
ASSIGNMENT 1

CSCI 4113/6101
INSTRUCTOR: NORBERT ZEH

DUE: OCT 7, 2025, 11:59PM

QUESTION 1: MAXIMUM MATCHING AS AN LP

Later in this course, we will study matching problems at some length. A matching in a graph G = (V, E)
is a subset of edges M ⊆ E such that no two edges in M share an endpoint. Such a matching M is a
maximum matching if there exists no matching M ′ of greater cardinality. The problem of finding a
maximum matching in a graph G = (V, E) is easily expressed as an integer linear program: We assign a
variable xe ∈ {0,1} to every edge e ∈ E. If e = {u, v}, then we also refer to this variable as xu,v. This
variable xe is 1 if e is included in the matching, and 0 otherwise. Thus, M = {e ∈ E | xe = 1}. Our goal
then is to maximize

|M |=
∑

e∈E

xe.

The condition that no vertex has more than one incident edge in M can be expressed as the set of
constraints

∑

{u,v}∈E

xu,v ≤ 1 ∀u ∈ V.

Thus, we obtain the following ILP formulation of the maximum matching problem:

Maximize
∑

e∈E

xe

s.t.
∑

{u,v}∈E

xu,v ≤ 1 ∀u ∈ V

xe ∈ {0,1} ∀e ∈ E

(1)

As already mentioned in class, we will prove that integer linear programming is NP-hard. Given that
we will prove later in this course that a maximum matching in any graph can be found in polynomial
time, this ILP formulation does not seem to be particularly useful. Let’s turn it into an LP (without the
constraint that variables should have integer values):

Maximize
∑

e∈E

xe

s.t.
∑

{u,v}∈E

xu,v ≤ 1 ∀u ∈ V

xe ≤ 1 ∀e ∈ E

xe ≥ 0 ∀e ∈ E

(2)
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As we will discuss later in class, this is called the LP relaxation of the ILP (1), but you can ignore this
for now. Our goal is to prove that, at least for bipartite graphs (see below for a definition), (2) is also a
correct formulation of the maximum matching problem in the following sense:

(a) Since we dropped the requirement that the variables in (2) should be given integer values, there
may exist optimal solutions of (2) that assign fractional values to the variables in (2). These
solutions do not represent matchings. This is not a coincidence. Provide an example of a graph for
which the optimal solution of (2) has a strictly greater objective function value than the optimal
solution of (1), along with such optimal solutions. Argue briefly that both solutions are optimal.

Hint: Look at (b) to get an idea of what such a graph should look like.

(b) A graph G = (V, E) is bipartite if we can partition the vertex set V into two subsets U and W—that
is, U ∪W = V and U ∩W = ;—such that every edge {u, v} ∈ E has one endpoint in U and one
endpoint in W . A useful property of bipartite graphs, which you do not need to prove is that every
cycle in such a graph has an even number of edges. Exploit this property to prove that, if G is
bipartite, then optimal solutions of (1) and (2) have the same objective function value, that is,
there exists an integral optimal solution of (2).

Hint: Consider an optimal solution x̃ of (2). If x̃e is an integer, for all e ∈ E, then we already have the
desired integral solution. If not, then prove that you can construct from x̃ another optimal solution x̂
in which fewer variables have fractional values than in x̃. By applying this construction inductively,
you will eventually obtain an integral optimal solution. How can you obtain such a solution x̂ from x̃?
Consider the subgraph H = (V, E′) of G such that E′ is the set of all edges e ∈ E such that 0< x̃e < 1,
that is, such that x̃e is fractional. If H contains a cycle C, argue that you can increase the values x̃e for
some edges e ∈ C, and decrease the values x̃e of other edges e ∈ C so that the solution remains feasible,
the objective function value does not change, and at least one of the values assigned to variables in C
becomes an integer. If H does not contain any cycle, then H is a forest. Pick a path P between two
leaves in H. Argue that you can increase x̃e for some edges in P and decrease x̃e for other edges in P
so that the solution remains feasible and the objective function value strictly increases. Since x̃ was an
optimal solution, this is impossible, so H must in fact contain a cycle.

(c) Prove that (b) implies that, if G is bipartite, then an integral solution x̂ of (2) is an optimal solution
of (2) if and only if the set M = {e ∈ E | x̂e = 1} is a maximum matching.

(d) To make the statement in (c) algorithmically useful, we need a method to find an optimal integral
solution of (2) efficiently. We will soon discuss efficient algorithms for solving linear programs.
Thus, we can efficiently compute an optimal solution of (2), but the produced solution x̃ may not
be integral. Describe a polynomial-time algorithm for constructing from such an optimal solution
x̃ an integral solution x̂ such that

∑

e∈E

x̂e =
∑

e∈E

x̃e, (3)

that is, x̂e is an integral optimal solution. Prove that your algorithm runs in polynomial time, that
the solution x̂ it outputs is feasible, and that x̂ satisfies (3).

Hint: This should be really easy once you proved (b) because the proof in (b) should be constructive,
and it should be easy to describe an algorithm that implements the construction in (b).
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QUESTION 2: VERTEX COLOURING AS AN ILP

Graph colouring is a classical NP-hard problem. Given a graph G = (V, E), the goal is to assign a color cv

to each vertex v ∈ V such that

• Adjacent vertices have different colours: For every edge {u, v} ∈ E, cu ̸= cv , and
• The number of unique colours used is minimized: |{cv | v ∈ V}| is minimized.

The exact values of the colours clearly don’t matter. If the graph can be coloured with three colours,
then it doesn’t matter whether we call them red, green, blue or 1, 2, 3 or monkey, donkey, lion. We may
therefore assume that every vertex is given a colour in the set [n− 1]0 = {0, . . . , n− 1} because there
is always a valid colouring of a graph with at most n colours, namely the one that assigns a different
colour to each vertex.

(a) Express this problem as an ILP.
(b) Prove that an assignment c : V → [n− 1]0 is a valid colouring if and only if it is a feasible solution

of your ILP.
(c) Argue why this implies that an assignment c : V → [n]0 is a valid colouring that uses the minimum

number of colours if and only if it is an optimal solution of your ILP.

Hint: Given that the vertices are given colours from the set [n− 1]0 and the exact colours do not matter,
we can always assume that a colouring with k distinct colours uses the colours 0 through k− 1. Thus, our
goal is to minimize 1+max{cv | v ∈ V}. As just expressed, this is not a linear combination of the different
vertex colours, but you can introduce a helper variable k, representing the number of colours used, and you
can use linear constraints to enforce that k is greater than the maximum colour assigned to any vertex. The
objective function to be minimized then simply becomes k.

To enforce that any two adjacent vertices have different colours, you should try to enforce that at least
one of the two inequalities

cu ≥ cv + 1

cv ≥ cu + 1

needs to be satisfied for every edge {u, v} ∈ E. This may seem hard at first, because you cannot choose
a priori which of these two constraints should be satisfied by a solution. However, you can introduce a
“switching variable” su,v ∈ {0, 1}, for every edge {u, v} ∈ E. By incorporating a multiple of this variable and
an additive term into each of these two constraints, you can enforce that the first constraint must be satisfied
if su,v = 0 but can be violated if su,v = 1, and the second constraint must be satisfied if su,v = 1 but can be
violated if su,v = 0.
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MARKING SCHEME

QUESTION 1 (20 MARKS)

Question 1a Yes Minor mistakes No/major mistakes

For the given graph, an optimal solution of (2)
has a greater objective function value than an
optimal solution of (1).

1 mark 0.5 marks 0 marks

The provided solution of (2) is optimal. 1 mark 0.5 marks 0 marks

The provided solution of (1) is optimal. 1 mark 0.5 marks 0 marks

The argument that the provided solution of (2)
is optimal is correct.

1 mark 0.5 marks 0 marks

The argument that the provided solution of (1)
is optimal is correct.

1 mark 0.5 marks 0 marks

Question 1b Yes Minor mistakes Major mistakes No

Solution x̂ constructed from x̃ is integral. 3 marks 2 marks 1 mark 0 marks

Solution x̂ constructed from x̃ is feasible. 3 marks 2 marks 1 mark 0 marks

Solution x̂ constructed from x̃ has the
same objective function value.

3 marks 2 marks 1 mark 0 marks

Question 1c Yes Minor mistakes No/major mistakes

Correct proof that an optimal integral solution
corresponds to a maximum matching.

1 mark 0.5 marks 0 marks

Correct proof that a maximum matching
corresponds to an optimal integral solution.

1 mark 0.5 marks 0 marks

Question 1d Yes Minor mistakes No/major mistakes

Algorithm is correct. 1 mark 0.5 marks 0 marks

Algorithm runs in polynomial time. 1 mark 0.5 marks 0 marks

Correct proof that the algorithm is correct. 1 mark 0.5 marks 0 marks

Correct proof that the algorithm runs in
polynomial time.

1 mark 0.5 marks 0 marks
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QUESTION 2 (12 MARKS)

Yes Minor mistakes Major mistakes No

Objective function expresses that the
number of colours should be minimized.

2 marks 1 mark 0.5 marks 0 marks

Constraints express that a feasible
solution represents a valid colouring.

3 marks 2 marks 1 mark 0 marks

Proof that a valid colouring corresponds
to a feasible solution of the ILP.

2 marks 1 mark 0.5 marks 0 marks

Proof that a feasible solution of the ILP
corresponds to a valid colouring.

2 marks 1 mark 0.5 marks 0 marks

Proof that an optimal colouring
corresponds to an optimal solution of the
ILP.

1 mark 0.5 marks 0 marks

Proof that an optimal solution of the ILP
corresponds to an optimal colouring.

1 mark 0.5 marks 0 marks

SUBMISSION INSTRUCTIONS

I’ll provide them by the end of the week, as soon as I figure out how to use CrowdMark.
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