
INTRODUCTION TO SCHEME
PRINCIPLES OF PROGRAMMING LANGUAGES

Norbert Zeh
Winter 2019

Dalhousie University

1/110

SCHEME: A FUNCTIONAL PROGRAMMING LANGUAGE

• Functions are first-class values: Can be passed as function arguments,
returned from functions.

• Variables are mutable but mutation is discouraged.
• Imperative programming is possible but functional programming feels more
natural in Scheme.

• Easy to simulate a wide range of abstractions (OO, coroutines, exceptions ,…)

Note: Haskell is more elegant but harder to learn. You should give it a (serious)
shot. Notes are still online.

2/110

SCHEME: A FUNCTIONAL PROGRAMMING LANGUAGE

• Functions are first-class values: Can be passed as function arguments,
returned from functions.

• Variables are mutable but mutation is discouraged.

• Imperative programming is possible but functional programming feels more
natural in Scheme.

• Easy to simulate a wide range of abstractions (OO, coroutines, exceptions ,…)

Note: Haskell is more elegant but harder to learn. You should give it a (serious)
shot. Notes are still online.

2/110

SCHEME: A FUNCTIONAL PROGRAMMING LANGUAGE

• Functions are first-class values: Can be passed as function arguments,
returned from functions.

• Variables are mutable but mutation is discouraged.
• Imperative programming is possible but functional programming feels more
natural in Scheme.

• Easy to simulate a wide range of abstractions (OO, coroutines, exceptions ,…)

Note: Haskell is more elegant but harder to learn. You should give it a (serious)
shot. Notes are still online.

2/110

SCHEME: A FUNCTIONAL PROGRAMMING LANGUAGE

• Functions are first-class values: Can be passed as function arguments,
returned from functions.

• Variables are mutable but mutation is discouraged.
• Imperative programming is possible but functional programming feels more
natural in Scheme.

• Easy to simulate a wide range of abstractions (OO, coroutines, exceptions ,…)

Note: Haskell is more elegant but harder to learn. You should give it a (serious)
shot. Notes are still online.

2/110

SCHEME: A FUNCTIONAL PROGRAMMING LANGUAGE

• Functions are first-class values: Can be passed as function arguments,
returned from functions.

• Variables are mutable but mutation is discouraged.
• Imperative programming is possible but functional programming feels more
natural in Scheme.

• Easy to simulate a wide range of abstractions (OO, coroutines, exceptions ,…)

Note: Haskell is more elegant but harder to learn. You should give it a (serious)
shot. Notes are still online.

2/110

INTERACTING WITH SCHEME

We will use Chez Scheme as our Scheme interpreter:

$ chezscheme
Chez Scheme Version 9.5
Copyright 1984-2017 Cisco Systems, Inc.

> _

• Supports Scheme R6RS
• Installed on bluenose

3/110

INTERACTIVE VS SCRIPT MODE

Similarly to Python, if we just type chezscheme, we get an interactive prompt.
In Scheme parlance, this is called the read-eval-print-loop (REPL).

To run a program without dropping into interactive mode, we use the --script
or --program command line option:

$ chezscheme --program helloworld.ss
Hello, world!
$ _

4/110

INTERACTIVE VS SCRIPT MODE

Similarly to Python, if we just type chezscheme, we get an interactive prompt.
In Scheme parlance, this is called the read-eval-print-loop (REPL).

To run a program without dropping into interactive mode, we use the --script
or --program command line option:

$ chezscheme --program helloworld.ss
Hello, world!
$ _

4/110

SCHEME SYNTAX

Scheme is a LISP dialect (“lots of irritating stupid parantheses”):

• Unusual but very simple syntax.
• Easy to parse, not so easy to read.

A Scheme program is a list of S-expressions. An S-expression is

• An atom: identifier, symbol, number, string, …
• A list of S-expressions enclosed in parentheses

Examples

(define x (+ 2 3))
(display x)

5/110

SCHEME SYNTAX

Scheme is a LISP dialect (“lots of irritating stupid parantheses”):

• Unusual but very simple syntax.
• Easy to parse, not so easy to read.

A Scheme program is a list of S-expressions. An S-expression is

• An atom: identifier, symbol, number, string, …
• A list of S-expressions enclosed in parentheses

Examples

(define x (+ 2 3))
(display x)

5/110

DATA TYPES

6/110

SCHEME DATA TYPES

Basic types:
• Integers
• Floats
• Booleans
• Characters
• Strings
• Symbols
• Functions

Compound types:
• Lists
• Vectors
• User-defined record types

7/110

SCHEME IS DYNAMICALLY TYPED

As Python, Scheme is dynamically typed:

• Variables have no types, values do
• As the program runs, values of different types can be assigned to the same
variable.

> (define var 1)
> x
1
> (set! x "a string")
> x
"a string"
> _

8/110

SCHEME IS DYNAMICALLY TYPED

As Python, Scheme is dynamically typed:

• Variables have no types, values do
• As the program runs, values of different types can be assigned to the same
variable.

> (define var 1)
> x
1
> (set! x "a string")
> x
"a string"
> _

8/110

INTEGERS

Literals:

• 1, 321, -41, …

Arithmetic operations:

• +, -, *, /, div (integer division), mod (modulo), expt (power)

Comparison:

• =, <, >, <=, >=

> (+ 1 2 3)
6
> (= (- 3 2 1) 0)
#t

9/110

INTEGERS

Literals:

• 1, 321, -41, …

Arithmetic operations:

• +, -, *, /, div (integer division), mod (modulo), expt (power)

Comparison:

• =, <, >, <=, >=

> (+ 1 2 3)
6
> (= (- 3 2 1) 0)
#t

9/110

INTEGERS

Literals:

• 1, 321, -41, …

Arithmetic operations:

• +, -, *, /, div (integer division), mod (modulo), expt (power)

Comparison:

• =, <, >, <=, >=

> (+ 1 2 3)
6
> (= (- 3 2 1) 0)
#t

9/110

INTEGERS

Literals:

• 1, 321, -41, …

Arithmetic operations:

• +, -, *, /, div (integer division), mod (modulo), expt (power)

Comparison:

• =, <, >, <=, >=

> (+ 1 2 3)
6
> (= (- 3 2 1) 0)
#t

9/110

FLOATING POINT NUMBERS

Literals:

• 1.0, 321.0, -3.4e12, …

Arithmetic operations:

• +, -, *, /, div (integer division), mod (modulo), expt (power)
• inexact->exact (convert to exact number)

Comparison:

• =, <, >, <=, >=

> (inexact->exact 20.0)
20
> (inexact->exact 1.2)
5404319552844595/4503599627370496

10/110

FLOATING POINT NUMBERS

Literals:

• 1.0, 321.0, -3.4e12, …

Arithmetic operations:

• +, -, *, /, div (integer division), mod (modulo), expt (power)
• inexact->exact (convert to exact number)

Comparison:

• =, <, >, <=, >=

> (inexact->exact 20.0)
20
> (inexact->exact 1.2)
5404319552844595/4503599627370496

10/110

FLOATING POINT NUMBERS

Literals:

• 1.0, 321.0, -3.4e12, …

Arithmetic operations:

• +, -, *, /, div (integer division), mod (modulo), expt (power)
• inexact->exact (convert to exact number)

Comparison:

• =, <, >, <=, >=

> (inexact->exact 20.0)
20
> (inexact->exact 1.2)
5404319552844595/4503599627370496

10/110

FLOATING POINT NUMBERS

Literals:

• 1.0, 321.0, -3.4e12, …

Arithmetic operations:

• +, -, *, /, div (integer division), mod (modulo), expt (power)
• inexact->exact (convert to exact number)

Comparison:

• =, <, >, <=, >=

> (inexact->exact 20.0)
20
> (inexact->exact 1.2)
5404319552844595/4503599627370496

10/110

BOOLEANS

Literals:

• #f and #t

Logical operations:

• and, or, not

“Truthiness” of other types:

• Everything that’s not #f is treated as true (even the empty list).

> (and 1 #t 3)
3
> (or 1 #t 3)
1
> (if '() "yes" "no")
"yes"

11/110

BOOLEANS

Literals:

• #f and #t

Logical operations:

• and, or, not

“Truthiness” of other types:

• Everything that’s not #f is treated as true (even the empty list).

> (and 1 #t 3)
3
> (or 1 #t 3)
1
> (if '() "yes" "no")
"yes"

11/110

BOOLEANS

Literals:

• #f and #t

Logical operations:

• and, or, not

“Truthiness” of other types:

• Everything that’s not #f is treated as true (even the empty list).

> (and 1 #t 3)
3
> (or 1 #t 3)
1
> (if '() "yes" "no")
"yes"

11/110

BOOLEANS

Literals:

• #f and #t

Logical operations:

• and, or, not

“Truthiness” of other types:

• Everything that’s not #f is treated as true (even the empty list).

> (and 1 #t 3)
3
> (or 1 #t 3)
1
> (if '() "yes" "no")
"yes"

11/110

SYMBOLS

Literals:

• 'asymbol, '+, …
• Can be used to represent discrete data: 'red, 'green, 'blue, …

Equality testing:

• eq?

Conversion:

• string->symbol, symbol->string

12/110

SYMBOLS

Literals:

• 'asymbol, '+, …
• Can be used to represent discrete data: 'red, 'green, 'blue, …

Equality testing:

• eq?

Conversion:

• string->symbol, symbol->string

12/110

SYMBOLS

Literals:

• 'asymbol, '+, …
• Can be used to represent discrete data: 'red, 'green, 'blue, …

Equality testing:

• eq?

Conversion:

• string->symbol, symbol->string

12/110

CHARACTERS

Literals:

• \#a, \#[, …
• Unicode characters: \#x41, …
• Some named special characters: \#tab, \#newline, …

Conversion:

• char->integer, integer->char

Comparison:

• Case-sensitive: char=?, char<?, …
• Case-insensitive: char-ci=?, char-ci<?, …

13/110

CHARACTERS

Literals:

• \#a, \#[, …
• Unicode characters: \#x41, …
• Some named special characters: \#tab, \#newline, …

Conversion:

• char->integer, integer->char

Comparison:

• Case-sensitive: char=?, char<?, …
• Case-insensitive: char-ci=?, char-ci<?, …

13/110

CHARACTERS

Literals:

• \#a, \#[, …
• Unicode characters: \#x41, …
• Some named special characters: \#tab, \#newline, …

Conversion:

• char->integer, integer->char

Comparison:

• Case-sensitive: char=?, char<?, …
• Case-insensitive: char-ci=?, char-ci<?, …

13/110

STRINGS

Literals:

• "This is a string with a\ttab"

Conversion:

• string->list, list->string, string->number, number->string

Comparison:

• Case-sensitive: string=?, string<?, …
• Case-insensitive: string-ci=?, string-ci<?, …

14/110

STRINGS

Literals:

• "This is a string with a\ttab"

Conversion:

• string->list, list->string, string->number, number->string

Comparison:

• Case-sensitive: string=?, string<?, …
• Case-insensitive: string-ci=?, string-ci<?, …

14/110

STRINGS

Literals:

• "This is a string with a\ttab"

Conversion:

• string->list, list->string, string->number, number->string

Comparison:

• Case-sensitive: string=?, string<?, …
• Case-insensitive: string-ci=?, string-ci<?, …

14/110

FUNCTIONS

An anonymous function definition:

(lambda (x y)
(+ x y))

Functions can be

• Applied to some arguments: ((lambda (x y) (+ x y)) 1 2)

• Passed to other functions: (map + '(1 2) '(3 4))

• Stored in variables: (define add (lambda (x y) (+ x y)))

• Returned as function results:
(define (mkadder inc) (lambda (x) (+ x inc)))

15/110

FUNCTIONS

An anonymous function definition:

(lambda (x y)
(+ x y))

Functions can be

• Applied to some arguments: ((lambda (x y) (+ x y)) 1 2)

• Passed to other functions: (map + '(1 2) '(3 4))

• Stored in variables: (define add (lambda (x y) (+ x y)))

• Returned as function results:
(define (mkadder inc) (lambda (x) (+ x inc)))

15/110

FUNCTIONS

An anonymous function definition:

(lambda (x y)
(+ x y))

Functions can be

• Applied to some arguments: ((lambda (x y) (+ x y)) 1 2)

• Passed to other functions: (map + '(1 2) '(3 4))

• Stored in variables: (define add (lambda (x y) (+ x y)))

• Returned as function results:
(define (mkadder inc) (lambda (x) (+ x inc)))

15/110

FUNCTIONS

An anonymous function definition:

(lambda (x y)
(+ x y))

Functions can be

• Applied to some arguments: ((lambda (x y) (+ x y)) 1 2)

• Passed to other functions: (map + '(1 2) '(3 4))

• Stored in variables: (define add (lambda (x y) (+ x y)))

• Returned as function results:
(define (mkadder inc) (lambda (x) (+ x inc)))

15/110

FUNCTIONS

An anonymous function definition:

(lambda (x y)
(+ x y))

Functions can be

• Applied to some arguments: ((lambda (x y) (+ x y)) 1 2)

• Passed to other functions: (map + '(1 2) '(3 4))

• Stored in variables: (define add (lambda (x y) (+ x y)))

• Returned as function results:
(define (mkadder inc) (lambda (x) (+ x inc)))

15/110

FUNCTIONS

An anonymous function definition:

(lambda (x y)
(+ x y))

Functions can be

• Applied to some arguments: ((lambda (x y) (+ x y)) 1 2)

• Passed to other functions: (map + '(1 2) '(3 4))

• Stored in variables: (define add (lambda (x y) (+ x y)))

• Returned as function results:
(define (mkadder inc) (lambda (x) (+ x inc)))

15/110

DEFINITIONS

16/110

DEFINITIONS

To define a variable, use the syntax (define varname ...)

; A variable `one` that stores the integer 1
(define one 1)

; A variable `mkadder` that stores a function that takes one
; argument and returns a function.
(define mkadder
(lambda (inc)

(lambda (x)
(+ x inc))))

17/110

FUNCTION DEFINITIONS

In Scheme, a named function fun is nothing but a variable fun that stores a
function:

> (define add
(lambda (x y) (+ x y)))

> (add 1 2)
3

This is tedious to write, so Scheme has a shorter notation for defining functions
(this is only a change in syntax!):

> (define (add x y)
(+ x y))

> (add 1 2)
3

18/110

FUNCTION DEFINITIONS

In Scheme, a named function fun is nothing but a variable fun that stores a
function:

> (define add
(lambda (x y) (+ x y)))

> (add 1 2)
3

This is tedious to write, so Scheme has a shorter notation for defining functions
(this is only a change in syntax!):

> (define (add x y)
(+ x y))

> (add 1 2)
3

18/110

LOCAL DEFINITIONS

Definitions can occur inside function bodies. They are visible only inside the
function (and inside nested functions).

> (define x 1)
> (define (fun)

(define x 2)
(define (inner)

(set! x 10))
(inner)
(display x) (newline))

> (fun)
10
> (display x)
1

19/110

CONTROL STRUCTURES

20/110

IF

The standard if-then(-else) looks like this in Scheme:

(if cond then-expr)
(if cond then-expr else-expr)

Example:

(define (sign x)
(if (< x 0)

-1
(if (> x 0)

1
0)))

21/110

SEQUENCING OF STATEMENTS

The branches of an if-statement are single statements!
What if I want to do more than one thing in each branch?

Sequencing syntax in Scheme:

(begin
expr1
expr2
...)

The value of a begin block is the value of its last expression.

22/110

A MORE COMPLEX EXAMPLE USING IF AND BEGIN

(define (sign x)
(if (< x 0)

(begin
(display "Negative number") (newline)
-1)

(if (> x 0)
(begin

(display "Positive number") (newline)
1)

(begin
(display "Zero") (newline)
0))))

23/110

COND

cond is a multi-way if with implicit begin blocks:

(cond
[cond1 expr1 expr2 ...]
[cond2 expr1 expr2 ...]
...
[else expr1 expr2 ...])

24/110

CHATTY SIGN FUNCTION USING COND

(define (sign x)
(cond [(< x 0) (display "Negative number") (newline)

-1]

[(> x 0) (display "Positive number") (newline)
1]

[else (display "Zero") (newline)
0]))

25/110

REPEATING THINGS: RECURSION

Scheme has no loops!

How do we repeat things? Recursion.

(define (print-one-to-ten)
(define (loop i)

(display i) (newline)
(if (< i 10)

(loop (+ i 1))))
(loop 1))

Recursion is much more natural in functional languages.

Iteration requires side effects and thus is not possible at all in purely functional
lanugages such as Haskell. (This is a good thing!)

26/110

REPEATING THINGS: RECURSION

Scheme has no loops!

How do we repeat things? Recursion.

(define (print-one-to-ten)
(define (loop i)

(display i) (newline)
(if (< i 10)

(loop (+ i 1))))
(loop 1))

Recursion is much more natural in functional languages.

Iteration requires side effects and thus is not possible at all in purely functional
lanugages such as Haskell. (This is a good thing!)

26/110

EFFICIENT RECURSION: TAIL RECURSION

Recursion requires a call stack. Can become big if there are many recursive calls.

In C, C++, Java, Python, …, iteration is more efficient than recursion.

Decent functional languages have tail recursion.

Tail recursion
If the return value of a function equals the return value of its last function call,
we can jump to the called function without building up a stack frame.

The compiler effectively translates a tail-recursive function back into a loop!

27/110

EFFICIENT RECURSION: TAIL RECURSION

Recursion requires a call stack. Can become big if there are many recursive calls.

In C, C++, Java, Python, …, iteration is more efficient than recursion.

Decent functional languages have tail recursion.

Tail recursion
If the return value of a function equals the return value of its last function call,
we can jump to the called function without building up a stack frame.

The compiler effectively translates a tail-recursive function back into a loop!

27/110

EFFICIENT RECURSION: TAIL RECURSION

Recursion requires a call stack. Can become big if there are many recursive calls.

In C, C++, Java, Python, …, iteration is more efficient than recursion.

Decent functional languages have tail recursion.

Tail recursion
If the return value of a function equals the return value of its last function call,
we can jump to the called function without building up a stack frame.

The compiler effectively translates a tail-recursive function back into a loop!

27/110

THE GOOD OLD FACTORIAL FUNCTION

(define (factorial n)
(if (< n 2)

1
(* n (factorial (- n 1)))))

This function is not tail-recursive, so calling this on large numbers will likely blow
up the stack.

28/110

COMPUTING FACTORIALS THE TAIL-RECURSIVE WAY

(define (factorial n)
(define (fac f n)

(if (< n 2)
f
(fac (* n f) (- n 1))))

(fac 1 n)))

Compare to an iterative Python version:

def factorial(n):
f = 1
while n >= 2:
f *= n
n -= 1

return f

29/110

COMPUTING FACTORIALS THE TAIL-RECURSIVE WAY

(define (factorial n)
(define (fac f n)

(if (< n 2)
f
(fac (* n f) (- n 1))))

(fac 1 n)))

Compare to an iterative Python version:

def factorial(n):
f = 1
while n >= 2:

f *= n
n -= 1

return f
29/110

SCOPES

30/110

LET BINDINGS

We normally do not define local variables in functions using define.
We use let-bindings:

(let ([var1 expr1]
[var2 expr2]
...)

; var1, var2, ... are visible here
...)

; but not here

31/110

THE SCOPE OF LET BINDINGS

(let ([var1 expr1]
[var2 expr2]
[var3 expr3])

...) var1, var2, var3 visible only here

(let* ([var1 expr1]
[var2 expr2]
[var3 expr3])

...)

var1
var2

var3

(letrec ([var1 expr1]
[var2 expr2]
[var3 expr3])

...)

var1 var2 var3

32/110

AN EXAMPLE

Our earlier example of using local definitions:

> (define x 1)
> (define (fun)

(define x 2)
(define (inner)

(set! x 10))
(inner)
(display x) (newline))

> (fun)
10
> (display x)
1

33/110

AN EXAMPLE

Using a let-block, this looks like this:

> (define x 1)
> (define (fun)

(let ([x 2])
(define (inner)

(set! x 10))
(inner)
(display x) (newline)))

> (fun)
10
> (display x)
1

34/110

AN EXAMPLE

But wait a second, inner is also a local definition:

> (define x 1)
> (define (fun)

(let ([x 2]
[inner (lambda () (set! x 10))])

(inner)
(display x) (newline)))

> (fun)
2
> (display x)
10

Oops!

35/110

AN EXAMPLE

What we need here is let* so inner modifies the correct x:

> (define x 1)
> (define (fun)

(let* ([x 2]
[inner (lambda () (set! x 10))])

(inner)
(display x) (newline)))

> (fun)
10
> (display x)
1

Oops!

36/110

EVALUATION ORDER OF EXPRESSIONS IN LET BINDINGS

Do not count on the order of evaluation of expressions in a let- or
letrec-block.

let* and letrec* guarantee sequential evaluation.

37/110

NAMED LET

Our method of turning our factorial function into a tail-recursive one is a
common idiom, but it involves a lot of boilerplate:

(define (factorial n)
(define (fac f n)

(if (< n 2)
f
(fac (* n f) (- n 1))))

(fac 1 n)))

38/110

NAMED LET

The “named let” construct allows us to write this in a way that looks like a more
flexible loop construct.

(define (factorial n)
(let fac ([f 1]

[n n])
(if (< n 2)

f
(fac (* n f) (- n 1)))))

This is 100% equivalent to our earlier definition. It is only easier to read.

39/110

NAMED LET

In general, a named let-block

(let name ([var1 expr1]
[var2 expr2]
...)

...
(name arg1 arg2 ...)
...)

is translated into

(define (name var1 var2 ...)
...
(name arg1 arg2 ...)
...)

(name expr1 expr2 ...)
40/110

COMPOUND DATA TYPES

41/110

PAIRS

Pairs are pervasive in all LISPs.

A pair holding two items x and y is constructed using

(cons x y)

The elements of a pair xy are accessed using:

(car xy) ; first element
(cdr xy) ; second element (pronounce "coulder")

Example
> (define xy (cons 1 2))
> (car xy)
1
> (cdr xy)
2

42/110

PAIRS

Pairs are pervasive in all LISPs.

A pair holding two items x and y is constructed using

(cons x y)

The elements of a pair xy are accessed using:

(car xy) ; first element
(cdr xy) ; second element (pronounce "coulder")

Example
> (define xy (cons 1 2))
> (car xy)
1
> (cdr xy)
2

42/110

PAIRS

Pairs are pervasive in all LISPs.

A pair holding two items x and y is constructed using

(cons x y)

The elements of a pair xy are accessed using:

(car xy) ; first element
(cdr xy) ; second element (pronounce "coulder")

Example
> (define xy (cons 1 2))
> (car xy)
1
> (cdr xy)
2

42/110

LISTS

Lists are defined inductively:

• The empty list '() (not ()!) is a list.
• A pair (cons head tail) is a list if

• head is any data item (possibly a list) and
• tail is a list.

Example

(cons 1 (cons 2 (cons 3 '()))) ; In Python: [1, 2, 3]

The recursive structure makes lists perfect as sequence types to be manipulated
using recursive functions.

Next: A more convenient syntax :)

43/110

LISTS

Lists are defined inductively:

• The empty list '() (not ()!) is a list.

• A pair (cons head tail) is a list if
• head is any data item (possibly a list) and
• tail is a list.

Example

(cons 1 (cons 2 (cons 3 '()))) ; In Python: [1, 2, 3]

The recursive structure makes lists perfect as sequence types to be manipulated
using recursive functions.

Next: A more convenient syntax :)

43/110

LISTS

Lists are defined inductively:

• The empty list '() (not ()!) is a list.
• A pair (cons head tail) is a list if

• head is any data item (possibly a list) and
• tail is a list.

Example

(cons 1 (cons 2 (cons 3 '()))) ; In Python: [1, 2, 3]

The recursive structure makes lists perfect as sequence types to be manipulated
using recursive functions.

Next: A more convenient syntax :)

43/110

LISTS

Lists are defined inductively:

• The empty list '() (not ()!) is a list.
• A pair (cons head tail) is a list if

• head is any data item (possibly a list) and
• tail is a list.

Example

(cons 1 (cons 2 (cons 3 '()))) ; In Python: [1, 2, 3]

The recursive structure makes lists perfect as sequence types to be manipulated
using recursive functions.

Next: A more convenient syntax :)

43/110

LISTS

Lists are defined inductively:

• The empty list '() (not ()!) is a list.
• A pair (cons head tail) is a list if

• head is any data item (possibly a list) and
• tail is a list.

Example

(cons 1 (cons 2 (cons 3 '()))) ; In Python: [1, 2, 3]

The recursive structure makes lists perfect as sequence types to be manipulated
using recursive functions.

Next: A more convenient syntax :)

43/110

LISTS

A more convenient syntax to define lists:

(list 1 2 3)

44/110

SOME CONVENIENT LIST FUNCTIONS

(null? lst): Is lst empty?
(length lst): The length of lst

(car lst): The first element of lst
(cdr lst): The tail of lst

(cadr lst) = (car (cdr lst))
(cddr lst) = (cdr (cdr lst))

caaaar, caaadr, …, cddddr

(append (list 1 2) (list 3) '() (list 4 5)) =
(list 1 2 3 4 5)

45/110

SOME CONVENIENT LIST FUNCTIONS

(null? lst): Is lst empty?
(length lst): The length of lst

(car lst): The first element of lst
(cdr lst): The tail of lst

(cadr lst) = (car (cdr lst))
(cddr lst) = (cdr (cdr lst))

caaaar, caaadr, …, cddddr

(append (list 1 2) (list 3) '() (list 4 5)) =
(list 1 2 3 4 5)

45/110

SOME CONVENIENT LIST FUNCTIONS

(null? lst): Is lst empty?
(length lst): The length of lst

(car lst): The first element of lst
(cdr lst): The tail of lst

(cadr lst) = (car (cdr lst))
(cddr lst) = (cdr (cdr lst))

caaaar, caaadr, …, cddddr

(append (list 1 2) (list 3) '() (list 4 5)) =
(list 1 2 3 4 5)

45/110

SOME CONVENIENT LIST FUNCTIONS

(null? lst): Is lst empty?
(length lst): The length of lst

(car lst): The first element of lst
(cdr lst): The tail of lst

(cadr lst) = (car (cdr lst))
(cddr lst) = (cdr (cdr lst))

caaaar, caaadr, …, cddddr

(append (list 1 2) (list 3) '() (list 4 5)) =
(list 1 2 3 4 5)

45/110

SOME CONVENIENT LIST FUNCTIONS

(null? lst): Is lst empty?
(length lst): The length of lst

(car lst): The first element of lst
(cdr lst): The tail of lst

(cadr lst) = (car (cdr lst))
(cddr lst) = (cdr (cdr lst))

caaaar, caaadr, …, cddddr

(append (list 1 2) (list 3) '() (list 4 5)) =
(list 1 2 3 4 5)

45/110

LIST TRANSFORMATIONS = POWERFUL CONTROL STRUCTURES

Most things that we express (quite clumsily) using loops are instances of
common transformation patterns on sequences:

• map: Apply a function to every element in a sequence. (Generalizes to tuples
of sequences using multivariate functions.)

• filter: Extract a subsequence of elements satisfying a given predicate.

• fold-left: Accumulate the elements in a list left-to-right (e.g., sum)

• fold-right: Accumulate the elements in a list right-to-left

We can write powerful programs in terms of these transformations (Google
MapReduce).

46/110

LIST TRANSFORMATIONS = POWERFUL CONTROL STRUCTURES

Most things that we express (quite clumsily) using loops are instances of
common transformation patterns on sequences:

• map: Apply a function to every element in a sequence. (Generalizes to tuples
of sequences using multivariate functions.)

• filter: Extract a subsequence of elements satisfying a given predicate.

• fold-left: Accumulate the elements in a list left-to-right (e.g., sum)

• fold-right: Accumulate the elements in a list right-to-left

We can write powerful programs in terms of these transformations (Google
MapReduce).

46/110

LIST TRANSFORMATIONS = POWERFUL CONTROL STRUCTURES

Most things that we express (quite clumsily) using loops are instances of
common transformation patterns on sequences:

• map: Apply a function to every element in a sequence. (Generalizes to tuples
of sequences using multivariate functions.)

• filter: Extract a subsequence of elements satisfying a given predicate.

• fold-left: Accumulate the elements in a list left-to-right (e.g., sum)

• fold-right: Accumulate the elements in a list right-to-left

We can write powerful programs in terms of these transformations (Google
MapReduce).

46/110

LIST TRANSFORMATIONS = POWERFUL CONTROL STRUCTURES

Most things that we express (quite clumsily) using loops are instances of
common transformation patterns on sequences:

• map: Apply a function to every element in a sequence. (Generalizes to tuples
of sequences using multivariate functions.)

• filter: Extract a subsequence of elements satisfying a given predicate.

• fold-left: Accumulate the elements in a list left-to-right (e.g., sum)

• fold-right: Accumulate the elements in a list right-to-left

We can write powerful programs in terms of these transformations (Google
MapReduce).

46/110

LIST TRANSFORMATIONS = POWERFUL CONTROL STRUCTURES

Most things that we express (quite clumsily) using loops are instances of
common transformation patterns on sequences:

• map: Apply a function to every element in a sequence. (Generalizes to tuples
of sequences using multivariate functions.)

• filter: Extract a subsequence of elements satisfying a given predicate.

• fold-left: Accumulate the elements in a list left-to-right (e.g., sum)

• fold-right: Accumulate the elements in a list right-to-left

We can write powerful programs in terms of these transformations (Google
MapReduce).

46/110

LIST TRANSFORMATIONS = POWERFUL CONTROL STRUCTURES

Most things that we express (quite clumsily) using loops are instances of
common transformation patterns on sequences:

• map: Apply a function to every element in a sequence. (Generalizes to tuples
of sequences using multivariate functions.)

• filter: Extract a subsequence of elements satisfying a given predicate.

• fold-left: Accumulate the elements in a list left-to-right (e.g., sum)

• fold-right: Accumulate the elements in a list right-to-left

We can write powerful programs in terms of these transformations (Google
MapReduce).

46/110

MAP

If we want to apply a function to each element in a list and produce a list of the
results, this is what map does:

> (map (lambda (x) (* 2 x))
(list 1 2 3 4 5))

(2 4 6 8 10)

x0

f(x0)

x1

f(x1)

x2

f(x2)

x3

f(x3)

x4

f(x4)

x5

f(x5)

x6

f(x6)

x7

f(x7)

x8

f(x8)

x9

f(x9)

(map f lst)

47/110

MAP

We can also do this to two (or more) lists:

> (map + (list 1 2 3 4 5)
(list 6 7 8 9 10))

(7 9 11 13 15)

(All input lists must have the same length!)

48/110

FILTER

Another common idiom is to extract the sublist of elements that meet a given
condition (or predicate). filter takes care of this:

> (filter even? (list 1 2 3 4 5))
(2 4)

49/110

FOLD-LEFT

Assume for now that + accepts only two
arguments.

How do we implement a function sum that sums
the elements in a list?

(define (sum lst) (fold-left + 0 lst))

Example

(fold-left + 0 (list 1 2 3 4 5))

0

1

3

6

10

15

+

+

+

+

+

1 2 3 4 5

50/110

FOLD-LEFT

Assume for now that + accepts only two
arguments.

How do we implement a function sum that sums
the elements in a list?

(define (sum lst) (fold-left + 0 lst))

Example

(fold-left + 0 (list 1 2 3 4 5))

0

1

3

6

10

15

+

+

+

+

+

1 2 3 4 5

50/110

FOLD-LEFT

Assume for now that + accepts only two
arguments.

How do we implement a function sum that sums
the elements in a list?

(define (sum lst) (fold-left + 0 lst))

Example

(fold-left + 0 (list 1 2 3 4 5))

0

1

3

6

10

15

+

+

+

+

+

1 2 3 4 5

50/110

FOLD-RIGHT

We could implement sum by folding right-to-left
instead:

(define (sum lst) (fold-right + 0 lst))

Example

(fold-right + 0 (list 1 2 3 4 5))

This is generally less efficient than left-folding but
has its uses!

0

1

3

6

10

15

+

+

+

+

+

1 2 3 4 5

51/110

FOLD-RIGHT

We could implement sum by folding right-to-left
instead:

(define (sum lst) (fold-right + 0 lst))

Example

(fold-right + 0 (list 1 2 3 4 5))

This is generally less efficient than left-folding but
has its uses!

0

1

3

6

10

15

+

+

+

+

+

1 2 3 4 5

51/110

FOLD-RIGHT

We could implement sum by folding right-to-left
instead:

(define (sum lst) (fold-right + 0 lst))

Example

(fold-right + 0 (list 1 2 3 4 5))

This is generally less efficient than left-folding but
has its uses!

0

1

3

6

10

15

+

+

+

+

+

1 2 3 4 5

51/110

ZIP

Sometimes, we have a pair (or more) lists where the ith elements in these lists
are logically associated with each other. We may want to combine them into a list
of pairs (or tuples) of associated elements.

x0

y0

x1

y1

x2

y2

x3

y3

x6

y6

x7

y7

x8

y8

x9

y9

x4
x5

y4
y5

zip to the rescue …

except that it does not exist in Scheme.

52/110

ZIP

Sometimes, we have a pair (or more) lists where the ith elements in these lists
are logically associated with each other. We may want to combine them into a list
of pairs (or tuples) of associated elements.

x0

y0

x1

y1

x2

y2

x3

y3

x6

y6

x7

y7

x8

y8

x9

y9

x4
x5

y4
y5

zip to the rescue …

except that it does not exist in Scheme.

52/110

ZIP

Sometimes, we have a pair (or more) lists where the ith elements in these lists
are logically associated with each other. We may want to combine them into a list
of pairs (or tuples) of associated elements.

x0

y0

x1

y1

x2

y2

x3

y3

x6

y6

x7

y7

x8

y8

x9

y9

x4
x5

y4
y5

zip to the rescue … except that it does not exist in Scheme.

52/110

ZIP

zip can be implemented easily enough using map and list:

> (map list (list 1 2 3)
(list "one" "two" "three")
(list #f #t #f))

((1 "one" #f) (2 "two" #t) (3 "three" #f))

53/110

UNZIP

Functional languages that have an explicit zip function usually also have an
unzip function, which takes a list of pairs or a list of tuples and turns it into a
tuple of lists:

x0

y0

x1

y1

x2

y2

x3

y3

x6

y6

x7

y7

x8

y8

x9

y9

x4
x5

y4
y5

Scheme does not have this one either, but it is implemented easily enough using
map, list, and apply.

54/110

UNZIP

Functional languages that have an explicit zip function usually also have an
unzip function, which takes a list of pairs or a list of tuples and turns it into a
tuple of lists:

x0

y0

x1

y1

x2

y2

x3

y3

x6

y6

x7

y7

x8

y8

x9

y9

x4
x5

y4
y5

Scheme does not have this one either, but it is implemented easily enough using
map, list, and apply.

54/110

APPLY

apply allows us to apply a function to a list of arguments not given as part of
the source code but in an actual list.

Normal application of +:

> (+ 1 2 3 4 5)
15

If 1 2 3 4 5 are given in a list, we can use apply to sum them:

> (define lst (list 1 2 3 4 5))
> (apply + lst)
15

55/110

APPLY

apply allows us to apply a function to a list of arguments not given as part of
the source code but in an actual list.

Normal application of +:

> (+ 1 2 3 4 5)
15

If 1 2 3 4 5 are given in a list, we can use apply to sum them:

> (define lst (list 1 2 3 4 5))
> (apply + lst)
15

55/110

APPLY

apply allows us to apply a function to a list of arguments not given as part of
the source code but in an actual list.

Normal application of +:

> (+ 1 2 3 4 5)
15

If 1 2 3 4 5 are given in a list, we can use apply to sum them:

> (define lst (list 1 2 3 4 5))
> (apply + lst)
15

55/110

APPLY

In general,

(apply fun arg1 arg2 ... (list larg1 larg2 ...))

does the same as

(fun arg1 arg2 ... larg1 larg2 ...)

So, we could add some additional terms to the sum of the elements in the list:

> (define lst (list 1 2 3 4 5))
> (apply + 6 7 lst)
28

56/110

APPLY

In general,

(apply fun arg1 arg2 ... (list larg1 larg2 ...))

does the same as

(fun arg1 arg2 ... larg1 larg2 ...)

So, we could add some additional terms to the sum of the elements in the list:

> (define lst (list 1 2 3 4 5))
> (apply + 6 7 lst)
28

56/110

BACK TO UNZIP

An implementation of unzip using map, apply, and list:

> (define lst
(list (list 1 "one" #f)

(list 2 "two" #t)
(list 3 "three" #f)))

> (apply map list lst)
((1 2 3)
("one" "two" "three")
(#f #t #f))

57/110

IMPLEMENTING MAP

map, filter, fold-left, fold-right can all be implemented easily using
recursion.

They are simply common enough abstractions that they are provided in the
standard library.

Implementation of map

(define (map fun lst)
(cond [(null? lst)] '()]

[else (cons (fun (car lst))
(map fun (cdr lst)))]))

58/110

IMPLEMENTING MAP

map, filter, fold-left, fold-right can all be implemented easily using
recursion.

They are simply common enough abstractions that they are provided in the
standard library.

Implementation of map

(define (map fun lst)
(cond [(null? lst)] '()]

[else (cons (fun (car lst))
(map fun (cdr lst)))]))

58/110

IMPLEMENTING FILTER

Implementation of filter

(define (filter pred lst)
(cond [(null? lst)] '()]

[(pred (car lst)) (cons (car lst)
(filter pred (cdr lst)))]

[else (filter pred (cdr lst))]))

More efficient implementations exist, but they are less pretty!

59/110

IMPLEMENTING FILTER

Implementation of filter

(define (filter pred lst)
(cond [(null? lst)] '()]

[(pred (car lst)) (cons (car lst)
(filter pred (cdr lst)))]

[else (filter pred (cdr lst))]))

More efficient implementations exist, but they are less pretty!

59/110

VECTORS

Vectors in Scheme are like C arrays (and unlike vectors in C++, Python, Java, …):
Their length is fixed!

Advantage over lists: Items can be accessed by index in constant time.

60/110

CREATING VECTORS

We create a vector containing count copies of item using

> (make-vector count item)

Example: A Boolean vector of all false values

> (make-vector 10 #f)
#(#f #f #f #f #f #f #f #f #f #f)

The analog of list is vector:

Example: A vector containing the elements 1, …, 5

> (vector 1 2 3 4 5)
#(1 2 3 4 5)

61/110

CREATING VECTORS

We create a vector containing count copies of item using

> (make-vector count item)

Example: A Boolean vector of all false values

> (make-vector 10 #f)
#(#f #f #f #f #f #f #f #f #f #f)

The analog of list is vector:

Example: A vector containing the elements 1, …, 5

> (vector 1 2 3 4 5)
#(1 2 3 4 5)

61/110

CONVERSION TO AND FROM LISTS

Conversion between lists and vectors is useful in functional programming:

• Lists are recursive, good for functional programming.
• Vectors provide fast element-wise access.

Conversion from vector to list

> (vector->list (vector 1 2 3 4 5))
(1 2 3 4 5)

Conversion from list to vector

> (list->vector (list 1 2 3 4 5))
#(1 2 3 4 5)

62/110

CONVERSION TO AND FROM LISTS

Conversion between lists and vectors is useful in functional programming:

• Lists are recursive, good for functional programming.
• Vectors provide fast element-wise access.

Conversion from vector to list

> (vector->list (vector 1 2 3 4 5))
(1 2 3 4 5)

Conversion from list to vector

> (list->vector (list 1 2 3 4 5))
#(1 2 3 4 5)

62/110

CONVERSION TO AND FROM LISTS

Conversion between lists and vectors is useful in functional programming:

• Lists are recursive, good for functional programming.
• Vectors provide fast element-wise access.

Conversion from vector to list

> (vector->list (vector 1 2 3 4 5))
(1 2 3 4 5)

Conversion from list to vector

> (list->vector (list 1 2 3 4 5))
#(1 2 3 4 5)

62/110

ELEMENT ACCESS AND LENGTH

Read a vector element
> (vector-ref (vector 2 4 6 8 10) 2)
6

Update a vector element
> (define vec (vector 2 4 6 8 10))
> (vector-set! vec 2 7)
> vec
#(2 4 7 8 10)

The length of a vector
> (vector-length (vector 2 4 6 8 10))
5

63/110

ELEMENT ACCESS AND LENGTH

Read a vector element
> (vector-ref (vector 2 4 6 8 10) 2)
6

Update a vector element
> (define vec (vector 2 4 6 8 10))
> (vector-set! vec 2 7)
> vec
#(2 4 7 8 10)

The length of a vector
> (vector-length (vector 2 4 6 8 10))
5

63/110

ELEMENT ACCESS AND LENGTH

Read a vector element
> (vector-ref (vector 2 4 6 8 10) 2)
6

Update a vector element
> (define vec (vector 2 4 6 8 10))
> (vector-set! vec 2 7)
> vec
#(2 4 7 8 10)

The length of a vector
> (vector-length (vector 2 4 6 8 10))
5

63/110

VECTOR-MAP AND VECTOR-FOREACH

vector-map is the equivalent of map:

> (vector-map + (vector 1 2 3 4 5) (vector 10 9 8 7 6))
#(11 11 11 11 11)

Chez Scheme parallelizes map and vector-map, so do not count on the
evaluation order:

> (vector-map display (vector 1 2 3 4 5))
34521#(#<void> #<void> #<void> #<void> #<void>)

If you care about the evaluation order and only the side effects matter, use
for-each or vector-for-each:

> (vector-for-each display (vector 1 2 3 4 5))
12345

64/110

VECTOR-MAP AND VECTOR-FOREACH

vector-map is the equivalent of map:

> (vector-map + (vector 1 2 3 4 5) (vector 10 9 8 7 6))
#(11 11 11 11 11)

Chez Scheme parallelizes map and vector-map, so do not count on the
evaluation order:

> (vector-map display (vector 1 2 3 4 5))
34521#(#<void> #<void> #<void> #<void> #<void>)

If you care about the evaluation order and only the side effects matter, use
for-each or vector-for-each:

> (vector-for-each display (vector 1 2 3 4 5))
12345

64/110

VECTOR-MAP AND VECTOR-FOREACH

vector-map is the equivalent of map:

> (vector-map + (vector 1 2 3 4 5) (vector 10 9 8 7 6))
#(11 11 11 11 11)

Chez Scheme parallelizes map and vector-map, so do not count on the
evaluation order:

> (vector-map display (vector 1 2 3 4 5))
34521#(#<void> #<void> #<void> #<void> #<void>)

If you care about the evaluation order and only the side effects matter, use
for-each or vector-for-each:

> (vector-for-each display (vector 1 2 3 4 5))
12345

64/110

RECORDS

Records are like structs in C (classes without methods).

Define a record

> (define-record-type point (fields x y))

There are lots of things that can be customized using more detailed arguments:

• A constructor function
• Mutability of fields (default = immutable!)
• …

65/110

CREATE AND ACCESS A RECORD

Create an object of the defined record type
> (define p (make-point 1 2))

Test whether an object is of a particular record type
> (point? p)
#t
> (point? 1)
#f

Access the fields of a record
> (point-x p)
1
> (point-y p)
2

66/110

CREATE AND ACCESS A RECORD

Create an object of the defined record type
> (define p (make-point 1 2))

Test whether an object is of a particular record type
> (point? p)
#t
> (point? 1)
#f

Access the fields of a record
> (point-x p)
1
> (point-y p)
2

66/110

CREATE AND ACCESS A RECORD

Create an object of the defined record type
> (define p (make-point 1 2))

Test whether an object is of a particular record type
> (point? p)
#t
> (point? 1)
#f

Access the fields of a record
> (point-x p)
1
> (point-y p)
2

66/110

MUTABLE FIELDS

If we want the fields to be mutable, we need to say so:

> (define-record-type point (fields x (mutable y)))
> (define p (make-point 1 2))
> (point-y-set! p 3)
> (point-y p)
3
> (point-x-set! p 2)
Exception: variable point-x-set! is not bound
Type (debug) to enter the debugger.

67/110

CODE ORGANIZATION

68/110

SCHEME PROGRAMS

Single-file programs in Scheme are easy:

fibs.ss

#! env scheme-script

(import (rnrs (6))) ; The import statement is required

; Compute the first n+1 Fibonacci numbers F0, ..., Fn
(define (fibs n)
(let loop ([i 0]

[cur 1]
[prev 0])

(cond [(> i n) '()]
[else (cons cur (loop (+ i 1) (+ cur prev) cur))])))

; (Continued on next page)

69/110

SCHEME PROGRAMS

fibs.ss (Continued)

; Print a sequence of numbers
(define (print-seq seq)
(let loop ([seq seq])

(cond [(null? seq) (newline)]
[else (display (car seq))

(display " ")
(loop (cdr seq))])))

; No safety checks of any kind, for brevity!
(define n (string->number (cadr (command-line))))

(print-seq (fibs n))

70/110

MULTI-FILE PROJECTS

Larger projects should be broken up into separate source code files.

fibs.ss

#! env scheme-script

(import (rnrs (6))
(fibs generator)
(only (fibs printer) print-seq))

; No safety checks of any kind, for brevity!
(define n (string->number (cadr (command-line))))

(print-seq (fibs n))

71/110

MULTI-FILE PROJECTS

fibs/generator.ss

(library (fibs generator (1))
(export fibs)
(import (rnrs (6)))

; Compute the first n+1 Fibonacci numbers F0, ..., Fn
(define (fibs n)

(let loop ([i 0]
[cur 1]
[prev 0])

(cond [(> i n) '()]
[else (cons cur (loop (+ i 1) (+ cur prev) cur))]))))

72/110

MULTI-FILE PROJECTS

fibs/printer.ss

(library (fibs printer (1))
(export print-seq)
(import (rnrs (6)))

; Print a sequence of numbers
(define (print-seq seq)

(let loop ([seq seq])
(cond [(null? seq) (newline)]

[else (display (car seq))
(display " ")
(loop (cdr seq))]))))

73/110

LIBRARY SEARCH PATH

A library with name (part1 part2 part3) is located as one of the following:

• $SCHEMELIBDIR/part1/part2/part3.ss
• $SCHEMELIBDIR/part1/part2/part3.sls
• ./part1/part2/part3.ss
• ./part1/part2/part3.sls

So the project above should be structured as:

$ tree .
.
├── fibs
│ ├── generator.ss
│ └── printer.ss
└── fibs.ss

74/110

A BIGGER EXAMPLE: MERGE SORT

75/110

MERGE SORT

;;; A simple sorting library

(library (sorting (1))
(export merge merge-sort)
(import (rnrs (6))

(only (chezscheme) list-head))

;; Sort the list `lst` by the comparison function `cmp`
(define (merge-sort cmp lst)

(define (recurse lst)
(let ([n (length lst)])
(if (< n 2)

lst
(apply merge cmp (map recurse (split-list n lst))))))

(recurse lst))

; (Continued on next page)

76/110

MERGE

;; Merge two sorted lists by a comparison function `cmp`
(define (merge cmp left right)

(let loop ([left left]
[right right]
[merged '()])

(cond [(null? left) (fold-left (flip cons) right merged)]
[(null? right) (fold-left (flip cons) left merged)]
[(cmp (car right) (car left))
(loop left (cdr right) (cons (car right) merged))]

[else
(loop (cdr left) right (cons (car left) merged))])))

; (Continued on next page)

77/110

MERGE SORT

;; Split a list into two halves
(define (split-list n lst)

(let ([l (div n 2)])
(list (list-head lst l)

(list-tail lst l))))

;; Helper function every Haskell-lover needs
;; Swaps the arguments of a two-argument function `fun`
(define (flip fun)

(lambda (x y) (fun y x))))

78/110

TEST HARNESS

#! env scheme-script

(import (rnrs (6))
(sequences)
(sorting))

; Get an input size
(define n (string->number (cadr (command-line))))
(define low (string->number (caddr (command-line))))
(define high (string->number (cadddr (command-line))))

(let* ([seq (random-seq n low high)]
[sorted-seq (merge-sort < seq)])

(display "--- INPUT SEQUENCE ---") (newline)
(print-seq seq)
(display "--- OUTPUT SEQUENCE ---") (newline)
(print-seq sorted-seq))

79/110

EQUALITY AND ASSOCIATION LISTS

80/110

EQUALITY OF OBJECTS

Scheme has three notions of equality of objects:

• eq?: The two objects are identical.

• eqv?: As eq? but slightly coarser.

• equal?: The two objects are structurally the same.

Most of the time, you want equal?.
However, eq? and eqv? are faster.

81/110

FUNCTIONS TO SEARCH LISTS

Historically, Scheme did not have hashtables … but it had lists.

We can store some elements in a list to represent a set:

A list of elements

> (define set (list 4 5 6))

and then ask whether an element is a member:

Membership queries over this list

> (member 5 set)
(5 6) ; This returns the tail of the list

; after the first match
> (member 2 set)
#f

82/110

FUNCTIONS TO SEARCH LISTS

Historically, Scheme did not have hashtables … but it had lists.

We can store some elements in a list to represent a set:

A list of elements

> (define set (list 4 5 6))

and then ask whether an element is a member:

Membership queries over this list

> (member 5 set)
(5 6) ; This returns the tail of the list

; after the first match
> (member 2 set)
#f

82/110

ASSOCIATION LISTS

Similarly, we can use lists as (not very efficient) dictionaries:

An association list

> (define alist '((1 . "one") (2 . "two") (3 . "three")))

and then ask for the first pair whose key (first element) matches a given value:

Lookup queries on this association list

> (assoc 2 alist)
(2 . "two")
> (assoc 4 alist)
#f

83/110

ASSOCIATION LISTS

Similarly, we can use lists as (not very efficient) dictionaries:

An association list

> (define alist '((1 . "one") (2 . "two") (3 . "three")))

and then ask for the first pair whose key (first element) matches a given value:

Lookup queries on this association list

> (assoc 2 alist)
(2 . "two")
> (assoc 4 alist)
#f

83/110

HOW ARE MATCHES CHOSEN?

Membership queries:

• member uses equal?
• memv uses eqv?
• memq uses eq?

Dictionary lookups:

• assoc uses equal?
• assv uses eqv?
• assq uses eq?

84/110

MUTATION

85/110

MUTABLE VARIABLES

Mutable variables are the source of a large number of software bugs.
Use them sparingly.

Some things cannot be done as efficiently in a purely functional fashion as using
mutable state.

Scheme supports the mutation of variables to support this style of stateful
programming:

• We have seen vector-set! to update a vector.
• (set! var val) replaces the value in the variable var with val.

86/110

MUTABLE VARIABLES

Mutable variables are the source of a large number of software bugs.
Use them sparingly.

Some things cannot be done as efficiently in a purely functional fashion as using
mutable state.

Scheme supports the mutation of variables to support this style of stateful
programming:

• We have seen vector-set! to update a vector.
• (set! var val) replaces the value in the variable var with val.

86/110

MUTABLE VARIABLES

Mutable variables are the source of a large number of software bugs.
Use them sparingly.

Some things cannot be done as efficiently in a purely functional fashion as using
mutable state.

Scheme supports the mutation of variables to support this style of stateful
programming:

• We have seen vector-set! to update a vector.
• (set! var val) replaces the value in the variable var with val.

86/110

ADVANCED TOPICS

87/110

MULTIPLE RETURN VALUES

Python creates the illusion of multiple return values by automatically creating
and unpacking lists:

def fun():
return 1, 2

x, y = fun()
print("{}, {}".format(x, y))

This is equivalent to:

def fun():
return [1, 2]

[x, y] = fun()
print("{}, {}".format(x, y))

88/110

MULTIPLE RETURN VALUES

The scheme version of this is:

(define (fun)
(list 1 2))

(define lst (fun))
(display (format "~A, ~A~%" (car lst) (cadr lst)))

To avoid manually unpacking these values, Scheme allows us to explicitly return
multiple values from a function:

(define (fun)
(values 1 2))

(define-values (x y) (fun))
(display (format "~A, ~A~%" x y))

89/110

VALUES, DEFINE-VALUES, AND LET-VALUES

In general,

(values expr1 expr2 ...)

is a function with multiple return values expr1, expr2, …

Using this as the last expression in a function definition fun results in fun
having return values expr, expr2, …

(define-values (var1 var2 ...) fun)

then assigns the values returned by fun to variables var1, var2, …
There also exists a version of let that assigns multiple values:

(let-values ([(var1 var2 ...) fun])
...)

90/110

VALUES, DEFINE-VALUES, AND LET-VALUES

In general,

(values expr1 expr2 ...)

is a function with multiple return values expr1, expr2, …
Using this as the last expression in a function definition fun results in fun
having return values expr, expr2, …

(define-values (var1 var2 ...) fun)

then assigns the values returned by fun to variables var1, var2, …
There also exists a version of let that assigns multiple values:

(let-values ([(var1 var2 ...) fun])
...)

90/110

VALUES, DEFINE-VALUES, AND LET-VALUES

In general,

(values expr1 expr2 ...)

is a function with multiple return values expr1, expr2, …
Using this as the last expression in a function definition fun results in fun
having return values expr, expr2, …

(define-values (var1 var2 ...) fun)

then assigns the values returned by fun to variables var1, var2, …

There also exists a version of let that assigns multiple values:

(let-values ([(var1 var2 ...) fun])
...)

90/110

VALUES, DEFINE-VALUES, AND LET-VALUES

In general,

(values expr1 expr2 ...)

is a function with multiple return values expr1, expr2, …
Using this as the last expression in a function definition fun results in fun
having return values expr, expr2, …

(define-values (var1 var2 ...) fun)

then assigns the values returned by fun to variables var1, var2, …
There also exists a version of let that assigns multiple values:

(let-values ([(var1 var2 ...) fun])
...)

90/110

QUOTING AND EVALUATING THINGS

(+ 1 2) computes 1+ 2.

What if we want to store the expression (+ 1 2) in a variable without evaluating
it?

Then we need to quote it:

> (define expr (quote (+ 1 2)))

If we want to know the value of the expression later, we can evaluate it:

> (eval expr)
3

This works with arbitrarily complex Scheme expression!

91/110

QUOTING AND EVALUATING THINGS

(+ 1 2) computes 1+ 2.

What if we want to store the expression (+ 1 2) in a variable without evaluating
it?

Then we need to quote it:

> (define expr (quote (+ 1 2)))

If we want to know the value of the expression later, we can evaluate it:

> (eval expr)
3

This works with arbitrarily complex Scheme expression!

91/110

QUOTING AND EVALUATING THINGS

(+ 1 2) computes 1+ 2.

What if we want to store the expression (+ 1 2) in a variable without evaluating
it?

Then we need to quote it:

> (define expr (quote (+ 1 2)))

If we want to know the value of the expression later, we can evaluate it:

> (eval expr)
3

This works with arbitrarily complex Scheme expression!

91/110

A SHORTER NOTATION FOR QUOTING THINGS

Quoting things is common and writing (quote ...) quickly becomes tedious.

There exists a shorthand: 'expr is the same as (quote expr).

And suddenly the notation for symbols makes sense:

• name refers to the value stored in the variable name.
• 'name (or (quote name)) refers to the name name itself, a symbol.

92/110

A SHORTER NOTATION FOR QUOTING THINGS

Quoting things is common and writing (quote ...) quickly becomes tedious.

There exists a shorthand: 'expr is the same as (quote expr).

And suddenly the notation for symbols makes sense:

• name refers to the value stored in the variable name.
• 'name (or (quote name)) refers to the name name itself, a symbol.

92/110

A SHORTER NOTATION FOR QUOTING THINGS

Quoting things is common and writing (quote ...) quickly becomes tedious.

There exists a shorthand: 'expr is the same as (quote expr).

And suddenly the notation for symbols makes sense:

• name refers to the value stored in the variable name.
• 'name (or (quote name)) refers to the name name itself, a symbol.

92/110

CONSTANT LISTS AND VECTORS

We have written (list 1 2 3 4 5) for the list (1 2 3 4 5) so far.

By quoting the expression (1 2 3 4 5), we obtain a shorter notation for lists:

> (define lst '(1 2 3 4 5))
> (cadr lst)
2

The same works for vectors:

> (define vec '#(1 2 3 4 5))
> (vector-ref 3)
4

93/110

CONSTANT LISTS AND VECTORS

We have written (list 1 2 3 4 5) for the list (1 2 3 4 5) so far.

By quoting the expression (1 2 3 4 5), we obtain a shorter notation for lists:

> (define lst '(1 2 3 4 5))
> (cadr lst)
2

The same works for vectors:

> (define vec '#(1 2 3 4 5))
> (vector-ref 3)
4

93/110

CONSTANT LISTS AND VECTORS

We have written (list 1 2 3 4 5) for the list (1 2 3 4 5) so far.

By quoting the expression (1 2 3 4 5), we obtain a shorter notation for lists:

> (define lst '(1 2 3 4 5))
> (cadr lst)
2

The same works for vectors:

> (define vec '#(1 2 3 4 5))
> (vector-ref 3)
4

93/110

QUASI-QUOTATION

Can we avoid the tedious (list ...) notation if the elements in the list aren’t
constants?

> (define var 3)
> '(1 2 var 4 5)
(1 2 var 4 5)

Quotation stores the entire expression unevaluated.

Quasi-quotation combined with the unquote special form, we can choose to
substitute the results of evaluating an expression into a quoted expression:

> (define var 3)
> (quasiquote (1 2 (unquote var) 4 5)
(1 2 3 4 5)
> (quote (1 2 (unquote var) 4 5)
(1 2 ,var 4 5)

94/110

QUASI-QUOTATION

Can we avoid the tedious (list ...) notation if the elements in the list aren’t
constants?

> (define var 3)
> '(1 2 var 4 5)
(1 2 var 4 5)

Quotation stores the entire expression unevaluated.

Quasi-quotation combined with the unquote special form, we can choose to
substitute the results of evaluating an expression into a quoted expression:

> (define var 3)
> (quasiquote (1 2 (unquote var) 4 5)
(1 2 3 4 5)
> (quote (1 2 (unquote var) 4 5)
(1 2 ,var 4 5)

94/110

QUASI-QUOTATION

Can we avoid the tedious (list ...) notation if the elements in the list aren’t
constants?

> (define var 3)
> '(1 2 var 4 5)
(1 2 var 4 5)

Quotation stores the entire expression unevaluated.

Quasi-quotation combined with the unquote special form, we can choose to
substitute the results of evaluating an expression into a quoted expression:

> (define var 3)
> (quasiquote (1 2 (unquote var) 4 5)
(1 2 3 4 5)
> (quote (1 2 (unquote var) 4 5)
(1 2 ,var 4 5)

94/110

QUASI-QUOTATION

Can we avoid the tedious (list ...) notation if the elements in the list aren’t
constants?

> (define var 3)
> '(1 2 var 4 5)
(1 2 var 4 5)

Quotation stores the entire expression unevaluated.

Quasi-quotation combined with the unquote special form, we can choose to
substitute the results of evaluating an expression into a quoted expression:

> (define var 3)
> (quasiquote (1 2 (unquote var) 4 5)
(1 2 3 4 5)
> (quote (1 2 (unquote var) 4 5)
(1 2 ,var 4 5)

94/110

UNQUOTE-SPLICING

unquote-splicing lets us insert a list into a quasi-quoted list:

> (define lst '(3 4))
> (quasiquote (1 2 (unquote lst) 5))
(1 2 (3 4) 5)
> (quasiquote (1 2 (unquote-splicing lst) 5))
(1 2 3 4 5)
> (quote (1 2 (unquote-splicing lst) 5))
(1 2 ,@lst 5)

95/110

SHORTHANDS FOR QUASIQUOTE, UNQUOTE, UNQUOTE-SPLICING

quasiquote, unquote, and unquote-splicing are very useful for building
lists but are tedious to write.

Again, we have shorthands for these expressions:

• `expr is the same as (quasiquote expr).
• ,expr is the same as (unquote expr).
• ,@expr is the same as (unquote-splicing expr).

> (define lst '(3 4))
> `(1 2 ,lst 5)
(1 2 (3 4) 5)
> `(1 2 ,@lst 5)
(1 2 3 4 5)
> '(1 2 ,@lst 5)
(1 2 ,@lst 5)

96/110

SHORTHANDS FOR QUASIQUOTE, UNQUOTE, UNQUOTE-SPLICING

quasiquote, unquote, and unquote-splicing are very useful for building
lists but are tedious to write.

Again, we have shorthands for these expressions:

• `expr is the same as (quasiquote expr).
• ,expr is the same as (unquote expr).
• ,@expr is the same as (unquote-splicing expr).

> (define lst '(3 4))
> `(1 2 ,lst 5)
(1 2 (3 4) 5)
> `(1 2 ,@lst 5)
(1 2 3 4 5)
> '(1 2 ,@lst 5)
(1 2 ,@lst 5)

96/110

SHORTHANDS FOR QUASIQUOTE, UNQUOTE, UNQUOTE-SPLICING

quasiquote, unquote, and unquote-splicing are very useful for building
lists but are tedious to write.

Again, we have shorthands for these expressions:

• `expr is the same as (quasiquote expr).
• ,expr is the same as (unquote expr).
• ,@expr is the same as (unquote-splicing expr).

> (define lst '(3 4))
> `(1 2 ,lst 5)
(1 2 (3 4) 5)
> `(1 2 ,@lst 5)
(1 2 3 4 5)
> '(1 2 ,@lst 5)
(1 2 ,@lst 5)

96/110

MACROS

C has a preprocessor and, as a result, macros that can rewrite the program text.

These macros are not hygienic: temporary variable names inside the macro can
clash with variables outside the macro.

Consider:

#define swap(x, y) int tmp = x; x = y; y = tmp;

int foo() {
int x = 1;
int tmp = 2;
swap(x, tmp);

}

The C preprocessor is also not a very powerful language, so the complexity of
macros that can (sanely) be written is limited.

97/110

MACROS

C has a preprocessor and, as a result, macros that can rewrite the program text.

These macros are not hygienic: temporary variable names inside the macro can
clash with variables outside the macro.

Consider:

#define swap(x, y) int tmp = x; x = y; y = tmp;

int foo() {
int x = 1;
int tmp = 2;
swap(x, tmp);

}

The C preprocessor is also not a very powerful language, so the complexity of
macros that can (sanely) be written is limited.

97/110

HYGIENIC MACROS

This is only a brief introduction. For a deeper discussion, see

• The Scheme Programming Language, Chapter 8
https://www.scheme.com/tspl4/syntax.html#./syntax:h0

• Fear of Macros
https://www.greghendershott.com/fear-of-macros/all.html

General form of a macro definition

(define-syntax macro
(syntax-rules (<keywords>)
[(<pattern>) <template>]
...
[(<pattern>) <template>)])

98/110

A WHILE-LOOP

We would like to add a construct

(while condition
body ...)

to our language.

Here is how we do this:

(define-syntax while
(syntax-rules ()
[(while condition body ...)
(let loop ()

(if condition
(begin body ... (loop))
(void)))]))

99/110

A WHILE-LOOP

We would like to add a construct

(while condition
body ...)

to our language.

Here is how we do this:

(define-syntax while
(syntax-rules ()

[(while condition body ...)
(let loop ()

(if condition
(begin body ... (loop))
(void)))]))

99/110

A PYTHON-LIKE FOR-LOOP

How about a for-loop as in Python:

(for elem in lst
body ...)

to our language.

The following works but is a bit too flexible:

(define-syntax for
(syntax-rules ()
[(for elem in lst body ...)
(for-each (lambda (elem)

body ...)
lst)]))

100/110

A PYTHON-LIKE FOR-LOOP

How about a for-loop as in Python:

(for elem in lst
body ...)

to our language.

The following works but is a bit too flexible:

(define-syntax for
(syntax-rules ()

[(for elem in lst body ...)
(for-each (lambda (elem)

body ...)
lst)]))

100/110

TOO MUCH FLEXIBILITY

We can now write

> (for i in '(1 2 3 4 5)
(display i) (display " "))

1 2 3 4 5

but also

> (for i as '(1 2 3 4 5)
(display i) (display " "))

1 2 3 4 5

or

> (for i doodledidoo '(1 2 3 4 5)
(display i) (display " "))

1 2 3 4 5

101/110

INTRODUCING LITERAL KEYWORDS

(define-syntax for
(syntax-rules (in as)

[(for elem in lst body ...)
(for-each (lambda (elem)

body ...)
lst)]

[(for lst as elem body ...)
(for elem in lst body ...)]))

Now, only the following two forms are permissible:

> (for i in '(1 2 3 4 5) (display i) (display " "))
1 2 3 4 5

> (for '(1 2 3 4 5) as i (display i) (display " "))
1 2 3 4 5

102/110

INTRODUCING LITERAL KEYWORDS

(define-syntax for
(syntax-rules (in as)

[(for elem in lst body ...)
(for-each (lambda (elem)

body ...)
lst)]

[(for lst as elem body ...)
(for elem in lst body ...)]))

Now, only the following two forms are permissible:

> (for i in '(1 2 3 4 5) (display i) (display " "))
1 2 3 4 5

> (for '(1 2 3 4 5) as i (display i) (display " "))
1 2 3 4 5

102/110

A SLIGHTLY DEEPER LOOK AT SYNTAX TRANSFORMERS

define-syntax defines a syntax transformer function that is used at load time
to rewrite the source code.

This is indeed a full-blown Scheme function!

syntax-rules is itself a macro that makes it easier to write such functions.

If we use such macros during load time, we need a macro expansion phase for
the macro expansion code itself.

Scheme allows us to layer an arbitrary number of such macro expansion phases
on top of each other.

103/110

A SLIGHTLY DEEPER LOOK AT SYNTAX TRANSFORMERS

define-syntax defines a syntax transformer function that is used at load time
to rewrite the source code.

This is indeed a full-blown Scheme function!

syntax-rules is itself a macro that makes it easier to write such functions.

If we use such macros during load time, we need a macro expansion phase for
the macro expansion code itself.

Scheme allows us to layer an arbitrary number of such macro expansion phases
on top of each other.

103/110

A SLIGHTLY DEEPER LOOK AT SYNTAX TRANSFORMERS

define-syntax defines a syntax transformer function that is used at load time
to rewrite the source code.

This is indeed a full-blown Scheme function!

syntax-rules is itself a macro that makes it easier to write such functions.

If we use such macros during load time, we need a macro expansion phase for
the macro expansion code itself.

Scheme allows us to layer an arbitrary number of such macro expansion phases
on top of each other.

103/110

A MACRO DEFINITION WITHOUT SYNTAX-RULES

(define-syntax (ten-times stx)
(let* ([body (cdr (syntax->list stx))]

[repeated (let loop ([i 0]
[rep '()])

(if (< i 10)
(loop (+ i 1) `(,@body ,@rep))
rep))])

#`(begin #,@repeated)))

104/110

CONTINUATIONS

You are familiar with breakpoints in debuggers.

This suspended computation has a future, what will happen if we continue from
the breakpoint.

The formal term for this future is “continuation”.

Continuations exist in all languages.

Scheme allows us to capture continuations as objects, pass them between
functions, and store them in variables.

105/110

CONTINUATIONS

You are familiar with breakpoints in debuggers.

This suspended computation has a future, what will happen if we continue from
the breakpoint.

The formal term for this future is “continuation”.

Continuations exist in all languages.

Scheme allows us to capture continuations as objects, pass them between
functions, and store them in variables.

105/110

CONTINUATIONS

You are familiar with breakpoints in debuggers.

This suspended computation has a future, what will happen if we continue from
the breakpoint.

The formal term for this future is “continuation”.

Continuations exist in all languages.

Scheme allows us to capture continuations as objects, pass them between
functions, and store them in variables.

105/110

CALL-WITH-CURRENT-CONTINUATION

(call-with-current-continuation fun) or (call/cc fun) calls fun
with one argument, the current continuation.

Example

> (define (find-first-odd lst)
(call/cc (lambda (found)

`(failure
,(let search [(lst lst)]

(cond [(null? lst) #f]
[(even? (car lst)) (display (car lst))

(display " ")
(search (cdr lst))]

[else (found `(success ,(car lst)))]))))))
> (find-first-odd '(4 8 7 2 3)
4 8 (success 7)
> (find-first-odd '(2 4 6 8 10))
2 4 6 8 10 (failure #f)

106/110

EXCEPTION HANDLING USING CONTINUATIONS

(define (double-odds lst)
(let ([result

(call/cc
(lambda (throw)
`(succ ,(let loop ([lst lst])

(cond [(null? lst) '()]
[(even? (car lst))
(throw '(err "Found an even number"))]

[else
(cons (* 2 (car lst))

(loop (cdr lst)))])))))])
(if (eq? (car result) 'succ)

(cadr result)
(begin (display (cadr result))

(newline)
(exit 1)))))

107/110

COROUTINES

Coroutines are separate threads of execution that voluntarily transfer control to
each other. (Contrast this with threads.)

Coroutine A Coroutine B

Transfer B

Transfer B

Transfer A

Transfer A

Useful to implement generators, e.g., in Python

108/110

COROUTINES

Coroutines are separate threads of execution that voluntarily transfer control to
each other. (Contrast this with threads.)

Coroutine A Coroutine B

Transfer B

Transfer B

Transfer A

Transfer A

Useful to implement generators, e.g., in Python

108/110

COROUTINES USING CONTINUATIONS

(define (range yield start end)
(let* [(cur start)

(resume (call/cc (lambda (r) r)))]
(if (< cur end)

(begin (set! cur (+ cur 1))
(yield (- cur 1) resume))

(yield #f resume))))

(define (print-range start end)
(let-values ([(val resume) (call/cc (lambda (yield)

(range yield start end)))])
(if val

(begin (display val)
(newline)
(resume resume)))))

109/110

EXCEPTIONS

Scheme has a fairly powerful exception handling mechanism.

For details, read The Scheme Programming Language, Chapter 11.
https://www.scheme.com/tspl4/exceptions.html#./exceptions:h0.

110/110

