Assignment 5

CSCI 4113/6101

INSTRUCTOR: NORBERT ZEH

SOLUTIONS

QUESTION 1

We construct a bipartite multigraph G = (I, O, E), where $I = \{i_1, ..., i_n\}$ is the set of input wires, $O = \{o_1, ..., o_n\}$ is the set of output wires, and E = P (each packet $(i_j, o_j) \in P$ is interpreted as an edge between i_j and o_j).

As observed in Question 2, an edge colouring of G with k colours is simply a partition of E into k matchings M_1, \ldots, M_k . This makes $\mathcal{P} = \{M_1, \ldots, M_k\}$ a valid packet routing because no two edges in the same matching M_h share an endpoint, that is, all packets in M_h originate at different input wires and are sent to different output wires. Thus, if G has a valid edge colouring with k colours, then all packets in K can be sent in K time steps.

Conversely, given a valid packet routing $\mathcal{P} = \{P_1, \dots, P_k\}$, each set $P_h \in \mathcal{P}$, interpreted as a set of edges in G, is a matching of G because no two packets in P_h share the same input wire or output wire. Thus, by assigning colour h to the edges in each set P_h , we obtain a valid edge colouring of G with k colours.

This implies that $\mathcal{P}=\{P_1,\ldots,P_k\}$ is an optimal packet routing if and only if the corresponding edge colouring of G is an optimal edge colouring of G. Indeed, we can represent this colouring as the collection $\mathcal{C}=\{P_1,\ldots,P_k\}$ of matchings. Let $\mathcal{P}^*=\{P_1^*,\ldots,P_\ell^*\}$ be an optimal packet routing, and let $\mathcal{C}^*=\{M_1^*,\ldots,M_t^*\}$ be an optimal edge colouring of G represented as a set of matchings. If \mathcal{C} is not an optimal edge colouring of G, then k>t. Since $\{M_1^*,\ldots,M_t^*\}$ is also valid packet routing, this shows that \mathcal{P} is not an optimal packet routing. Conversely if \mathcal{P} is not an optimal packet routing, then $k>\ell$. Since $\{P_1^*,\ldots,P_\ell^*\}$ is a valid edge colouring of G, this shows that \mathcal{C} is not an optimal edge colouring of G.

QUESTION 2

We describe a recursive algorithm to find an edge colouring of G with Δ colours. ¹

If *G* has no edges, which can be checked in constant time, then $\Delta = 0$, and $\mathcal{C} = \emptyset$ is a valid edge colouring of *G* with 0 colours. Thus, a valid edge colouring of *G* can be found in at most $c(1 + \Delta nm)$ time in this case, where *c* is an appropriate constant.

If $\Delta > 0$, then let M_{Δ} be a matching of G that matches every degree- Δ vertex. Then the graph $G' = (V, E \setminus M_{\Delta})$ has maximum vertex degree $\Delta - 1$. Indeed, every vertex v of degree $\deg_G(v) < \Delta$ satisfies $\deg_{G'}(v) \leq \deg_{G}(v) < \Delta$. Every vertex v of degree $\deg_{G}(v) = \Delta$ has an incident edge in M_{Δ}

¹This algorithm is easy to convert into an iterative one, but its correctness is easier to establish when describing the algorithm recursively.

and, therefore, satisfies $\deg_{G'}(v) = \deg_{G}(v) - 1 = \Delta - 1$. Thus, by the induction hypothesis, a valid edge colouring $\mathfrak{C}' = \{M_1, \ldots, M_{\Delta-1}\}$ of G' can be found in at most $c(1+(\Delta-1)nm)$ time. Since M_{Δ} is a matching, this makes $\mathfrak{C} = \mathfrak{C}' \cup \{M_{\Delta}\}$ a valid edge colouring of G with Δ colours. As shown in Question 3, the matching M_{Δ} can be found in O(nm) time, and the construction of G' from G and M_{Δ} takes O(n+m) = O(nm) time. Thus, if we choose c large enough, the construction of M_{Δ} , of G' from G and M_{Δ} , and of C from C' and C' and C' and C' takes at most C' thus, computing C' takes at most C' thus, C'

Since Δ is the maximum vertex degree of G, there exists a vertex of G with Δ incident edges. Each of these edges must be given a different colour, so there does not exist a valid edge colouring of G with fewer than Δ colours.

QUESTION 3

If G = (U, W, E) has no edges, then the desired matching is $M = \emptyset$, which can be constructed in constant time. So assume that G has at least one edge, so the maximum vertex degree Δ is non-zero. We use the same strategy as in the maximum matching algorithm: We start with the empty matching $M = \emptyset$ and iteratively update this matching until it matches all vertices of degree Δ . In particular, each iteration checks whether M matches all vertices of degree Δ . If so, we return M. Otherwise, we construct from M a new matching M' that matches at least one more vertex of degree Δ than M does. Thus, after at most n iterations, we obtain a matching that matches all vertices of degree Δ . Therefore, it suffices to show how to implement each iteration in O(m) time. We can assume that G does not contain any isolated vertices, as they can be removed in O(n) time before starting the algorithm. Including this preprocessing step, the cost of the algorithm becomes O(n + nm) = O(nm).

So consider the current matching M. We can test whether M matches all vertices of degree Δ in O(n) = O(m) time. If this is the case, then we return M. Otherwise, assume that U contains an unmatched vertex of degree Δ . If this is not the case, then W must contain such a vertex, so we can simply exchange the roles of U and W. We run alternating BFS from the unmatched vertices of degree Δ in U. This takes O(n+m)=O(m) time. If F contains an unmatched vertex $w\in W$, then the path P in F from w to the root u of the tree in F that contains w is an augmenting path for M. Thus, $M \oplus P$ is a matching, and this matching matches u and all vertices matched by M. Since u is unmatched by M and has degree Δ , this shows that $M' = M \oplus P$ matches more vertices of degree Δ than M does. If F contains a matched vertex $u' \in U$ of degree less than Δ , then let P be the path in F from u' to the root u of the tree in F that contains u'. Since G is bipartite, this path must have even length. Since u is unmatched, P starts with an edge not in M and, therefore, ends with an edge in M. Since u is unmatched by M, this implies that $M' = M \oplus P$ is a matching (by the same argument we used in class to show that $M \oplus P$ is a matching if P is an augmenting path). M' matches u, which was unmatched by M. The only vertex matched by M that is unmatched by M' is u'. Since u has degree Δ and u' has degree less than Δ , M' once again matches one more vertex of degree Δ than M does. It remains to prove that F must contain one of these two types of vertices: an unmatched vertex in W or a matched vertex of degree less than Δ in U.

Assume the contrary. Then observe that all vertices in U that belong to F have degree Δ . Indeed, the unmatched vertices in U of degree Δ are chosen as the roots of F. All matched vertices in U that belong to F have degree Δ because we assume that F does not contain a matched vertex of degree less than Δ

in U. Finally observe that, apart from the roots of F, F contains no unmatched vertices in U because the only non-root vertics in U that alternating BFS adds to F are mates of vertices in W added to F.

Since we also assume that F does not contain any unmatched vertex in W, all vertices in W that belong to F are matched and, therefore, F also contains their mates. Therefore, F contains the same number of vertices from W as matched vertices from W. Since there is at least one unmatched vertex of degree Δ in W, and W contains these vertices as roots, this implies that W contains more vertices from W than from W. Let W be the number of vertices from W that belong to W, and let W be the number of edges in W with both endpoints in W. As just observed, we have W since every vertex in W has degree at most W, we have W have W contains more vertices from W has degree at most W, we have W contains the same number of edges in W have W contains the same number of edges in W have W contains the same number of edges in W with both endpoints in W contains the same number of edges in W where W contains the same number of edges in W that belong to W and let W be the number of edges in W where W contains the same number of edges in W that belong to W and W have W contains the same number of edges in W have W have W have W contains the same number of edges in W have W have W have W contains the same number of edges in W have W have W contains the same number of edges in W have W contains the same number of edges in W have W contains the same number of edges in W have W contains the same number of edges in W have W contains the same number of edges in W have W contains the same number of edges in W have W contains the same number of edges in W have W have W contains the same number of edges in W have W have W contains the same number of edges in W have W have W have W contains the same number of edges in W have W

A vertex $u \in U$ that belongs to F does not have any neighbours not in F. Indeed, if u is unmatched, then none of its incident edges is in M. Alternating BFS adds all neighbours of u to F that are connected to u by edges not in M. Thus, if u is unmatched, then all its neighbours are in F. If u is matched, then its mate in W is in F because mates are added to F together. Once again, neighbours of u connected to u by edges not in M are added to F by alternating BFS. Thus, F contains all neighbours of u also if u is matched. Now recall that we showed above that, under the assumption that F contains no matched vertex of degree less than Δ in U, all vertices in U that belong to F have degree Δ . Thus, $t = \Delta n_U$. Since we proved in the previous paragraph that $t < \Delta n_u$, this is the desired contradiction, that is, F must contain an unmatched vertex in W or a matched vertex of degree less than Δ in U.