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SOLUTIONS

QUESTION 1: MAXIMUM MATCHING AS AN LP

1A

Part (b) of this question suggests that a graph for which (1) and (2) have optimal solutions with different
objective function values must be non-bipartite, that is, it must have a cycle of odd length. The simplest
such graph is itself a cycle of length 3:

a

b

c

Since every edge shares an endpoint with each of the other two edges, a maximum matching of this
graph contains only one edge, say {a, b}. The constraints in (1) also imply this: If we set xa,b = 1, then
the constraints

xa,b + xa,c ≤ 1,

xa,b + xb,c ≤ 1

imply that xa,c = xb,c = 0. So, an optimal solution of (1) has objective function value 1 (not a surprise
because (1) is an ILP formulation of the maximum matching problem.)

An optimal solution of (2) is

xa,b = xa,c = xb,c =
1
2

,

which has objective function value 3
2 .

This is indeed a feasible solution because

xa,b + xa,c = 1,

xa,b + xb,c = 1,

xa,c + xb,c = 1.
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It is an optimal solution because for any feasible solution, we have

xa,b + xa,c ≤ 1,

xa,b + xb,c ≤ 1,

xa,c + xb,c ≤ 1,

and, therefore,
2xa,b + 2xa,c + 2xb,c ≤ 3,

that is,

xa,b + xa,c + xb,c ≤
3
2

.

1B

Consider an optimal solution x̂ of (2), and assume that x̂ minimizes the number of edges e ∈ E such that
0< x̂e < 1. We prove that x̂ must be an integral solution. Assume the contrary. Then let H = (V, E′) be
the subgraph of G such that E′ = {e ∈ E | 0< x̂e < 1}.

CASE 1: H CONTAINS A CYCLE

Let C = 〈v0, . . . , vk〉 be a cycle in H. Then k is even because every cycle in a bipartite graph has even
length. Let

δ =min(min{1− x̂v2i ,v2i+1
| 0≤ i < k/2}, min{ x̂v2i+1,v2i+2

| 0≤ i < k/2}).

In words, we partition the edges in C into the even-numbered edges and odd-numbered edges. δ is the
smaller of the maximum amount by which we can increase the values associated with even-numbered
edges and the maximum amount by which we can increase the values associated with odd-numbered
edges while keeping all values between 0 and 1.

Now let x̃ be defined as

x̃e =











x̂e if e /∈C

x̂e +δ if e = {x2i , x2i+1}, for some i ∈ [k/2− 1]0
x̂e −δ if e = {x2i+1, x2i+2}, for some i ∈ [k/2− 1]0,

that is, we increase the values associated with even-numbered edges in C by δ, decrease the values
associated with odd-numbered edges in C by δ, and leave the values associated with all other edges
unchanged.

For every edge e /∈ C , we have x̃e = x̂e. Since 0 ≤ x̂e ≤ 1 (because x̂ is a feasible solution of (2)),
this implies that 0≤ x̃e ≤ 1.

If e is an even-numbered edge of C , then 0≤ x̂e < x̂e +δ = x̃e ≤ 1, because δ ≤ 1− x̂e.
If e is an odd-numbered edge of C , then 0≤ x̂e −δ = x̃e < x̂e ≤ 1, because δ ≤ x̂e.
Thus, 0≤ x̃e ≤ 1, for all e ∈ E.
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For every vertex v ∈ V , if v /∈ C , then x̃v,w = x̂v,w, for every edge {v, w} incident to v. Thus,

∑

w∈V

x̃v,w =
∑

w∈V

x̂v,w ≤ 1.

If v = vi , for some i ∈ [k−1]0, then assume w.l.o.g. that i is even. The case when i is odd is analogous.
Then x̃vi−1,vi

= x̂vi−1,vi
− δ, x̃vi ,vi+1

= x̂vi ,vi+1
+ δ, and x̃vi ,w = x̂vi ,w, for every other edge {vi , w} incident

to vi . Thus,
∑

w∈V

x̃vi ,w =
∑

w∈V

x̂vi ,w +δ−δ =
∑

w∈V

x̂vi ,w ≤ 1.

This shows that
∑

w∈V

x̃v,w ≤ 1,

for every vertex v ∈ V . Since we also have 0 ≤ x̃e ≤ 1, for every edge e ∈ E, this shows that x̃ is a
feasible solution of (2).

It is an optimal solution of (2) because C has even length. In particular, this implies that we have
x̃e = x̂e +δ for half the edges in C , and x̃e = x̂e −δ for the other half of the edges in C . For all edges
e /∈ C , we have x̃e = x̂e. Therefore,

∑

e∈E

x̃e =
∑

e∈E

x̂e,

which implies that x̃ is optimal because x̂ is optimal and x̃ is feasible.
Now observe that because the edges in C are the only edges with x̃e ̸= x̂e and all edges in C satisfy

0< x̂e < 1, we have
|{e ∈ E | 0< x̃e < 1}| ≤ |{e ∈ E | 0< x̂e < 1}|. (S1)

By the choice of δ, we have δ = 1− x̂e for an even-numbered edge e in C or δ = x̂e for an odd-numbered
edge in C . For this edge e, we have x̃e ∈ {0, 1} and 0< x̂e < 1, the latter because e ∈ C ⊆ H. Thus, (S1)
is strict. Since x̃ is an optimal solution of (2), this contradicts the choice of x̂ . Therefore, H cannot
contain a cycle.

CASE 2: H DOES NOT CONTAIN A CYCLE

Since H cannot contain a cycle, it must be a forest. If H has no edges, then x̂ is an integral solution. So
assume that H is not empty. Then there exist two leaves x0 and xk of H with a path P = 〈x0, . . . , xk〉
between them. We use P to define a solution x̃ similar to the previous case. In particular, we define

δ =min(min{1− x̂v2i ,v2i+1
| 0≤ i < k/2}, min{ x̂v2i−1,v2i

| 1< i ≤ k/2}).

and then set x̃e = x̂e +δ for all even-numbered edges in P, x̃e = x̂e −δ for all odd-numbered edges in P,
and x̃e = x̂e for all other edges of H.

By the same argument as in the previous case,

|{e ∈ E | 0< x̃e < 1}|< |{e ∈ E | 0< x̂e < 1}|. (S2)
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Also by the same argument as in the previous case, all edges in H satisfy 0≤ x̃e ≤ 1, and we have
∑

w∈V

x̃v,w =
∑

w∈V

x̂v,w ≤ 1,

for all v ∈ V \ {v0, vk}. For v0, note that {v0, v1} is the only edge in G incident to v0 with 0< x̂v0,v1
< 1.

Thus, every other edge {v0, w} incident to x0 satisfies x̂v0,w ∈ {0, 1}. Since x̂v0,v1
> 0 and

∑

w∈V

x̂v0,w ≤ 1,

this implies that x̂v0,w = 0, for each such edge. Since we have x̃v0,w = x̂v0,w for each such edge, this
shows that

∑

w∈V

x̃v0,w = x̃v0,v1
≤ 1.

An analogous argument shows that
∑

w∈V

x̃vk ,w = x̃vk−1,vk
≤ 1.

Thus, x̃ is once again a feasible solution of (2) that satisfies (S2).
Finally, observe that P contains at least as many even-numbered edges as odd-numbered edges. Thus,

∑

e∈E

x̃e ≥
∑

e∈E

x̂e,

that is, x̃ is an optimal solution, once again contradicting the choice of x̂ .

1C

Part (b) of the question shows that a solution x̂ of (1) is an optimal solution of (1) if and only if it is an
optimal solution of (2). Thus, since

∑

e∈E x̂e = |M = {e ∈ E | x̂e = 1}|, for any such solution x̂ , we only
need to prove that every solution of (1) defines a matching M of G and that every matching M of G is
defined by an integral solution of (2).

To this end, observe first that every subset M ⊆ E, matching or not, can be defined as M = {e ∈ E |
x̂e = 1}, for

x̂e =

(

1 if e ∈ M

0 otherwise.

This shows that there exists a bijections between subsets of E and assignments x̂ of values in {0,1} to
the edges in E. Thus, it suffices to prove that M = {e ∈ E | x̂e = 1} is a matching if and only if x̂ is a
feasible solution of (1), that is, an integral feasible solution of (2).

We have 0≤ x̂e ≤ 1, for all e ∈ E. Thus, feasibility of x̂ depends only on the constraints
∑

w∈V

xv,w ≤ 1 ∀v ∈ V.

If every vertex v ∈ V satisfies its corresponding constraint, then M contains at most one edge incident
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to v, so M is a matching. If some vertex v ∈ V violates its corresponding constraint, then M contains
at least two edges incident to v, so M is not a matching. Thus, M is a matching if and only if x̂ is a
feasible solution of (1), and we have a one-to-one correspondence between optimal solutions of (1) and
maximum matchings of G.

1D

Here is an algorithm based immediately on the proof of (b): We start by computing an arbitrary optimal
solution x̃ of (2). Now, as long as x̃ is not integral, we repeat the following steps: We construct the
graph H = (V, E′) defined in (b). We try to find a cycle in H, which can be done in linear time using
DFS, as you hopefully learned in CSCI 3110. If there exists such a cycle, we update x̃ as discussed in (b).
The new solution has at least one fractional variable less. If H does not contain a cycle, then it must
contain a degree-1 vertex (leaf). Running DFS from this leaf finds a path P from this leaf to another leaf,
in linear time. Once again, we update x̃ as discussed in (b).

The correctness of this algorithm follows from (b): Each time we update x̃ , this maintains feasibility
of x̃ , does not decrease the objective function value of x̃ , and reduces the number of fractional variables
in x̃ . Thus, x̃ is a feasible solution of (2) at all times and, after at most m iterations, all variables in x̃
are integral, that is, x̃ is the desired solution x̂ at this point.

Since each iteration of the algorithm takes linear time, as just discussed (finding C or P is the “hard”
part; computing δ and updating the values associated with the edges in C or P takes two iterations over
the edges in C or P and thus also takes linear time), and we just observed that we obtain an integral
solution after at most m iterations, the conversion from a fractional optimal solution of (2) to an integral
optimal solution of (2) takes at most O((n+m)m) time.

QUESTION 2: VERTEX COLOURING AS AN ILP

2A

As observed in the statement of the question, if the colouring uses k colours, we can assume that these k
colours are called 0 through k− 1. We can also assume that k ≤ n because every graph can be coloured
with n colours. Thus, we can represent an arbitrary colouring and the goal to minimize the number of
colours used by the following constraints and objective function:

Minimize k

s.t. k− cv ≥ 1 ∀v ∈ V

cv ∈ [n− 1]0 ∀v ∈ V.

We need to add constraints that ensure that two adjecent vertices have different colours. Here is how we
do this. For every edge {u, v}, we introduce a variable su,v ∈ {0, 1}, and we impose the two constraints
that

cu − cv + nsu,v ≥ 1,

cv − cu − nsu,v ≥ 1− n.
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Note that for a fixed graph G, n is a constant, so these are indeed linear constraints. Why do they do the
right thing? If su,v = 0, then the first constraint says that cu ≥ cv + 1, so cu ̸= cv . The second constraint is
trivially satisfied because cu, cv ∈ [n− 1]0, so 1− n≤ cv − cu ≤ n− 1. If su,v = 1, then the first constraint
is trivially satisfied because, as just observed cu − cv ≥ 1− n, so cu − cv + n≥ 1. The second constraint
then ensures that cv − cu − n≥ 1− n, that is, cv − cu ≥ 1, so cu ̸= cv again. By setting su,v = 0 or su,v = 1,
we choose whether we want cu > cv or cv > cu, but one of these two inequalities is being enforced.

The final ILP, then, is
Minimize k

s.t. k− cv ≥ 1 ∀v ∈ V

cu − cv + nsu,v ≥ 1 ∀{u, v} ∈ E

cv − cu − nsu,v ≥ 1− n ∀{u, v} ∈ E

cv ∈ [n− 1]0 ∀v ∈ V

su,v ∈ {0, 1} ∀e ∈ {u, v}.

(S3)

2B

Consider an assignment ĉ of colours to the vertices of G, with ĉv ∈ [n− 1]0, for all v ∈ V .
If ĉ is a valid colouring, we can complete it to a solution

�

ĉ, ŝ, k̂
�

of (S3) by setting

ŝu,v =

�

0 if ĉu > ĉv

1 otherwise

�

∀{u, v} ∈ E

and
k̂ = 1+max{ĉv | v ∈ V}.

This solution
�

ĉ, ŝ, k̂
�

is a feasible solution of (S3). Indeed, we clearly have ĉv ∈ [n− 1]0, for all v ∈ V ,
and ŝu,v ∈ {0,1}, for all {u, v} ∈ E. By the definition of k̂, we have k̂ − ĉv ≥ 1, for all v ∈ V . For every
edge {u, v}, we have ĉu > ĉv or ĉv > ĉu because ĉ is a valid colouring. If ĉu > ĉv, then ŝu,v = 0, so
ĉu − ĉv + nŝu,v ≥ 1 and ĉv − ĉu − nŝu,v ≥ 1− n (because ĉu, ĉv ∈ [n− 1]0). If ĉv > ĉu, then ĉu − ĉv ≥ 1− n
and ŝu,v = 1, so ĉu − ĉv + nŝu,v ≥ 1, and we also have ĉv − ĉu ≥ 1, so ĉv − ĉu − nŝu,v ≥ 1− n.

Conversely, assume that (ĉ, ŝ, k̂) is a feasible solution of (S3). Then ĉ is a valid colouring. To prove
this, all we need to prove is that ĉu ̸= ĉv, for every edge {u, v} ∈ V . If ŝu,v = 0, then the constraint
cu − cv + nsu,v ≥ 1 enforces that ĉu > ĉv. If ŝu,v = 1, then the constraint cv − cu − nsu,v ≥ 1− n enforces
that ĉv > ĉu. In both cases, ĉu ̸= ĉv , so ĉ is a valid colouring of G.

2C

Let ĉ be an optimal colouring of G (one that uses the minimum number of colours), and let
�

c̃, s̃, k̃
�

be
an optimal solution of (S3). As already observed, we can assume that ĉv ∈ [ℓ−1]0 if ĉ uses ℓ colours. As
shown in (b), there exists a feasible solution

�

ĉ, ŝ, k̂
�

of (S3) corresponding to ĉ, and c̃ is a valid colouring
of G. Moreover, given that ĉv ∈ [ℓ− 1]0, we can choose k̂ = ℓ.

Since all vertices v ∈ G satisfy c̃v ∈
�

k̃− 1
�

0, due to the first constraint of (S3), c̃ is a colouring of G
with at most k̃ colours. Since ĉ is an optimal colouring, this shows that k̂ = ℓ≤ k̃.
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Conversely,
�

ĉ, ŝ, k̂
�

has objective function value k̂ in (S3). Since
�

c̃, s̃, k̃
�

is an optimal solution of
(S3), this implies that k̂ ≥ k̃.

Together, these two inequalities show that ℓ = k̂ = k̃, that is, both ĉ and c̃ are optimal colourings
of G, and both
�

ĉ, ŝ, k̂
�

and
�

c̃, s̃, k̃
�

are optimal solutions of (S3). This proves that an optimal colouring
of G gives an optimal solution of (S3), and vice versa.
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