ASSIGNMENT 6

CSCI 4113/6101
INSTRUCTOR: NORBERT ZEH
SOLUTIONS

QUESTION 1

We start with the hint in the assignment: A vertex cover C is minimal if and only if every vertex in C has
an incident edge whose other endpoint is not in C.

First, we prove that any vertex cover C that satisfies this condition must be minimal. Let C’ C C.
Then there exists a vertex v € C \ C’ and an edge {u,v} € G with u ¢ C. Thus, u,v ¢ C’, that is, C’ does
not cover the edge {u, v}. This shows that there is no proper subset of C that covers all edges of G, that
is C is minimal.

Conversely, let C be a minimal vertex cover. If there exists a vertex v € C with N(v) € C, then C \ {v}
is also a vertex cover because every edge incident to v is still covered by its endpoint in N(v). This
contradicts the minimality of C. Thus, if C is minimal, then N(v) \ C # 0, for all v € C, that is, there
exists an edge {u, v} incident to v with u ¢ C.

Testing whether a vertex cover is minimal is easy now. For every vertex v € C, we inspect the edges
incident to v, which takes O(deg(v)) time. If we find an edge incident to v whose other endpoint is not
in C, we move on to the next vertex in C or, if this was the last vertex, then we report that C is minimal.
If we do not find such an edge incident to v, we report that C is not minimal. Since Y. ., deg(v) =2m,
this procedure to test whether a vertex cover is minimal takes O(m) time.

QUESTION 2

(a) We use induction on the number of edges in G to prove this.

If G has no edges, then the algorithm returns € = {@}. Since G has no edges, @ is a vertex cover
of G, and its size is 0 < k.

If G has at least one edge but k = 0, then the algorithm returns € = (. In this case, it is trivially
true that every set in C is a vertex cover of G of size at most k.

If G has at least one edge and k > 0, then the algorithm picks an edge {u, v} and returns the set
C={Ccufu}l|Cceg,ju{Cu{v}|C e}, where C, and C, are the sets returned by recursive
calls on (G—u,k—1) and (G —v,k — 1), respectively. Since G —u and G — v have fewer edges
than G — at least the edge {u, v} is missing from both graphs — the induction hypothesis shows
that every set in C,, is a vertex cover of G —u of size at most k — 1, and every set in C, is a vertex
cover of G — v of size at most k — 1. Thus, all sets in € have size most k. For every vertex cover
C € G, CU{u} is a vertex cover of G because C covers all edges in G —u and all edges in G not in
G —u are incident to u. By an analogous argument, C U {v} is a vertex cover of G, for all C € C,,.



(b)

(©

Thus, all sets in € are vertex covers of G of size at most k.

Again, we use induction on the number of edges in G to prove this.

If G has no edges, then § is a vertex cover of G. Thus, every non-empty vertex cover is not minimal,
that is, @ is the unique minimal vertex cover of G. € contains this set.

If G has at least one edge and k = 0, then there is no vertex cover of G of size at most k. Thus,
there is also no minimal vertex cover of G of size at most k, and € = @ does contain all those
minimal vertex cover.

If G has at least one edge and k > 0, then C = {CU{u} | C e C}u{Cu{v}|C € C,}, where
{u,v} is an edge of G and C, and C, are the sets returned by recursive calls on (G —u, k — 1) and
(G—v,k—1), respectively. As argued in the proof of (a), G—u and G —v have fewer edges than G.
Thus, the induction hypothesis shows that ¢, and €, contain all minimal vertex covers of G —u
and G — v, respectively, of size at most k — 1.

Now consider a minimal vertex cover C of G of size at most k. Since C must cover the edge {u, v},
it must contain at least one of u and v. Assume it contains u. The case when it contains v is
analogous. Then C’ = C \ {u} is a vertex cover of G — u of size at most k — 1. It must in fact
be a minimal vertex cover of G —u because, if there is a proper subset C”” C C’ that is a vertex
cover of G —u, then C” U {u} is a vertex cover of G that is a proper subset of C, contradicting the
minimality of C. Since C’ is a vertex cover of G —u of size at most k — 1, it is an element of C,,.
Thus, € contains C’ U {u} =C.

As just argued, the recursive algorithm returns a set € containing all minimal vertex covers of size
at most k. We start by proving that |€| < 2. Again, we use induction on the number of edges
of G.

If G has no edges, then || =1 < 2k,

If G has at least one edge but k = 0, then |C] = 0 < 2,

If G has at least one edge and k > 0, then |C| < |C,| +|C,|. Once again, since G—u and G —v
have fewer edges than G, the induction hypothesis shows that |€,| < 21 and |@,| < 2X~1. Thus,
e < 2k,

This bound on € immediately implies that we can discard all non-minimal vertex covers from C
in O* (2") time because this requires inspecting each set in € and applying the algorithm from
Question 1 to it.

It remains to prove that the construction of C itself takes O* (2") time. Specifically, we use induction
on the number of edges in G to prove that the construction of € takes at most T(n,m,k) =
c-2K.(k+1) - (n+m) time, for some constant ¢ > 0.

If G has no edges, then we spend constant time to verify this, and then construct € in constant
time. For c large enough, this cost is bounded by T(n, m, k).

If G has at least one edge but k = 0, then we spend constant time to verify this, and then construct
C in constant time. For ¢ large enough, this cost is bounded by T (n, m, k).

Finally, if G has at least one edge and k > 0, then we spend O(n + m) time to construct G — v and
G —w. Once the recursive calls return, we need to construct C U {u}, for all C € €, and C U {v},
for all C € C,. This takes O(n) time per set, O(|C|n) = O (an) time in total. Thus, the cost for
this recursive call, excluding the recursive calls on G —u and G — v, is bounded by ¢ - 2k. (n+m),
for ¢ large enough. By the induction hypothesis, the resursive calls on G —u and G — v each take
at most T(n,m, k — 1) time. Thus, the cost of the current invovation, including all recursive calls



it makes, is bounded by
c-2k-(n+m)+2T(n, m,k—1) = c-2k-(n+m)+2-c-2k_1-k-(n+m) = c-2k-(k+1)-(n+m) =T(n,m,k),

as claimed.

QUESTION 3

Let M be a maximal matching, let C be a minimal vertex cover C of G such that C C V(M), let M; be a
maximum matching of G[C], and let M, be a maximal matching of G[V(G) \ V(M;)].

First, we prove that M; U M, is a maximal matching. M; and M, are both matchings. Since M, is a
matching of G[V(G) \ V(M;)], no edge in M, shares an endpoint with an edge in M;. Thus, M; U M,
is a matching. If it is not a maximal matching, then there exists an edge {u,v} € G such that both
u and v are unmatched by M; U M,. Since every vertex in V(M;) is matched by M;, we must have
u,v € V(G) \ V(M;). This is impossible though because M, is a maximal matching of G[V(G) \ V(M;)],
that is, every edge of G[V(G) \ V(M,)] shares an endpoint with at least one edge in M,. Thus, M; U M,
is a maximal matching of G.

To bound the size of M; U M,, note that, since C is a vertex cover of G, every edge has at least one
endpoint in C. The edges in M; have both their endpoints in C and do not share any endpoints, as M; is
a matching of G[C]. Since the edges in M, do not share any endpoints with edges in M;, this leaves
|C|\ 2|M; | vertices in C that can be endpoints of edges in M,. Since every edge in M, has at least one
endpoint in C and no two edges in M, share an endpoint, this shows that |M,| < |C|— 2|M;|. Thus,
|My U M| = [M; |+ [My| < |C|— |M;].

Now consider M. Split M into two subsets M. and M., where the edges in M. have both their
endpoints in C, and the edges in M. have only one endpoint each in C. Since C € V(M), every
vertex in C is matched by M. Since M is a matching, this shows that |C| = 2|M¢| + |M,|, that is,
M| = |Mc| + ¥ | = [C| — [Mq].

Finally, note that M. is a matching of G[C], and M; is a maximum matching of G[C]. Thus,
|Mc| < [M;| and [M; U M,| < [C|—|M;| < [C|—|M¢| = M|

QUESTION 4

The following algorithm decides whether there exists a maximal matching of size at most k in G: We
enumerate all minimal vertex covers C of G of size at most 2k. As shown in Question 1, this can be done
in O* (22k) =0* (4") time. For each such vertex cover C, we compute a maximum matching M; of G[C]
and a maximal matching M, of G[V(G) \ V(M;)]. Let Mc = M; UM,.! We remember the smallest of
these matchings M. we find. If it has size at most k, then we return it as proof that G has a maximal
matching of size at most k. Otherwise, we answer that G does not have a maximal matching of size at
most k.

As shown in Question 2, we find at most 22 = 4K minimal vertex covers. For each, it takes polynomial
time to find a maximum matching M; of G[C] and a maximal matching of G[V(G) \ V(M;)]. Thus, after
the initial O* (4") cost of finding all minimal vertex covers of size at most 2k, it takes O* (4") additional

M, has a different meaning in this question than it had in Question 3.



time to find the matchings M. for all minimal vertex covers C we have computed, and to identify the
smallest of them. Overall, the algorithm takes O* (4k) time. We have to prove that it is correct.

The argument in the proof of Question 3 shows that the set M, for every C, is a maximal matching
of G. Thus, if we find such a matching M. of size at most k, then this does indeed show that G has a
maximal matching of size at most k. We need to prove the converse: If G has a maximal matching of
size at most k, then there exists a minimal vertex cover C of size at most 2k such that M, is a matching
of size at most k.

Question 3 provides the proof: Let M be a maximal matching of size at most k, and let C € V(M) be
a minimal vertex cover of G. Since |C| < |V(M)| < 2k, C is among the minimal vertex covers we find.
The proof in Question 3 now shows that |[M.| = |M; UM,| < |[M| < k.

Note: You may wonder why we insist on finding minimal vertex covers. The correctness of the answers
in Questions 3 and 4 does not depend on the involved vertex covers being minimal. However, the running
time of the algorithm does. Indeed, while we proved that we can enumerate all minimal vertex covers of size
at most k in O (2") time, this is no longer true if we want to enumerate all vertex covers of size at most k.
Indeed, consider a graph without edges. Then any subset of at most k vertices is a vertex cover of size at
most k, and there are (Z) vertex covers of size exactly k. Thus, (Z) is a lower bound on the running time of
any algorithm that enumerates all vertex covers of size at most k in such a graph. A similar issue arises also
in non-trivial graphs: If there exists a vertex cover C of size k' < k, then any superset of C of size k is also a
vertex cover, and there exist (Z:,’z:) such supersets.



