Assignment 6

CSCI 4113/6101

INSTRUCTOR: NORBERT ZEH DUE: NOV 25, 2025, 11:59PM

Maximal matchings are easy to find, but they may not always be as large as they could be; they may not be maximum. Sometimes, this can be a good thing. For example, we showed that if M is a maximal matching, then the set of endpoints of M is a vertex cover. Thus, if we find a small maximal matching, then we also find a small vertex cover. This motivates the problem of finding a minimum maximal matching. This is a maximal matching of minimum size among all maximal matchings. (Since we want the matching to be maximal, we cannot simply choose the empty matching, so finding a maximal matching of minimum size is certainly not entirely trivial. It's NP-hard in fact.)

The parameterized version of this problem is given a pair (G, k) as input and asks whether G has a maximal matching of size at most k. Your goal in this assignment is to design an algorithm that can decide whether G has such a matching in time $O^*(4^k)$. As always, you'll build up the solution slowly.

QUESTION 1

A minimal vertex cover of a graph *G* is a vertex cover *C* with the property that no proper subset of *C* is a vertex cover of *G*. Prove that you can test in linear time whether *C* is a minimal vertex cover.

Hint: Prove that a vertex cover C is minimal if and only if every vertex $v \in C$ has an incident edge $\{u, v\}$ such that $u \notin C$. Explain how to test this condition in linear time.

QUESTION 2

Consider the following algorithm for enumerating all minimal vertex covers of size at most k of G: The algorithm proceeds in two phases. In the first phase, it constructs a set \mathcal{C} of vertex covers of size at most k. The second phase inspects the vertex covers in \mathcal{C} and discards all those that are not minimal, by using your answer to Question 1.

To implement the first phase, we use a recursive procedure. Given input (G, k) with $k \ge 0$, we consider the following cases:

- If *G* has no edges, then return $\mathcal{C} = \{\emptyset\}$. Clearly, \emptyset is a vertex cover of *G* in this case, and its size is $0 \le k$.
- If *G* has at least one edge but k = 0, then return $\mathcal{C} = \emptyset$. Clearly, *G* has no vertex cover of size at most *k* in this case.
- IF *G* has at least one edge and k > 0, then choose an arbitrary edge $\{u, v\}$. Recursively call the algorithm on (G u, k 1) and (G v, k 1). Let \mathcal{C}_u and \mathcal{C}_v be the sets returned by these recursive calls. Then return the set $\mathcal{C} = \{C \cup \{u\} \mid C \in \mathcal{C}_u\} \cup \{C \cup \{v\} \mid C \in \mathcal{C}_v\}$.
- (a) Prove that every set $C \in \mathcal{C}$ is a vertex cover of G of size at most k.

- (b) Prove that \mathcal{C} contains all minimal vertex covers of G of size at most k.
- (c) Show that this implies that we can produce the set of all minimal vertex covers of G of size k by constructing $\mathbb C$ as just described and then discarding all those vertex covers from $\mathbb C$ that are not minimal, and argue that this takes $O^*(2^k)$ time. (**Hint:** *Prove that constructing* $\mathbb C$ *takes* $O^*(2^k)$ *time and that* $|\mathbb C| = O(2^k)$. *The rest should follow fairly easily.*)

QUESTION 3

Let M be an arbitrary maximal matching of G. Let V(M) be the subset of vertices of G matched by M. We proved in class that V(M) is a vertex cover of G. Thus, there also exists a minimal vertex cover G of G such that $G \subseteq V(M)$. If $|M| \leq k$, then $|G| \leq |V(M)| \leq 2k$, that is, G has a minimal vertex cover of size at most 2k. Let M_1 be a maximum matching of G[C], and let M_2 be a maximal matching of $G[V(G) \setminus V(M_1)]$. Prove that $M_1 \cup M_2$ is a maximal matching of G of size $|M_1 \cup M_2| \leq |M|$. In particular, if M is a minimum maximal matching, then so is $M_1 \cup M_2$!

Hint: Proving that $M_1 \cup M_2$ is a maximal matching should be really easy. To bound the size of $M_1 \cup M_2$, prove that $|M_2| \leq |X| - 2|M_2|$. Then split M into two subsets M_X and \bar{M}_X , where all edges in M_X have both their endpoints in X, and $\bar{M}_X = M \setminus M_X$. Then prove that $|\bar{M}_X| = |X| - 2|M_X|$. Finally, use that M_2 is a maximum matching to conclude that $|M_X| \leq |M_2|$.

QUESTION 4

Combine your answers to Questions 1–3 to show that a minimum maximal matching can be found in $O^*(4^k)$ time.

MARKING SCHEME

QUESTION 1 (5 MARKS)

	Yes	Minor mistakes	Major mistakes	No
Algorithm correctly tests whether the vertex cover is minimal	1 mark			0 marks
Algorithm runs in linear time Correct proof that the algorithms decides correctly whether a vertex cover is minimal	1 mark 3 marks	2 marks	1 mark	0 marks 0 marks

QUESTION 2 (10 MARKS)

	Yes	Minor mistakes	No
Correct proof that every set in \mathcal{C} is a vertex cover of G (a)	2 marks	1 mark	0 marks
Correct proof that $\mathcal C$ contains all minimal vertex covers of G	2 marks	1 mark	0 marks
of size at most k (b)			
Correct proof that $ \mathcal{C} = O(2^k)$ (c)	2 marks	1 mark	0 marks
Correct proof that constructing C takes $O^*(2^k)$ time (c)	2 marks	1 mark	0 marks
Correct proof that filtering out the non-minimal vertex covers in \mathcal{C} takes $O^*(2^k)$ time (c)	2 marks	1 mark	0 marks

QUESTION 3 (10 MARKS)

	Yes	Minor mistakes	Major mistakes	No
Correct proof that $M_1 \cup M_2$ is a matching	2 marks	1 mark	0 marks	0 marks
Correct proof that $M_1 \cup M_2$ is maximal	2 marks	1 mark	0 marks	0 marks
Correct proof that $ M_1 \cup M_2 \le M $	6 marks	4 marks	2 marks	0 marks

QUESTION 4 (6 MARKS)

	Yes	Minor mistakes	Major mistakes	No
Correct proof that a minimum maximal matching can be found in $O^*(4^k)$ time	6 marks	4 marks	2 marks	0 marks

SUBMISSION INSTRUCTIONS

Follow the submission link for this assignment on the course webpage in the email you should have received from Crowdmark. Upload the assignment as a single PDF file.