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Consider an LP
Maximize cT x

s.t. Ax ≤ b

x ≥ 0

(1)

and its dual
Minimize bT y

s.t. AT y ≥ c

y ≥ 0.

(2)

In class, we proved that two feasible solutions x̂ and ŷ of (1) and (2), respectively, are optimal solutions
if and only if they satisfy complementary slackness:

Primal complementary slackness: x̂ j = 0 or
m
∑

i=1

ai j ŷi = c j ∀ j ∈ [n]

Dual complementary slackness: ŷi = 0 or
n
∑

j=1

ai j x̂ j = bi ∀i ∈ [m]

If we relax these conditions, then we obtain what is called (α,β)-relaxed complementary slackness:

α-Relaxed primal complementary slackness: x̂ j = 0 or
m
∑

i=1

ai j ŷi ≤ αc j ∀ j ∈ [n]

β-Relaxed dual complementary slackness: ŷi = 0 or
n
∑

j=1

ai j x̂ j ≥
bi

β
∀i ∈ [m]

QUESTION 1: A GENERAL APPROXIMATION GUARANTEE

While x̂ and ŷ are optimal solutions if they satisfy complementary slackness, we should not hope that
this holds if they satisfy only (α,β)-relaxed complementary slackness, for some α > 1 and β > 1. In fact,
they can’t be because strict complementary slackness is a sufficient and necessary condition for x̂ and ŷ
to both be optimal solutions. We can still prove that they are not too far away from optimality though:

Let x̂ and ŷ be feasible solutions of (1) and (2), respectively, let x̃ and ỹ be optimal solutions of (1)
and (2), respectively, and assume that x̂ and ŷ satisfy (α,β)-relaxed complementary slackness. Prove
that

cT x̂ ≥
cT x̃
αβ
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and
bT ŷ ≤ αβ · bT ỹ .

QUESTION 2: A 2-APPROXIMATION FOR WEIGHTED VERTEX COVER

A vertex cover of an undirected graph G = (V, E) is a subset of vertices C ⊆ V such that every edge has
at least one endpoint in C . In the unweighted vertex cover problem, we are given an undirected graph G,
and our goal is to find a vertex cover C∗ of G of minimum size: for every vertex cover C of G, we have
|C | ≥ |C∗|. This is an NP-hard problem. A simple, greedy, linear-time algorithm is able to find a vertex
cover C̃ such that |C̃ | ≤ 2|C |, for every vertex cover C of G. In particular, C̃ is at most twice as big as the
smallest vertex cover we could possibly find.

Sometimes, not all vertices are created equal. In the weighted vertex cover problem, we are given
an undirected graph G = (V, E) and a weight function w : V → R+ assigning a positive weight to every
vertex. Our goal is to find a vertex cover C∗ of minimum weight: for every vertex cover C of G, we
have
∑

v∈C∗ wv ≤
∑

v∈C wv. We refer to the quantity
∑

v∈C wv as the weight w(C) of C . Clearly, this
problem is also NP-hard. Moreover, the simple greedy algorithm no longer finds a good approximation
of an optimal solution. However, we can still find a good vertex cover in polynomial time. Here is the
algorithm to do this:

We start by setting C = ; and assigning a potential πu,v = 0 to every pair {u, v} of vertices in V. Note
that that this guarantees that

∑

v∈V

πu,v ≤ wu,

for every vertex u ∈ V. This is an invariant we maintain.
Now, as long as there exists an edge {u, v} ∈ E with u, v /∈ C , let

δu = wu −
∑

z∈V

πu,z

and
δv = wv −
∑

z∈Z

πv,z .

If δu ≤ δv , then we increase πu,v by δu and add u to C . If δv < δu, then we increase πu,v by δv and add
v to C .

Once every edge has an endpoint in C , the algorithm terminates and returns the current set C , which
is clearly a vertex cover of G.

It is not difficult to prove that this algorithm runs in O(nm) time: we simply iterate over all edges.
For each edge {u, v}, we test in constant time whether one of u and v already belongs to C . If so, we
proceed to the next edge. Otherwise, we calculate δu and δv in O(n) time, by iterating over all edges
incident to u and v, and then we update πu,v as above and add u or v to C in constant time. Overall, the
algorithm runs for m iterations, each of which takes O(n) time.

Your goal in this question is to prove that if C is the vertex cover returned by the algorithm and C∗ is
a vertex cover of G of minimum weight, then w(C)≤ 2w(C∗).
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QUESTION 2A

Formulate the weighted vertex cover problem as an ILP. In this formulation, you should have a variable
xv ∈ {0,1}, for every vertex v ∈ V, such that xv = 1 means that the vertex is in the vertex cover, and
xv = 0 means that v is not in the vertex cover.

QUESTION 2B

Construct the dual of the LP relaxation of the ILP in Question 2a. In this dual, you should have a variable
yu,v associated with every edge {u, v} ∈ E.

QUESTION 2C

Consider the vertex cover C returned by the algorithm, consider the edge potentials πu,v at the time the
algorithm terminates, let

x̂v =

(

1 if v ∈ C

0 otherwise,

and let ŷu,v = πu,v , for every edge {u, v} ∈ E.
Prove that these two solutions x̂ and ŷ are feasible solutions of the (I)LPs in Questions 2a and 2b, and

that they satisfy (1, 2)-relaxed complementary slackness. Argue that this implies that w(C)≤ 2w(C∗).
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MARKING SCHEME

QUESTION 1 (5 MARKS)

Yes Minor mistakes Major mistakes No

Correct proof 5 marks 3 marks 1 mark 0 marks

QUESTION 2A (3 MARKS)

Yes Some mistakes No

Objective function expresses that we need to minimize w(C) 1 mark 0 marks

Constraints express that C is a vertex cover 2 marks 1 mark 0 marks

QUESTION 2B (4 MARKS)

Yes Some mistakes No

Correct dual objective function 1 mark 0 marks

Correct dual constraints corresponding to primal variables 2 mark 1 mark 0 marks

Non-negativity constraints for the dual variables 1 mark 0 marks

QUESTION 2C (11 MARKS)

Yes Minor mistakes Major mistakes No

Correct proof that x̂ is a feasible primal
solution

1 mark 0 marks

Correct proof that ŷ is a feasible dual
solution

4 marks 2 marks 1 mark 0 marks

Correct proof that x̂ and ŷ satisfy
2-relaxed dual complementary slackness

1 mark 0 marks

Correct proof that x̂ and ŷ satisfy strict
primal complementary slackness

4 marks 2 marks 1 mark 0 marks

Correct argument why this implies that
w(C)≤ w(C∗), for an optimal vertex
cover C∗

1 mark 0 marks
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SUBMISSION INSTRUCTIONS

Follow the submission link for this assignment on the course webpage in the email you should have
received from Crowdmark. Upload the assignment as a single PDF file.
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