Assignment 1

CSCI 4113/6101

INSTRUCTOR: NORBERT ZEH

SOLUTIONS

QUESTION 1: MAXIMUM MATCHING AS AN LP

1A

Part (b) of this question suggests that a graph for which (1) and (2) have optimal solutions with different objective function values must be non-bipartite, that is, it must have a cycle of odd length. The simplest such graph is itself a cycle of length 3:

Since every edge shares an endpoint with each of the other two edges, a maximum matching of this graph contains only one edge, say $\{a,b\}$. The constraints in (1) also imply this: If we set $x_{a,b}=1$, then the constraints

$$x_{a,b} + x_{a,c} \le 1,$$

$$x_{a,b} + x_{b,c} \le 1$$

imply that $x_{a,c} = x_{b,c} = 0$. So, an optimal solution of (1) has objective function value 1 (not a surprise because (1) is an ILP formulation of the maximum matching problem.)

An optimal solution of (2) is

$$x_{a,b} = x_{a,c} = x_{b,c} = \frac{1}{2},$$

which has objective function value $\frac{3}{2}$.

This is indeed a feasible solution because

$$x_{a,b} + x_{a,c} = 1,$$

$$x_{a,b} + x_{b,c} = 1,$$

$$x_{a,c} + x_{b,c} = 1.$$

It is an optimal solution because for any feasible solution, we have

$$x_{a,b} + x_{a,c} \le 1,$$

 $x_{a,b} + x_{b,c} \le 1,$
 $x_{a,c} + x_{b,c} \le 1,$

and, therefore,

$$2x_{a,b} + 2x_{a,c} + 2x_{b,c} \le 3$$
,

that is,

$$x_{a,b} + x_{a,c} + x_{b,c} \le \frac{3}{2}.$$

1B

Consider an optimal solution \hat{x} of (2), and assume that \hat{x} minimizes the number of edges $e \in E$ such that $0 < \hat{x}_e < 1$. We prove that \hat{x} must be an integral solution. Assume the contrary. Then let H = (V, E') be the subgraph of G such that $E' = \{e \in E \mid 0 < \hat{x}_e < 1\}$.

CASE 1: H CONTAINS A CYCLE

Let $C = \langle v_0, \dots, v_k \rangle$ be a cycle in H. Then k is even because every cycle in a bipartite graph has even length. Let

$$\delta = \min(\min\{1 - \hat{x}_{\nu_{2i},\nu_{2i+1}} \mid 0 \leq i < k/2\}, \min\{\hat{x}_{\nu_{2i+1},\nu_{2i+2}} \mid 0 \leq i < k/2\}).$$

In words, we partition the edges in C into the even-numbered edges and odd-numbered edges. δ is the smaller of the maximum amount by which we can increase the values associated with even-numbered edges and the maximum amount by which we can increase the values associated with odd-numbered edges while keeping all values between 0 and 1.

Now let \tilde{x} be defined as

$$\begin{split} \tilde{x}_e &= \begin{cases} \hat{x}_e & \text{if } e \notin \mathbf{C} \\ \hat{x}_e + \delta & \text{if } e = \{x_{2i}, x_{2i+1}\}, \text{ for some } i \in [k/2-1]_0 \\ \hat{x}_e - \delta & \text{if } e = \{x_{2i+1}, x_{2i+2}\}, \text{ for some } i \in [k/2-1]_0, \end{cases} \end{split}$$

that is, we increase the values associated with even-numbered edges in C by δ , decrease the values associated with odd-numbered edges in C by δ , and leave the values associated with all other edges unchanged.

For every edge $e \notin C$, we have $\tilde{x}_e = \hat{x}_e$. Since $0 \le \hat{x}_e \le 1$ (because \hat{x} is a feasible solution of (2)), this implies that $0 \le \tilde{x}_e \le 1$.

If e is an even-numbered edge of C, then $0 \le \hat{x}_e < \hat{x}_e + \delta = \tilde{x}_e \le 1$, because $\delta \le 1 - \hat{x}_e$. If e is an odd-numbered edge of C, then $0 \le \hat{x}_e - \delta = \tilde{x}_e < \hat{x}_e \le 1$, because $\delta \le \hat{x}_e$. Thus, $0 \le \tilde{x}_e \le 1$, for all $e \in E$.

For every vertex $v \in V$, if $v \notin C$, then $\tilde{x}_{v,w} = \hat{x}_{v,w}$, for every edge $\{v,w\}$ incident to v. Thus,

$$\sum_{w \in V} \hat{x}_{v,w} = \sum_{w \in V} \hat{x}_{v,w} \le 1.$$

If $v = v_i$, for some $i \in [k-1]_0$, then assume w.l.o.g. that i is even. The case when i is odd is analogous. Then $\tilde{x}_{v_{i-1},v_i} = \hat{x}_{v_{i-1},v_i} - \delta$, $\tilde{x}_{v_i,v_{i+1}} = \hat{x}_{v_i,v_{i+1}} + \delta$, and $\tilde{x}_{v_i,w} = \hat{x}_{v_i,w}$, for every other edge $\{v_i,w\}$ incident to v_i . Thus,

$$\sum_{w \in V} \tilde{\boldsymbol{x}}_{\boldsymbol{\nu}_i, \boldsymbol{w}} = \sum_{w \in V} \hat{\boldsymbol{x}}_{\boldsymbol{\nu}_i, \boldsymbol{w}} + \delta - \delta = \sum_{w \in V} \hat{\boldsymbol{x}}_{\boldsymbol{\nu}_i, \boldsymbol{w}} \leq 1.$$

This shows that

$$\sum_{w \in V} \tilde{x}_{v,w} \le 1,$$

for every vertex $v \in V$. Since we also have $0 \le \tilde{x}_e \le 1$, for every edge $e \in E$, this shows that \tilde{x} is a feasible solution of (2).

It is an *optimal* solution of (2) because C has even length. In particular, this implies that we have $\tilde{x}_e = \hat{x}_e + \delta$ for half the edges in C, and $\tilde{x}_e = \hat{x}_e - \delta$ for the other half of the edges in C. For all edges $e \notin C$, we have $\tilde{x}_e = \hat{x}_e$. Therefore,

$$\sum_{e \in E} \tilde{x}_e = \sum_{e \in E} \hat{x}_e,$$

which implies that \tilde{x} is optimal because \hat{x} is optimal and \tilde{x} is feasible.

Now observe that because the edges in C are the only edges with $\tilde{x}_e \neq \hat{x}_e$ and all edges in C satisfy $0 < \hat{x}_e < 1$, we have

$$|\{e \in E \mid 0 < \tilde{x}_e < 1\}| \le |\{e \in E \mid 0 < \hat{x}_e < 1\}|. \tag{S1}$$

By the choice of δ , we have $\delta = 1 - \hat{x}_e$ for an even-numbered edge e in C or $\delta = \hat{x}_e$ for an odd-numbered edge in C. For this edge e, we have $\tilde{x}_e \in \{0,1\}$ and $0 < \hat{x}_e < 1$, the latter because $e \in C \subseteq H$. Thus, (S1) is strict. Since \tilde{x} is an optimal solution of (2), this contradicts the choice of \hat{x} . Therefore, H cannot contain a cycle.

CASE 2: H DOES NOT CONTAIN A CYCLE

Since H cannot contain a cycle, it must be a forest. If H has no edges, then \hat{x} is an integral solution. So assume that H is not empty. Then there exist two leaves x_0 and x_k of H with a path $P = \langle x_0, \dots, x_k \rangle$ between them. We use P to define a solution \tilde{x} similar to the previous case. In particular, we define

$$\delta = \min(\min\{1 - \hat{x}_{\nu_{2i},\nu_{2i+1}} \mid 0 \le i < k/2\}, \min\{\hat{x}_{\nu_{2i-1},\nu_{2i}} \mid 1 < i \le k/2\}).$$

and then set $\tilde{x}_e = \hat{x}_e + \delta$ for all even-numbered edges in P, $\tilde{x}_e = \hat{x}_e - \delta$ for all odd-numbered edges in P, and $\tilde{x}_e = \hat{x}_e$ for all other edges of H.

By the same argument as in the previous case,

$$|\{e \in E \mid 0 < \tilde{x}_e < 1\}| < |\{e \in E \mid 0 < \hat{x}_e < 1\}|. \tag{S2}$$

Also by the same argument as in the previous case, all edges in H satisfy $0 \le \tilde{x}_e \le 1$, and we have

$$\sum_{w \in V} \hat{x}_{v,w} = \sum_{w \in V} \hat{x}_{v,w} \le 1,$$

for all $v \in V \setminus \{v_0, v_k\}$. For v_0 , note that $\{v_0, v_1\}$ is the only edge in G incident to v_0 with $0 < \hat{x}_{v_0, v_1} < 1$. Thus, every other edge $\{v_0, w\}$ incident to x_0 satisfies $\hat{x}_{v_0, w} \in \{0, 1\}$. Since $\hat{x}_{v_0, v_1} > 0$ and

$$\sum_{w \in V} \hat{x}_{\nu_0, w} \le 1,$$

this implies that $\hat{x}_{\nu_0,w}=0$, for each such edge. Since we have $\tilde{x}_{\nu_0,w}=\hat{x}_{\nu_0,w}$ for each such edge, this shows that

$$\sum_{w\in V}\tilde{x}_{\nu_0,w}=\tilde{x}_{\nu_0,\nu_1}\leq 1.$$

An analogous argument shows that

$$\sum_{w \in V} \tilde{x}_{\nu_k,w} = \tilde{x}_{\nu_{k-1},\nu_k} \leq 1.$$

Thus, \tilde{x} is once again a feasible solution of (2) that satisfies (S2).

Finally, observe that *P* contains at least as many even-numbered edges as odd-numbered edges. Thus,

$$\sum_{e \in E} \tilde{x}_e \ge \sum_{e \in E} \hat{x}_e,$$

that is, \tilde{x} is an optimal solution, once again contradicting the choice of \hat{x} .

1c

Part (b) of the question shows that a solution \hat{x} of (1) is an optimal solution of (1) if and only if it is an optimal solution of (2). Thus, since $\sum_{e \in E} \hat{x}_e = |M| = \{e \in E \mid \hat{x}_e = 1\}|$, for any such solution \hat{x} , we only need to prove that every solution of (1) defines a matching M of G and that every matching M of G is defined by an integral solution of (2).

To this end, observe first that every subset $M \subseteq E$, matching or not, can be defined as $M = \{e \in E \mid \hat{x}_e = 1\}$, for

$$\hat{x}_e = \begin{cases} 1 & \text{if } e \in M \\ 0 & \text{otherwise.} \end{cases}$$

This shows that there exists a bijections between subsets of E and assignments \hat{x} of values in $\{0,1\}$ to the edges in E. Thus, it suffices to prove that $M = \{e \in E \mid \hat{x}_e = 1\}$ is a matching if and only if \hat{x} is a feasible solution of $\{1\}$, that is, an integral feasible solution of $\{2\}$.

We have $0 \le \hat{x}_e \le 1$, for all $e \in E$. Thus, feasibility of \hat{x} depends only on the constraints

$$\sum_{w \in V} x_{v,w} \le 1 \quad \forall v \in V.$$

If every vertex $v \in V$ satisfies its corresponding constraint, then M contains at most one edge incident

to v, so M is a matching. If some vertex $v \in V$ violates its corresponding constraint, then M contains at least two edges incident to v, so M is not a matching. Thus, M is a matching if and only if \hat{x} is a feasible solution of (1), and we have a one-to-one correspondence between optimal solutions of (1) and maximum matchings of G.

1D

Here is an algorithm based immediately on the proof of (b): We start by computing an arbitrary optimal solution \tilde{x} of (2). Now, as long as \tilde{x} is not integral, we repeat the following steps: We construct the graph H = (V, E') defined in (b). We try to find a cycle in H, which can be done in linear time using DFS, as you hopefully learned in CSCI 3110. If there exists such a cycle, we update \tilde{x} as discussed in (b). The new solution has at least one fractional variable less. If H does not contain a cycle, then it must contain a degree-1 vertex (leaf). Running DFS from this leaf finds a path P from this leaf to another leaf, in linear time. Once again, we update \tilde{x} as discussed in (b).

The correctness of this algorithm follows from (b): Each time we update \tilde{x} , this maintains feasibility of \tilde{x} , does not decrease the objective function value of \tilde{x} , and reduces the number of fractional variables in \tilde{x} . Thus, \tilde{x} is a feasible solution of (2) at all times and, after at most m iterations, all variables in \tilde{x} are integral, that is, \tilde{x} is the desired solution \hat{x} at this point.

Since each iteration of the algorithm takes linear time, as just discussed (finding C or P is the "hard" part; computing δ and updating the values associated with the edges in C or P takes two iterations over the edges in C or P and thus also takes linear time), and we just observed that we obtain an integral solution after at most m iterations, the conversion from a fractional optimal solution of (2) to an integral optimal solution of (2) takes at most O((n+m)m) time.

QUESTION 2: VERTEX COLOURING AS AN ILP

2A

As observed in the statement of the question, if the colouring uses k colours, we can assume that these k colours are called 0 through k-1. We can also assume that $k \le n$ because every graph can be coloured with n colours. Thus, we can represent an arbitrary colouring and the goal to minimize the number of colours used by the following constraints and objective function:

Minimize
$$k$$

s.t. $k - c_v \ge 1$ $\forall v \in V$
 $c_v \in \lceil n - 1 \rceil_0$ $\forall v \in V$.

We need to add constraints that ensure that two adjecent vertices have different colours. Here is how we do this. For every edge $\{u, v\}$, we introduce a variable $s_{u,v} \in \{0, 1\}$, and we impose the two constraints that

$$c_u - c_v + ns_{u,v} \ge 1,$$

 $c_v - c_u - ns_{u,v} \ge 1 - n.$

Note that for a fixed graph G, n is a constant, so these are indeed linear constraints. Why do they do the right thing? If $s_{u,v}=0$, then the first constraint says that $c_u \ge c_v+1$, so $c_u \ne c_v$. The second constraint is trivially satisfied because $c_u, c_v \in [n-1]_0$, so $1-n \le c_v-c_u \le n-1$. If $s_{u,v}=1$, then the first constraint is trivially satisfied because, as just observed $c_u-c_v \ge 1-n$, so $c_u-c_v+n \ge 1$. The second constraint then ensures that $c_v-c_u-n \ge 1-n$, that is, $c_v-c_u \ge 1$, so $c_u \ne c_v$ again. By setting $s_{u,v}=0$ or $s_{u,v}=1$, we choose whether we want $c_u>c_v$ or $c_v>c_u$, but one of these two inequalities is being enforced.

The final ILP, then, is

Minimize *k*

s.t.
$$k-c_{\nu} \geq 1 \qquad \forall \nu \in V$$

$$c_{u}-c_{\nu}+ns_{u,\nu} \geq 1 \qquad \forall \{u,\nu\} \in E$$

$$c_{\nu}-c_{u}-ns_{u,\nu} \geq 1-n \qquad \forall \{u,\nu\} \in E$$

$$c_{\nu} \in [n-1]_{0} \quad \forall \nu \in V$$

$$s_{u,\nu} \in \{0,1\} \qquad \forall e \in \{u,\nu\}.$$
(S3)

2B

Consider an assignment \hat{c} of colours to the vertices of G, with $\hat{c}_{\nu} \in [n-1]_0$, for all $\nu \in V$. If \hat{c} is a valid colouring, we can complete it to a solution $(\hat{c}, \hat{s}, \hat{k})$ of (S3) by setting

$$\hat{s}_{u,v} = \begin{cases} 0 & \text{if } \hat{c}_u > \hat{c}_v \\ 1 & \text{otherwise} \end{cases} \quad \forall \{u, v\} \in E$$

and

$$\hat{k} = 1 + \max\{\hat{c}_{\nu} \mid \nu \in V\}.$$

This solution $(\hat{c},\hat{s},\hat{k})$ is a feasible solution of (S3). Indeed, we clearly have $\hat{c}_v \in [n-1]_0$, for all $v \in V$, and $\hat{s}_{u,v} \in \{0,1\}$, for all $\{u,v\} \in E$. By the definition of \hat{k} , we have $\hat{k} - \hat{c}_v \ge 1$, for all $v \in V$. For every edge $\{u,v\}$, we have $\hat{c}_u > \hat{c}_v$ or $\hat{c}_v > \hat{c}_u$ because \hat{c} is a valid colouring. If $\hat{c}_u > \hat{c}_v$, then $\hat{s}_{u,v} = 0$, so $\hat{c}_u - \hat{c}_v + n\hat{s}_{u,v} \ge 1$ and $\hat{c}_v - \hat{c}_u - n\hat{s}_{u,v} \ge 1 - n$ (because $\hat{c}_u, \hat{c}_v \in [n-1]_0$). If $\hat{c}_v > \hat{c}_u$, then $\hat{c}_u - \hat{c}_v \ge 1 - n$ and $\hat{s}_{u,v} = 1$, so $\hat{c}_u - \hat{c}_v + n\hat{s}_{u,v} \ge 1$, and we also have $\hat{c}_v - \hat{c}_u \ge 1$, so $\hat{c}_v - \hat{c}_u - n\hat{s}_{u,v} \ge 1 - n$.

Conversely, assume that $(\hat{c},\hat{s},\hat{k})$ is a feasible solution of (S3). Then \hat{c} is a valid colouring. To prove this, all we need to prove is that $\hat{c}_u \neq \hat{c}_v$, for every edge $\{u,v\} \in V$. If $\hat{s}_{u,v} = 0$, then the constraint $c_u - c_v + ns_{u,v} \geq 1$ enforces that $\hat{c}_u > \hat{c}_v$. If $\hat{s}_{u,v} = 1$, then the constraint $c_v - c_u - ns_{u,v} \geq 1 - n$ enforces that $\hat{c}_v > \hat{c}_v$. In both cases, $\hat{c}_u \neq \hat{c}_v$, so \hat{c} is a valid colouring of G.

2C

Let \hat{c} be an optimal colouring of G (one that uses the minimum number of colours), and let $(\tilde{c}, \tilde{s}, \tilde{k})$ be an optimal solution of (S3). As already observed, we can assume that $\hat{c}_v \in [\ell-1]_0$ if \hat{c} uses ℓ colours. As shown in (b), there exists a feasible solution $(\hat{c}, \hat{s}, \hat{k})$ of (S3) corresponding to \hat{c} , and \tilde{c} is a valid colouring of G. Moreover, given that $\hat{c}_v \in [\ell-1]_0$, we can choose $\hat{k} = \ell$.

Since all vertices $v \in G$ satisfy $\tilde{c}_v \in [\tilde{k} - 1]_0$, due to the first constraint of (S3), \tilde{c} is a colouring of G with at most \tilde{k} colours. Since \hat{c} is an optimal colouring, this shows that $\hat{k} = \ell \leq \tilde{k}$.

Conversely, $(\hat{c}, \hat{s}, \hat{k})$ has objective function value \hat{k} in (S3). Since $(\tilde{c}, \tilde{s}, \tilde{k})$ is an optimal solution of (S3), this implies that $\hat{k} \geq \tilde{k}$.

Together, these two inequalities show that $\ell = \hat{k} = \tilde{k}$, that is, both \hat{c} and \tilde{c} are optimal colourings of G, and both $(\hat{c},\hat{s},\hat{k})$ and $(\tilde{c},\tilde{s},\tilde{k})$ are optimal solutions of (S3). This proves that an optimal colouring of G gives an optimal solution of (S3), and vice versa.