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One way to implement a network router is as a crossbar switch. There are n input wires and n output
wires. At their intersections, there are switches that can be turned on and off to create a connection
between the wires. Each packet of data arriving on one of the input wires is labelled with the output
wire it should be sent to. These packets are collected into queues based on the output wire they should
be sent to:
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In each time step, the router can send multiple packets from input wires to output wires, but it cannot
send more than one packet arriving on the same input wire in the same time step, and it cannot send
more than one packet to the same output wire in the same time step (because no wire can be connected
to more than one other wire at any time). To maximize the throughput of the router, we would like to
send many packets at the same time in each time step.

Now, in the real world, this is an online problem: while the router makes a decision on which packets
to send in the current time step, more packets arrive on the input wires. Here, we consider the offline
version of this problem: The queues of the input wires are prefilled with packets to be sent to the output
wires, each labelled with the output wire it should be sent to; no new packets arrive while the algorithm
runs. Our goal is to send all packets from the input wires to the correct output wires in as few time steps
as possible subject to the constraint that no input wire can send more than one packet per time step and
no output wire can receive more than one packet per time step.

Formally, we represent each packet as a pair (i j , o j), where i j is the input wire on which the packet
arrives, and o j is the output wire to which the packet is to be sent. We are given a set of packets
P = {(i1, o1), . . . , (im, om)}. Our goal is to partition P into subsets P1, . . . , Pt such, for all 1 ≤ h ≤ t, no
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two packets in Ph arrive on the same input wire and no two packets in Ph are to be sent to the same
output wire. We call such a partition P= {P1, . . . , Pt} a valid routing of the packets in P. It is an optimal
routing of the packets in P if t = |P| is minimal among all valid routings of the packets in P.

QUESTION 1

A valid edge colouring of a graph G is an assignment of colours to the edges of G so that the edges
incident to each vertex all have distinct colours:

An optimal edge colouring is a valid edge colouring that uses the minimum number of distinct colours.
Given a set of packets P = {(i1, o1), . . . , (im, om)}, construct from it a multigraph1 G such that every valid
edge colouring of G corresponds to a valid routing P of P and vice versa. Moreover, the number of
colours used by the colouring should equal |P|, which implies that the colouring corresponding to P

is an optimal colouring of G if and only if P is an optimal routing of the packets in P. Prove that this
correspondence between valid/optimal colourings of G and valid/optimal routings of the packets in P
holds.

QUESTION 2

Observe that for any valid edge colouring, the edges that are assigned some colour c form a matching,
because no two edges incident to any vertex can have the same colour. Thus, we can view the edge
colouring problem as the problem of partitioning the edge set of G into matchings. Our goal is to find
such a partition consisting of as few matchings as possible. Let ∆ be the maximum degree of the vertices
in G. Question 3 asks you to prove that every bipartite graph has a matching M that matches all vertices
of degree ∆ (i.e., all vertices of degree ∆ are endpoints of edges in M). The question also asks you to
show that such a matching M can be found in O(nm) time. Prove that this implies that a valid edge
colouring of G with ∆ colours can be found in O(∆nm) ⊆ O

�

n2m
�

time. Also prove that G does not
have any valid edge colouring with fewer than ∆ colours, which implies that the colouring produced by
your algorithm is an optimal colouring.

1A multigraph is like a graph, only it is allowed to contain multiple edges with the same endpoints.
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QUESTION 3

Prove that in a bipartite graph, a matching that matches all vertices of maximum degree can be found in
O(nm) time.

Hint: You can use a similar strategy as for the maximum matching problem in bipartite graphs. You
start with an empty matching M and then update this matching by repeatedly finding an alternating path P
and replacing M with M ⊕ P. The difference is that you shouldn’t necessarily choose P to be an augmenting
path, that is, we do not necessarily want M ⊕ P to be bigger than M; our goal is to ensure that M ⊕ P
matches more vertices of degree ∆ than M does. To this end, you should prove two things, both under the
assumption that G is biparite: (1) As long as M does not match all vertices of degree ∆, there exists an
alternating path P in G such that one endpoint of P is an unmatched vertex of degree ∆ and either the other
endpoint is also unmatched or the path has even length and the other endpoint has degree less than ∆. (2) If
such a path exists, it can be found by running alternating BFS from the unmatched vertices of degree ∆ in U
(or in W if there are no unmatched vertices of degree ∆ in U). If you can prove these two things, you should
then be able to argue that you can find a matching that matches all degree-∆ vertices.
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MARKING SCHEME

QUESTION 1 (9 MARKS)

Yes Minor mistakes Major mistakes No

Valid edge colouring of the graph
corresponds to a valid packet routing

1 mark 0 marks

Valid packet routing corresponds to a
valid edge colouring of the graph

1 mark 0 marks

Correct proof that a valid edge colouring
corresponds to a valid packet routing

3 marks 2 marks 1 mark 0 marks

Correct proof that a valid packet routing
corresponds to a valid edge colouring

3 marks 2 marks 1 mark 0 marks

Correct proof that this implies that valid
edge colourings and valid routings
correspond to each other

1 mark 0 marks

QUESTION 2 (8 MARKS MARKS)

Yes Minor mistakes No

Algorithm computes a colouring with ∆ colours 1 marks 0.5 marks 0 marks
Algorithm runs in O(∆nm) time 1 marks 0.5 marks 0 marks
Correct proof that the algorithm computes a colouring with
∆ colours

2 marks 1 mark 0 marks

Correct proof that the algorithm runs in O(∆nm) time 2 marks 1 mark 0 marks
Correct proof that the graph does not have an edge
colouring with fewer than ∆ colours

2 marks 1 mark 0 marks

QUESTION 3 (12 MARKS)

Yes Minor mistakes Major mistakes No

Algorithm computes a matching that
matches all vertices of degree ∆

2 marks 1 mark 0 marks 0 marks

Algorithm runs in O(nm) time 2 marks 1 mark 0 marks 0 marks
Correct proof that the algorithm finds a
matching that matches all vertices of
degree ∆

6 marks 4 marks 2 marks 0 marks

Correct proof that the algorithm runs in
O(nm) time

2 marks 1 mark 0 marks 0 marks

4



SUBMISSION INSTRUCTIONS

Follow the submission link for this assignment on the course webpage in the email you should have
received from Crowdmark. Upload the assignment as a single PDF file.
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