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QUESTION 1: MAXIMUM MATCHING AS AN LP

1A

Part (b) of this question suggests that a graph for which (1) and (2) have optimal solutions with different
objective function values must be non-bipartite, that is, it must have a cycle of odd length. The simplest
such graph is itself a cycle of length 3:

Since every edge shares an endpoint with each of the other two edges, a maximum matching of this
graph contains only one edge, say {a, b}. The constraints in (1) also imply this: If we set x, , = 1, then
the constraints

Xqp+Xge <1,

Xqp+Xp <1

imply that x, . = x; . = 0. So, an optimal solution of (1) has objective function value 1 (not a surprise
because (1) is an ILP formulation of the maximum matching problem.)
An optimal solution of (2) is

Xa,b = Xqc = Xp,c = 5:

which has objective function value %

This is indeed a feasible solution because

Xg,p T Xgqc =1,

1
Xa’b +Xb’c = 1,
1

xa,c + xb,c =



It is an optimal solution because for any feasible solution, we have

Xqp+Xqc < 1,

Xa,b +Xb,c <1,

XgetXpe < 1,
and, therefore,

2xqp t+ 2xa’C + be,c <3,

that is,

w

Xap+Xget+Xpe <.

N

1B

Consider an optimal solution X of (2), and assume that X minimizes the number of edges e € E such that
0 < X, < 1. We prove that X must be an integral solution. Assume the contrary. Then let H = (V,E’) be
the subgraph of G such that E' ={e € E|0< X, < 1}.

CASE 1: H CONTAINS A CYCLE

Let C = (vp,..., ) be a cycle in H. Then k is even because every cycle in a bipartite graph has even
length. Let
|0 <i<k/2}, min{x

6 = min(min{1 — % |0<i<k/2}).

V2i>V2i+1 V2i+1>V2i+2
In words, we partition the edges in C into the even-numbered edges and odd-numbered edges. $ is the
smaller of the maximum amount by which we can increase the values associated with even-numbered
edges and the maximum amount by which we can increase the values associated with odd-numbered
edges while keeping all values between 0 and 1.

Now let ¥ be defined as

X, if e ¢C

)’2'6+5 ife:{X2i,X2i+1}, for some lE[k/z—l]o

=
o
I

X, —06 if e ={x9i41, X912}, for some i€ [k/2—1],,

that is, we increase the values associated with even-numbered edges in C by &, decrease the values
associated with odd-numbered edges in C by 6, and leave the values associated with all other edges
unchanged.

For every edge e ¢ C, we have X, = X,. Since 0 < X, < 1 (because X is a feasible solution of (2)),
this implies that 0 < x, < 1.

If e is an even-numbered edge of C, then 0 < %, < X, + 6 = X, < 1, because 6 <1—X%,.

If e is an odd-numbered edge of C, then 0 < x, — 6 = X, < X, < 1, because § < %,.

Thus, 0<%, <1, foralle €E.



For every vertex v € V, if v ¢ C, then X, ,, = %, ,,, for every edge {v, w} incident to v. Thus,

wev wev

If v =v,, for some i € [k—1],, then assume w.l.0.g. that i is even. The case when i is odd is analogous.

A

Then %, ,, =%, ,, —6,%,,,, =%, +06,and %, , =X, ,, for every other edge {v;,w} incident

to v;. Thus,
DiEy= D Ryt 6—6= > %, , <1
wev wev wev
This shows that
> ix,, <1,
wev

for every vertex v € V. Since we also have 0 < X, < 1, for every edge e € E, this shows that X is a
feasible solution of (2).

It is an optimal solution of (2) because C has even length. In particular, this implies that we have
X, = X, + 6 for half the edges in C, and X, = X, — 6 for the other half of the edges in C. For all edges

e ¢ C, we have X, = X,. Therefore,
2 %= %

ecE e€E

which implies that ¥ is optimal because X is optimal and X is feasible.
Now observe that because the edges in C are the only edges with X, # X, and all edges in C satisfy
0 < x, <1, we have
{eeE|0<Xx,<1}|<|{e€E|O0<x, <1} (S

By the choice of 6, we have 6 = 1—X%, for an even-numbered edge e in C or 6 = X, for an odd-numbered
edge in C. For this edge e, we have X, € {0,1} and 0 < X, < 1, the latter because e € C C H. Thus, (S1)
is strict. Since X is an optimal solution of (2), this contradicts the choice of X. Therefore, H cannot
contain a cycle.

CASE 2: H DOES NOT CONTAIN A CYCLE

Since H cannot contain a cycle, it must be a forest. If H has no edges, then X is an integral solution. So
assume that H is not empty. Then there exist two leaves x, and x; of H with a path P = (x,..., X))
between them. We use P to define a solution X similar to the previous case. In particular, we define

6 = min(min{1 — X |0 <i<k/2}, min{x |1 <i<k/2}).

V2isV2i+1 Voi—1,Y2i

and then set X, = X, + 6 for all even-numbered edges in P, X, = X, — 6 for all odd-numbered edges in P,
and X, = X, for all other edges of H.
By the same argument as in the previous case,

{eeE|0<Xx, <1} <|{e€E|O0<x, <1} (S2)



Also by the same argument as in the previous case, all edges in H satisfy 0 < ¥, < 1, and we have

PIEEDIE RS

wev wev

for all v € V '\ {vp, v }. For v, note that {vy, v, } is the only edge in G incident to vy with0 < X, , <1.
Thus, every other edge {vy, w} incident to x, satisfies %, ,, € {0,1}. Since %, , >0 and

PIETESH

wev

this implies that %, ,, = 0, for each such edge. Since we have %, , = %, , for each such edge, this

shows that
Z )?VO;W = )?VO;VI =L

wevV

An analogous argument shows that

Z ka,W = kaﬂ,vk =1L

wev

Thus, X is once again a feasible solution of (2) that satisfies (S2).
Finally, observe that P contains at least as many even-numbered edges as odd-numbered edges. Thus,

ILES I

ecE e€E

that is, X is an optimal solution, once again contradicting the choice of x.

1c

Part (b) of the question shows that a solution X of (1) is an optimal solution of (1) if and only if it is an
optimal solution of (2). Thus, since >, X, =|M = {e € E | %, = 1}|, for any such solution £, we only
need to prove that every solution of (1) defines a matching M of G and that every matching M of G is
defined by an integral solution of (2).
To this end, observe first that every subset M C E, matching or not, can be defined as M = {e € E |

x, =1}, for

) {1 ife e M

X, =

0 otherwise.

This shows that there exists a bijections between subsets of E and assignments X of values in {0, 1} to
the edges in E. Thus, it suffices to prove that M = {e € E | X, = 1} is a matching if and only if X is a

feasible solution of (1), that is, an integral feasible solution of (2).
We have 0 < X, < 1, for all e € E. Thus, feasibility of X depends only on the constraints

D ix,,<1 Vvev.

wev

If every vertex v € V satisfies its corresponding constraint, then M contains at most one edge incident



to v, so M is a matching. If some vertex v € V violates its corresponding constraint, then M contains
at least two edges incident to v, so M is not a matching. Thus, M is a matching if and only if X is a
feasible solution of (1), and we have a one-to-one correspondence between optimal solutions of (1) and
maximum matchings of G.

1D

Here is an algorithm based immediately on the proof of (b): We start by computing an arbitrary optimal
solution X of (2). Now, as long as X is not integral, we repeat the following steps: We construct the
graph H = (V, E’) defined in (b). We try to find a cycle in H, which can be done in linear time using
DFS, as you hopefully learned in CSCI 3110. If there exists such a cycle, we update ¥ as discussed in (b).
The new solution has at least one fractional variable less. If H does not contain a cycle, then it must
contain a degree-1 vertex (leaf). Running DFS from this leaf finds a path P from this leaf to another leaf,
in linear time. Once again, we update X as discussed in (b).

The correctness of this algorithm follows from (b): Each time we update %, this maintains feasibility
of X, does not decrease the objective function value of ¥, and reduces the number of fractional variables
in ¥. Thus, X is a feasible solution of (2) at all times and, after at most m iterations, all variables in ¥
are integral, that is, X is the desired solution X at this point.

Since each iteration of the algorithm takes linear time, as just discussed (finding C or P is the “hard”
part; computing 6 and updating the values associated with the edges in C or P takes two iterations over
the edges in C or P and thus also takes linear time), and we just observed that we obtain an integral
solution after at most m iterations, the conversion from a fractional optimal solution of (2) to an integral
optimal solution of (2) takes at most O((n + m)m) time.

QUESTION 2: VERTEX COLOURING AS AN ILP

2A

As observed in the statement of the question, if the colouring uses k colours, we can assume that these k
colours are called O through k — 1. We can also assume that k < n because every graph can be coloured
with n colours. Thus, we can represent an arbitrary colouring and the goal to minimize the number of
colours used by the following constraints and objective function:

Minimize k
s.t. k—c,>1 YveVv

¢, €[n—1]y VYveV.

We need to add constraints that ensure that two adjecent vertices have different colours. Here is how we
do this. For every edge {u, v}, we introduce a variable s, , € {0,1}, and we impose the two constraints
that

Cy—¢ tns,, =1,

Cy—Cy—ns, =1—n.



Note that for a fixed graph G, n is a constant, so these are indeed linear constraints. Why do they do the

right thing? If 5, , = 0, then the first constraint says that ¢, > c, + 1, so ¢, # c,. The second constraint is

trivially satisfied because c,,c, € [n—1]yp,s0 1—n <¢,—c¢, <n—1. Ifs,, = 1, then the first constraint

is trivially satisfied because, as just observed ¢, —c¢, = 1—n, so ¢, —c, + n > 1. The second constraint

then ensures that ¢, —c, —n>1—n, that is, ¢, — ¢, > 1, so ¢, # ¢, again. By setting s, , =0 or s, , =1,

we choose whether we want ¢, > ¢, or ¢, > ¢,, but one of these two inequalities is being enforced.
The final ILB, then, is

Minimize k
S.t. k—c,>1 YVveVv
cy—cytns,, =1 V{u,v} €E

(S3)
cy—cy—ns,, =1—n V{u,v}€E

¢, €[ln—1]y VveVv
Suy €1{0,1} Ve € {u,v}.

2B

Consider an assignment ¢ of colours to the vertices of G, with ¢, € [n—1],, forallv € V.

N

If ¢ is a valid colouring, we can complete it to a solution (6,§, k) of (S3) by setting

. 0 ife,>e,
§ .= .
wy 1 otherwise

} V{u,v} €E

and

k=1+max{¢, |veV}.

This solution (6,§, IA<) is a feasible solution of (S3). Indeed, we clearly have ¢, € [n—1],, forallv eV,
and $, , € {0,1}, for all {u,v} € E. By the definition of k, we have k — ¢, =1, for all v € V. For every
edge {u,v}, we have ¢, > ¢, or ¢, > ¢, because ¢ is a valid colouring. If ¢, > ¢,, then §,, = 0, so
¢,—¢, +ns,,>1and¢, —¢,—ns,, >1—n (because ¢,,¢, € [n—1]y). If ¢, > ¢, then ¢, —¢, = 1—n
and §,, =1,s0¢,—¢, +ns,, =1, and we also have ¢, —¢, = 1,s0¢,—¢,—ns,, = 1—n.

Conversely, assume that (¢, $, k) is a feasible solution of (S3). Then ¢ is a valid colouring. To prove
this, all we need to prove is that ¢, # ¢,, for every edge {u,v} € V. If §,, = 0, then the constraint
¢, —¢, +ns,, > 1 enforces that ¢, > ¢,. If §,, = 1, then the constraint ¢, —c, —ns, , > 1 —n enforces

u,y =
that ¢, > ¢,. In both cases, ¢, # ¢,, so ¢ is a valid colouring of G.

2C

Let ¢ be an optimal colouring of G (one that uses the minimum number of colours), and let (5,5, 7{) be
an optimal solution of (S3). As already observed, we can assume that ¢, € [£ — 1] if ¢ uses £ colours. As
shown in (b), there exists a feasible solution (6,§, IAc) of (S3) corresponding to ¢, and ¢ is a valid colouring
of G. Moreover, given that ¢, € [£ —1],, we can choose k = ¢.

Since all vertices v € G satisfy ¢, € [lNc — 1] 0’ due to the first constraint of (S3), ¢ is a colouring of G
with at most k colours. Since ¢ is an optimal colouring, this shows that k = ¢ < k.



Conversely, (6,§, IAc) has objective function value k in (S3). Since (",5, l~<) is an optimal solution of
(83), this implies that k> k.

Together, these two inequalities show that £ = k = k, that is, both ¢ and ¢ are optimal colourings
of G, and both (6,5“, IAc) and (6,5, IN<) are optimal solutions of (S3). This proves that an optimal colouring
of G gives an optimal solution of (S3), and vice versa.



