on v with argument U then returns an independent
set I ⊇ U with w(I) = w1(I) = I[1, U], that is, I as a maximum-weight independent set.

We need to figure out how to implement each recursive call.
If vi is a leaf, then X i = {vi} ⊆ U . Thus, for any independent set I ⊇ U of Gi , we have I∩{vi} = U∩{vi}.

Thus, if vi ∈ U , we have I ∩ X i = {vi}. Otherwise, we have I ∩ X i = ;. Thus, the invocation tests whether
vi ∈ U and accordingly returns {vi} or ;.

If vi as an internal node with children v j1 , . . . , v jd , then, by Clm. 6,

I[i, U] = w(U ∩ {vi}) +
d
∑

h=1

max
�

I
�

yh, U ′h
�

, I
�

jh, U ′h ∪
�

v jh

	��

,

where
U ′h = U ∩ NσH
�

v jh

�

∀h ∈ [d].

The proof of Clm. 6 arrived at this equation by observing that, for any independent set I of Gi with
I ∩NσH [vi] = U , I ∩X i decomposes into the sets U ∩{vi}, I ∩X j1 , . . . , I ∩X jd , and that Uh = I ∩NσH

�

v jh

�

∈
�

U ′h, U ′h ∪
�

v jh

		

. Thus, if we choose Uh ∈
�

U ′h, U ′h ∪
�

v jh

		

such that I[ jh, Uh] is maximized, for all
n ∈ [d], then we can find the sets I ∩ X j1 , . . . , I ∩ X jd by making recursive calls on v j1 , . . . , v jd with
arguments U1, . . . , Ud , respectively. The set U ∩ {vi} is trivial to compute.

Overall, we spend constant time to compute the set U passed to the initial invocation on the root.
Then we spend O(k) time per node vi to compute its input set U from the input set of its parent and
NσH [vi]. This takes O(kn) time in total. Given each node’s input set, we decide in constant time whether
to add vi to the independent set I based on whether vi ∈ U or not.

This shows that, given the table I , wa can compute an independent set of maximum weight in O(kn)
time. Since we argued that we can fill in this table in O

�

2knm
�

time, wa can find an independent set of
maximum weight in O

�

2knm
�

time.
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