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SCHEME: A FUNCTIONAL PROGRAMMING LANGUAGE

• Functions are first-class values: Can be passed as function arguments,
returned from functions.

• Variables are mutable but mutation is discouraged.
• Imperative programming is possible but functional programming feels more
natural in Scheme.

• Easy to simulate a wide range of abstractions (OO, coroutines, exceptions ,…)

Note: Haskell is more elegant but harder to learn. You should give it a (serious)
shot. Notes are still online.
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INTERACTING WITH SCHEME

We will use Chez Scheme as our Scheme interpreter:

$ chezscheme
Chez Scheme Version 9.5
Copyright 1984-2017 Cisco Systems, Inc.

> _

• Supports Scheme R6RS
• Installed on bluenose
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INTERACTIVE VS SCRIPT MODE

Similarly to Python, if we just type chezscheme, we get an interactive prompt.
In Scheme parlance, this is called the read-eval-print-loop (REPL).

To run a program without dropping into interactive mode, we use the --script
or --program command line option:

$ chezscheme --program helloworld.ss
Hello, world!
$ _
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SCHEME SYNTAX

Scheme is a LISP dialect (“lots of irritating stupid parantheses”):

• Unusual but very simple syntax.
• Easy to parse, not so easy to read.

A Scheme program is a list of S-expressions. An S-expression is

• An atom: identifier, symbol, number, string, …
• A list of S-expressions enclosed in parentheses

Examples

(define x (+ 2 3))
(display x)
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DATA TYPES
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SCHEME DATA TYPES

Basic types:
• Integers
• Floats
• Booleans
• Characters
• Strings
• Symbols
• Functions

Compound types:
• Lists
• Vectors
• User-defined record types
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SCHEME IS DYNAMICALLY TYPED

As Python, Scheme is dynamically typed:

• Variables have no types, values do
• As the program runs, values of different types can be assigned to the same
variable.

> (define var 1)
> x
1
> (set! x "a string")
> x
"a string"
> _
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INTEGERS

Literals:

• 1, 321, -41, …

Arithmetic operations:

• +, -, *, /, div (integer division), mod (modulo), expt (power)

Comparison:

• =, <, >, <=, >=

> (+ 1 2 3)
6
> (= (- 3 2 1) 0)
#t
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FLOATING POINT NUMBERS

Literals:

• 1.0, 321.0, -3.4e12, …

Arithmetic operations:

• +, -, *, /, div (integer division), mod (modulo), expt (power)
• inexact->exact (convert to exact number)

Comparison:

• =, <, >, <=, >=

> (inexact->exact 20.0)
20
> (inexact->exact 1.2)
5404319552844595/4503599627370496
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BOOLEANS

Literals:

• #f and #t

Logical operations:

• and, or, not

“Truthiness” of other types:

• Everything that’s not #f is treated as true (even the empty list).

> (and 1 #t 3)
3
> (or 1 #t 3)
1
> (if '() "yes" "no")
"yes"
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SYMBOLS

Literals:

• 'asymbol, '+, …
• Can be used to represent discrete data: 'red, 'green, 'blue, …

Equality testing:

• eq?

Conversion:

• string->symbol, symbol->string
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CHARACTERS

Literals:

• \#a, \#[, …
• Unicode characters: \#x41, …
• Some named special characters: \#tab, \#newline, …

Conversion:

• char->integer, integer->char

Comparison:

• Case-sensitive: char=?, char<?, …
• Case-insensitive: char-ci=?, char-ci<?, …
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STRINGS

Literals:

• "This is a string with a\ttab"

Conversion:

• string->list, list->string, string->number, number->string

Comparison:

• Case-sensitive: string=?, string<?, …
• Case-insensitive: string-ci=?, string-ci<?, …
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FUNCTIONS

An anonymous function definition:

(lambda (x y)
(+ x y))

Functions can be

• Applied to some arguments: ((lambda (x y) (+ x y)) 1 2)

• Passed to other functions: (map + '(1 2) '(3 4))

• Stored in variables: (define add (lambda (x y) (+ x y)))

• Returned as function results:
(define (mkadder inc) (lambda (x) (+ x inc)))
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DEFINITIONS
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DEFINITIONS

To define a variable, use the syntax (define varname ...)

; A variable `one` that stores the integer 1
(define one 1)

; A variable `mkadder` that stores a function that takes one
; argument and returns a function.
(define mkadder
(lambda (inc)

(lambda (x)
(+ x inc))))
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FUNCTION DEFINITIONS

In Scheme, a named function fun is nothing but a variable fun that stores a
function:

> (define add
(lambda (x y) (+ x y)))

> (add 1 2)
3

This is tedious to write, so Scheme has a shorter notation for defining functions
(this is only a change in syntax!):

> (define (add x y)
(+ x y))

> (add 1 2)
3
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LOCAL DEFINITIONS

Definitions can occur inside function bodies. They are visible only inside the
function (and inside nested functions).

> (define x 1)
> (define (fun)

(define x 2)
(define (inner)

(set! x 10))
(inner)
(display x) (newline))

> (fun)
10
> (display x)
1
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CONTROL STRUCTURES
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IF

The standard if-then(-else) looks like this in Scheme:

(if cond then-expr)
(if cond then-expr else-expr)

Example:

(define (sign x)
(if (< x 0)

-1
(if (> x 0)

1
0)))
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SEQUENCING OF STATEMENTS

The branches of an if-statement are single statements!
What if I want to do more than one thing in each branch?

Sequencing syntax in Scheme:

(begin
expr1
expr2
...)

The value of a begin block is the value of its last expression.
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A MORE COMPLEX EXAMPLE USING IF AND BEGIN

(define (sign x)
(if (< x 0)

(begin
(display "Negative number") (newline)
-1)

(if (> x 0)
(begin

(display "Positive number") (newline)
1)

(begin
(display "Zero") (newline)
0))))
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COND

cond is a multi-way if with implicit begin blocks:

(cond
[cond1 expr1 expr2 ...]
[cond2 expr1 expr2 ...]
...
[else expr1 expr2 ...])
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CHATTY SIGN FUNCTION USING COND

(define (sign x)
(cond [(< x 0) (display "Negative number") (newline)

-1]

[(> x 0) (display "Positive number") (newline)
1]

[else (display "Zero") (newline)
0]))
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REPEATING THINGS: RECURSION

Scheme has no loops!

How do we repeat things? Recursion.

(define (print-one-to-ten)
(define (loop i)

(display i) (newline)
(if (< i 10)

(loop (+ i 1))))
(loop 1))

Recursion is much more natural in functional languages.

Iteration requires side effects and thus is not possible at all in purely functional
lanugages such as Haskell. (This is a good thing!)
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EFFICIENT RECURSION: TAIL RECURSION

Recursion requires a call stack. Can become big if there are many recursive calls.

In C, C++, Java, Python, …, iteration is more efficient than recursion.

Decent functional languages have tail recursion.

Tail recursion
If the return value of a function equals the return value of its last function call,
we can jump to the called function without building up a stack frame.

The compiler effectively translates a tail-recursive function back into a loop!
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THE GOOD OLD FACTORIAL FUNCTION

(define (factorial n)
(if (< n 2)

1
(* n (factorial (- n 1)))))

This function is not tail-recursive, so calling this on large numbers will likely blow
up the stack.
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COMPUTING FACTORIALS THE TAIL-RECURSIVE WAY

(define (factorial n)
(define (fac f n)

(if (< n 2)
f
(fac (* n f) (- n 1))))

(fac 1 n)))

Compare to an iterative Python version:

def factorial(n):
f = 1
while n >= 2:
f *= n
n -= 1

return f

29/110



COMPUTING FACTORIALS THE TAIL-RECURSIVE WAY

(define (factorial n)
(define (fac f n)

(if (< n 2)
f
(fac (* n f) (- n 1))))

(fac 1 n)))

Compare to an iterative Python version:

def factorial(n):
f = 1
while n >= 2:

f *= n
n -= 1

return f
29/110



SCOPES
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LET BINDINGS

We normally do not define local variables in functions using define.
We use let-bindings:

(let ([var1 expr1]
[var2 expr2]
...)

; var1, var2, ... are visible here
...)

; but not here
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THE SCOPE OF LET BINDINGS

(let ([var1 expr1]
[var2 expr2]
[var3 expr3])

...) var1, var2, var3 visible only here

(let* ([var1 expr1]
[var2 expr2]
[var3 expr3])

...)

var1
var2

var3

(letrec ([var1 expr1]
[var2 expr2]
[var3 expr3])

...)

var1 var2 var3
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AN EXAMPLE

Our earlier example of using local definitions:

> (define x 1)
> (define (fun)

(define x 2)
(define (inner)

(set! x 10))
(inner)
(display x) (newline))

> (fun)
10
> (display x)
1

33/110



AN EXAMPLE

Using a let-block, this looks like this:

> (define x 1)
> (define (fun)

(let ([x 2])
(define (inner)

(set! x 10))
(inner)
(display x) (newline)))

> (fun)
10
> (display x)
1
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AN EXAMPLE

But wait a second, inner is also a local definition:

> (define x 1)
> (define (fun)

(let ([x 2]
[inner (lambda () (set! x 10))])

(inner)
(display x) (newline)))

> (fun)
2
> (display x)
10

Oops!
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AN EXAMPLE

What we need here is let* so inner modifies the correct x:

> (define x 1)
> (define (fun)

(let* ([x 2]
[inner (lambda () (set! x 10))])

(inner)
(display x) (newline)))

> (fun)
10
> (display x)
1

Oops!
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EVALUATION ORDER OF EXPRESSIONS IN LET BINDINGS

Do not count on the order of evaluation of expressions in a let- or
letrec-block.

let* and letrec* guarantee sequential evaluation.
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NAMED LET

Our method of turning our factorial function into a tail-recursive one is a
common idiom, but it involves a lot of boilerplate:

(define (factorial n)
(define (fac f n)

(if (< n 2)
f
(fac (* n f) (- n 1))))

(fac 1 n)))
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NAMED LET

The “named let” construct allows us to write this in a way that looks like a more
flexible loop construct.

(define (factorial n)
(let fac ([f 1]

[n n])
(if (< n 2)

f
(fac (* n f) (- n 1)))))

This is 100% equivalent to our earlier definition. It is only easier to read.
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NAMED LET

In general, a named let-block

(let name ([var1 expr1]
[var2 expr2]
...)

...
(name arg1 arg2 ...)
...)

is translated into

(define (name var1 var2 ...)
...
(name arg1 arg2 ...)
...)

(name expr1 expr2 ...)
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COMPOUND DATA TYPES
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PAIRS

Pairs are pervasive in all LISPs.

A pair holding two items x and y is constructed using

(cons x y)

The elements of a pair xy are accessed using:

(car xy) ; first element
(cdr xy) ; second element (pronounce "coulder")

Example
> (define xy (cons 1 2))
> (car xy)
1
> (cdr xy)
2

42/110



PAIRS

Pairs are pervasive in all LISPs.

A pair holding two items x and y is constructed using

(cons x y)

The elements of a pair xy are accessed using:

(car xy) ; first element
(cdr xy) ; second element (pronounce "coulder")

Example
> (define xy (cons 1 2))
> (car xy)
1
> (cdr xy)
2

42/110



PAIRS

Pairs are pervasive in all LISPs.

A pair holding two items x and y is constructed using

(cons x y)

The elements of a pair xy are accessed using:

(car xy) ; first element
(cdr xy) ; second element (pronounce "coulder")

Example
> (define xy (cons 1 2))
> (car xy)
1
> (cdr xy)
2

42/110



LISTS

Lists are defined inductively:

• The empty list '() (not ()!) is a list.
• A pair (cons head tail) is a list if

• head is any data item (possibly a list) and
• tail is a list.

Example

(cons 1 (cons 2 (cons 3 '()))) ; In Python: [1, 2, 3]

The recursive structure makes lists perfect as sequence types to be manipulated
using recursive functions.

Next: A more convenient syntax :)
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LISTS

A more convenient syntax to define lists:

(list 1 2 3)
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SOME CONVENIENT LIST FUNCTIONS

(null? lst): Is lst empty?
(length lst): The length of lst

(car lst): The first element of lst
(cdr lst): The tail of lst

(cadr lst) = (car (cdr lst))
(cddr lst) = (cdr (cdr lst))

caaaar, caaadr, …, cddddr

(append (list 1 2) (list 3) '() (list 4 5)) =
(list 1 2 3 4 5)
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LIST TRANSFORMATIONS = POWERFUL CONTROL STRUCTURES

Most things that we express (quite clumsily) using loops are instances of
common transformation patterns on sequences:

• map: Apply a function to every element in a sequence. (Generalizes to tuples
of sequences using multivariate functions.)

• filter: Extract a subsequence of elements satisfying a given predicate.

• fold-left: Accumulate the elements in a list left-to-right (e.g., sum)

• fold-right: Accumulate the elements in a list right-to-left

We can write powerful programs in terms of these transformations (Google
MapReduce).
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MAP

If we want to apply a function to each element in a list and produce a list of the
results, this is what map does:

> (map (lambda (x) (* 2 x))
(list 1 2 3 4 5))

(2 4 6 8 10)

x0

f(x0)

x1

f(x1)

x2

f(x2)

x3

f(x3)

x4

f(x4)

x5

f(x5)

x6

f(x6)

x7

f(x7)

x8

f(x8)

x9

f(x9)

(map f lst)
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MAP

We can also do this to two (or more) lists:

> (map + (list 1 2 3 4 5)
(list 6 7 8 9 10))

(7 9 11 13 15)

(All input lists must have the same length!)
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FILTER

Another common idiom is to extract the sublist of elements that meet a given
condition (or predicate). filter takes care of this:

> (filter even? (list 1 2 3 4 5))
(2 4)
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FOLD-LEFT

Assume for now that + accepts only two
arguments.

How do we implement a function sum that sums
the elements in a list?

(define (sum lst) (fold-left + 0 lst))

Example

(fold-left + 0 (list 1 2 3 4 5))

0

1

3

6

10

15

+

+

+

+

+

1 2 3 4 5
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FOLD-RIGHT

We could implement sum by folding right-to-left
instead:

(define (sum lst) (fold-right + 0 lst))

Example

(fold-right + 0 (list 1 2 3 4 5))

This is generally less efficient than left-folding but
has its uses!

0

1

3

6

10

15

+

+

+

+

+

1 2 3 4 5
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ZIP

Sometimes, we have a pair (or more) lists where the ith elements in these lists
are logically associated with each other. We may want to combine them into a list
of pairs (or tuples) of associated elements.

x0

y0

x1

y1

x2

y2

x3

y3

x6

y6

x7

y7

x8

y8

x9

y9

x4
x5

y4
y5

zip to the rescue …

except that it does not exist in Scheme.
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ZIP

zip can be implemented easily enough using map and list:

> (map list (list 1 2 3 )
(list "one" "two" "three" )
(list #f #t #f ))

((1 "one" #f) (2 "two" #t) (3 "three" #f))
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UNZIP

Functional languages that have an explicit zip function usually also have an
unzip function, which takes a list of pairs or a list of tuples and turns it into a
tuple of lists:

x0

y0

x1

y1

x2

y2

x3

y3

x6

y6

x7

y7

x8

y8

x9

y9

x4
x5

y4
y5

Scheme does not have this one either, but it is implemented easily enough using
map, list, and apply.
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APPLY

apply allows us to apply a function to a list of arguments not given as part of
the source code but in an actual list.

Normal application of +:

> (+ 1 2 3 4 5)
15

If 1 2 3 4 5 are given in a list, we can use apply to sum them:

> (define lst (list 1 2 3 4 5))
> (apply + lst)
15
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APPLY

In general,

(apply fun arg1 arg2 ... (list larg1 larg2 ...))

does the same as

(fun arg1 arg2 ... larg1 larg2 ...)

So, we could add some additional terms to the sum of the elements in the list:

> (define lst (list 1 2 3 4 5))
> (apply + 6 7 lst)
28
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BACK TO UNZIP

An implementation of unzip using map, apply, and list:

> (define lst
(list (list 1 "one" #f)

(list 2 "two" #t)
(list 3 "three" #f)))

> (apply map list lst)
((1 2 3)
("one" "two" "three")
(#f #t #f))
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IMPLEMENTING MAP

map, filter, fold-left, fold-right can all be implemented easily using
recursion.

They are simply common enough abstractions that they are provided in the
standard library.

Implementation of map

(define (map fun lst)
(cond [(null? lst)] '()]

[else (cons (fun (car lst))
(map fun (cdr lst)))]))
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IMPLEMENTING FILTER

Implementation of filter

(define (filter pred lst)
(cond [(null? lst)] '()]

[(pred (car lst)) (cons (car lst)
(filter pred (cdr lst)))]

[else (filter pred (cdr lst))]))

More efficient implementations exist, but they are less pretty!
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VECTORS

Vectors in Scheme are like C arrays (and unlike vectors in C++, Python, Java, …):
Their length is fixed!

Advantage over lists: Items can be accessed by index in constant time.
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CREATING VECTORS

We create a vector containing count copies of item using

> (make-vector count item)

Example: A Boolean vector of all false values

> (make-vector 10 #f)
#(#f #f #f #f #f #f #f #f #f #f)

The analog of list is vector:

Example: A vector containing the elements 1, …, 5

> (vector 1 2 3 4 5)
#(1 2 3 4 5)
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CONVERSION TO AND FROM LISTS

Conversion between lists and vectors is useful in functional programming:

• Lists are recursive, good for functional programming.
• Vectors provide fast element-wise access.

Conversion from vector to list

> (vector->list (vector 1 2 3 4 5))
(1 2 3 4 5)

Conversion from list to vector

> (list->vector (list 1 2 3 4 5))
#(1 2 3 4 5)
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ELEMENT ACCESS AND LENGTH

Read a vector element
> (vector-ref (vector 2 4 6 8 10) 2)
6

Update a vector element
> (define vec (vector 2 4 6 8 10))
> (vector-set! vec 2 7)
> vec
#(2 4 7 8 10)

The length of a vector
> (vector-length (vector 2 4 6 8 10))
5
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VECTOR-MAP AND VECTOR-FOREACH

vector-map is the equivalent of map:

> (vector-map + (vector 1 2 3 4 5) (vector 10 9 8 7 6))
#(11 11 11 11 11)

Chez Scheme parallelizes map and vector-map, so do not count on the
evaluation order:

> (vector-map display (vector 1 2 3 4 5))
34521#(#<void> #<void> #<void> #<void> #<void>)

If you care about the evaluation order and only the side effects matter, use
for-each or vector-for-each:

> (vector-for-each display (vector 1 2 3 4 5))
12345
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RECORDS

Records are like structs in C (classes without methods).

Define a record

> (define-record-type point (fields x y))

There are lots of things that can be customized using more detailed arguments:

• A constructor function
• Mutability of fields (default = immutable!)
• …
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CREATE AND ACCESS A RECORD

Create an object of the defined record type
> (define p (make-point 1 2))

Test whether an object is of a particular record type
> (point? p)
#t
> (point? 1)
#f

Access the fields of a record
> (point-x p)
1
> (point-y p)
2
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MUTABLE FIELDS

If we want the fields to be mutable, we need to say so:

> (define-record-type point (fields x (mutable y)))
> (define p (make-point 1 2))
> (point-y-set! p 3)
> (point-y p)
3
> (point-x-set! p 2)
Exception: variable point-x-set! is not bound
Type (debug) to enter the debugger.
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CODE ORGANIZATION
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SCHEME PROGRAMS

Single-file programs in Scheme are easy:

fibs.ss

#! env scheme-script

(import (rnrs (6))) ; The import statement is required

; Compute the first n+1 Fibonacci numbers F0, ..., Fn
(define (fibs n)
(let loop ([i 0]

[cur 1]
[prev 0])

(cond [(> i n) '()]
[else (cons cur (loop (+ i 1) (+ cur prev) cur))])))

; (Continued on next page)
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SCHEME PROGRAMS

fibs.ss (Continued)

; Print a sequence of numbers
(define (print-seq seq)
(let loop ([seq seq])

(cond [(null? seq) (newline)]
[else (display (car seq))

(display " ")
(loop (cdr seq))])))

; No safety checks of any kind, for brevity!
(define n (string->number (cadr (command-line))))

(print-seq (fibs n))
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MULTI-FILE PROJECTS

Larger projects should be broken up into separate source code files.

fibs.ss

#! env scheme-script

(import (rnrs (6))
(fibs generator)
(only (fibs printer) print-seq))

; No safety checks of any kind, for brevity!
(define n (string->number (cadr (command-line))))

(print-seq (fibs n))
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MULTI-FILE PROJECTS

fibs/generator.ss

(library (fibs generator (1))
(export fibs)
(import (rnrs (6)))

; Compute the first n+1 Fibonacci numbers F0, ..., Fn
(define (fibs n)

(let loop ([i 0]
[cur 1]
[prev 0])

(cond [(> i n) '()]
[else (cons cur (loop (+ i 1) (+ cur prev) cur))]))))
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MULTI-FILE PROJECTS

fibs/printer.ss

(library (fibs printer (1))
(export print-seq)
(import (rnrs (6)))

; Print a sequence of numbers
(define (print-seq seq)

(let loop ([seq seq])
(cond [(null? seq) (newline)]

[else (display (car seq))
(display " ")
(loop (cdr seq))]))))
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LIBRARY SEARCH PATH

A library with name (part1 part2 part3) is located as one of the following:

• $SCHEMELIBDIR/part1/part2/part3.ss
• $SCHEMELIBDIR/part1/part2/part3.sls
• ./part1/part2/part3.ss
• ./part1/part2/part3.sls

So the project above should be structured as:

$ tree .
.
├── fibs
│   ├── generator.ss
│   └── printer.ss
└── fibs.ss
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A BIGGER EXAMPLE: MERGE SORT
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MERGE SORT

;;; A simple sorting library

(library (sorting (1))
(export merge merge-sort)
(import (rnrs (6))

(only (chezscheme) list-head))

;; Sort the list `lst` by the comparison function `cmp`
(define (merge-sort cmp lst)

(define (recurse lst)
(let ([n (length lst)])
(if (< n 2)

lst
(apply merge cmp (map recurse (split-list n lst))))))

(recurse lst))

; (Continued on next page)
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MERGE

;; Merge two sorted lists by a comparison function `cmp`
(define (merge cmp left right)

(let loop ([left left]
[right right]
[merged '()])

(cond [(null? left) (fold-left (flip cons) right merged)]
[(null? right) (fold-left (flip cons) left merged)]
[(cmp (car right) (car left))
(loop left (cdr right) (cons (car right) merged))]

[else
(loop (cdr left) right (cons (car left) merged))])))

; (Continued on next page)
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MERGE SORT

;; Split a list into two halves
(define (split-list n lst)

(let ([l (div n 2)])
(list (list-head lst l)

(list-tail lst l))))

;; Helper function every Haskell-lover needs
;; Swaps the arguments of a two-argument function `fun`
(define (flip fun)

(lambda (x y) (fun y x))))
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TEST HARNESS

#! env scheme-script

(import (rnrs (6))
(sequences)
(sorting))

; Get an input size
(define n (string->number (cadr (command-line))))
(define low (string->number (caddr (command-line))))
(define high (string->number (cadddr (command-line))))

(let* ([seq (random-seq n low high)]
[sorted-seq (merge-sort < seq)])

(display "--- INPUT SEQUENCE ---") (newline)
(print-seq seq)
(display "--- OUTPUT SEQUENCE ---") (newline)
(print-seq sorted-seq))
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EQUALITY AND ASSOCIATION LISTS
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EQUALITY OF OBJECTS

Scheme has three notions of equality of objects:

• eq?: The two objects are identical.

• eqv?: As eq? but slightly coarser.

• equal?: The two objects are structurally the same.

Most of the time, you want equal?.
However, eq? and eqv? are faster.
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FUNCTIONS TO SEARCH LISTS

Historically, Scheme did not have hashtables … but it had lists.

We can store some elements in a list to represent a set:

A list of elements

> (define set (list 4 5 6))

and then ask whether an element is a member:

Membership queries over this list

> (member 5 set)
(5 6) ; This returns the tail of the list

; after the first match
> (member 2 set)
#f
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ASSOCIATION LISTS

Similarly, we can use lists as (not very efficient) dictionaries:

An association list

> (define alist '((1 . "one") (2 . "two") (3 . "three")))

and then ask for the first pair whose key (first element) matches a given value:

Lookup queries on this association list

> (assoc 2 alist)
(2 . "two")
> (assoc 4 alist)
#f
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HOW ARE MATCHES CHOSEN?

Membership queries:

• member uses equal?
• memv uses eqv?
• memq uses eq?

Dictionary lookups:

• assoc uses equal?
• assv uses eqv?
• assq uses eq?
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MUTATION
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MUTABLE VARIABLES

Mutable variables are the source of a large number of software bugs.
Use them sparingly.

Some things cannot be done as efficiently in a purely functional fashion as using
mutable state.

Scheme supports the mutation of variables to support this style of stateful
programming:

• We have seen vector-set! to update a vector.
• (set! var val) replaces the value in the variable var with val.
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ADVANCED TOPICS
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MULTIPLE RETURN VALUES

Python creates the illusion of multiple return values by automatically creating
and unpacking lists:

def fun():
return 1, 2

x, y = fun()
print("{}, {}".format(x, y))

This is equivalent to:

def fun():
return [1, 2]

[x, y] = fun()
print("{}, {}".format(x, y))
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MULTIPLE RETURN VALUES

The scheme version of this is:

(define (fun)
(list 1 2))

(define lst (fun))
(display (format "~A, ~A~%" (car lst) (cadr lst)))

To avoid manually unpacking these values, Scheme allows us to explicitly return
multiple values from a function:

(define (fun)
(values 1 2))

(define-values (x y) (fun))
(display (format "~A, ~A~%" x y))
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VALUES, DEFINE-VALUES, AND LET-VALUES

In general,

(values expr1 expr2 ...)

is a function with multiple return values expr1, expr2, …

Using this as the last expression in a function definition fun results in fun
having return values expr, expr2, …

(define-values (var1 var2 ...) fun)

then assigns the values returned by fun to variables var1, var2, …
There also exists a version of let that assigns multiple values:

(let-values ([(var1 var2 ...) fun])
...)
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QUOTING AND EVALUATING THINGS

(+ 1 2) computes 1+ 2.

What if we want to store the expression (+ 1 2) in a variable without evaluating
it?

Then we need to quote it:

> (define expr (quote (+ 1 2)))

If we want to know the value of the expression later, we can evaluate it:

> (eval expr)
3

This works with arbitrarily complex Scheme expression!
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A SHORTER NOTATION FOR QUOTING THINGS

Quoting things is common and writing (quote ...) quickly becomes tedious.

There exists a shorthand: 'expr is the same as (quote expr).

And suddenly the notation for symbols makes sense:

• name refers to the value stored in the variable name.
• 'name (or (quote name)) refers to the name name itself, a symbol.
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CONSTANT LISTS AND VECTORS

We have written (list 1 2 3 4 5) for the list (1 2 3 4 5) so far.

By quoting the expression (1 2 3 4 5), we obtain a shorter notation for lists:

> (define lst '(1 2 3 4 5))
> (cadr lst)
2

The same works for vectors:

> (define vec '#(1 2 3 4 5))
> (vector-ref 3)
4
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QUASI-QUOTATION

Can we avoid the tedious (list ...) notation if the elements in the list aren’t
constants?

> (define var 3)
> '(1 2 var 4 5)
(1 2 var 4 5)

Quotation stores the entire expression unevaluated.

Quasi-quotation combined with the unquote special form, we can choose to
substitute the results of evaluating an expression into a quoted expression:

> (define var 3)
> (quasiquote (1 2 (unquote var) 4 5)
(1 2 3 4 5)
> (quote (1 2 (unquote var) 4 5)
(1 2 ,var 4 5)
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UNQUOTE-SPLICING

unquote-splicing lets us insert a list into a quasi-quoted list:

> (define lst '(3 4))
> (quasiquote (1 2 (unquote lst) 5))
(1 2 (3 4) 5)
> (quasiquote (1 2 (unquote-splicing lst) 5))
(1 2 3 4 5)
> (quote (1 2 (unquote-splicing lst) 5))
(1 2 ,@lst 5)
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SHORTHANDS FOR QUASIQUOTE, UNQUOTE, UNQUOTE-SPLICING

quasiquote, unquote, and unquote-splicing are very useful for building
lists but are tedious to write.

Again, we have shorthands for these expressions:

• `expr is the same as (quasiquote expr).
• ,expr is the same as (unquote expr).
• ,@expr is the same as (unquote-splicing expr).

> (define lst '(3 4))
> `(1 2 ,lst 5)
(1 2 (3 4) 5)
> `(1 2 ,@lst 5)
(1 2 3 4 5)
> '(1 2 ,@lst 5)
(1 2 ,@lst 5)
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MACROS

C has a preprocessor and, as a result, macros that can rewrite the program text.

These macros are not hygienic: temporary variable names inside the macro can
clash with variables outside the macro.

Consider:

#define swap(x, y) int tmp = x; x = y; y = tmp;

int foo() {
int x = 1;
int tmp = 2;
swap(x, tmp);

}

The C preprocessor is also not a very powerful language, so the complexity of
macros that can (sanely) be written is limited.
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HYGIENIC MACROS

This is only a brief introduction. For a deeper discussion, see

• The Scheme Programming Language, Chapter 8
https://www.scheme.com/tspl4/syntax.html#./syntax:h0

• Fear of Macros
https://www.greghendershott.com/fear-of-macros/all.html

General form of a macro definition

(define-syntax macro
(syntax-rules (<keywords>)
[(<pattern>) <template>]
...
[(<pattern>) <template>)])
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A WHILE-LOOP

We would like to add a construct

(while condition
body ...)

to our language.

Here is how we do this:

(define-syntax while
(syntax-rules ()
[(while condition body ...)
(let loop ()

(if condition
(begin body ... (loop))
(void)))]))
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A PYTHON-LIKE FOR-LOOP

How about a for-loop as in Python:

(for elem in lst
body ...)

to our language.

The following works but is a bit too flexible:

(define-syntax for
(syntax-rules ()
[(for elem in lst body ...)
(for-each (lambda (elem)

body ...)
lst)]))
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TOO MUCH FLEXIBILITY

We can now write

> (for i in '(1 2 3 4 5)
(display i) (display " "))

1 2 3 4 5

but also

> (for i as '(1 2 3 4 5)
(display i) (display " "))

1 2 3 4 5

or

> (for i doodledidoo '(1 2 3 4 5)
(display i) (display " "))

1 2 3 4 5
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INTRODUCING LITERAL KEYWORDS

(define-syntax for
(syntax-rules (in as)

[(for elem in lst body ...)
(for-each (lambda (elem)

body ...)
lst)]

[(for lst as elem body ...)
(for elem in lst body ...)]))

Now, only the following two forms are permissible:

> (for i in '(1 2 3 4 5) (display i) (display " "))
1 2 3 4 5

> (for '(1 2 3 4 5) as i (display i) (display " "))
1 2 3 4 5
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A SLIGHTLY DEEPER LOOK AT SYNTAX TRANSFORMERS

define-syntax defines a syntax transformer function that is used at load time
to rewrite the source code.

This is indeed a full-blown Scheme function!

syntax-rules is itself a macro that makes it easier to write such functions.

If we use such macros during load time, we need a macro expansion phase for
the macro expansion code itself.

Scheme allows us to layer an arbitrary number of such macro expansion phases
on top of each other.
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A MACRO DEFINITION WITHOUT SYNTAX-RULES

(define-syntax (ten-times stx)
(let* ([body (cdr (syntax->list stx))]

[repeated (let loop ([i 0]
[rep '()])

(if (< i 10)
(loop (+ i 1) `(,@body ,@rep))
rep))])

#`(begin #,@repeated)))
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CONTINUATIONS

You are familiar with breakpoints in debuggers.

This suspended computation has a future, what will happen if we continue from
the breakpoint.

The formal term for this future is “continuation”.

Continuations exist in all languages.

Scheme allows us to capture continuations as objects, pass them between
functions, and store them in variables.
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CALL-WITH-CURRENT-CONTINUATION

(call-with-current-continuation fun) or (call/cc fun) calls fun
with one argument, the current continuation.

Example

> (define (find-first-odd lst)
(call/cc (lambda (found)

`(failure
,(let search [(lst lst)]

(cond [(null? lst) #f]
[(even? (car lst)) (display (car lst))

(display " ")
(search (cdr lst))]

[else (found `(success ,(car lst)))]))))))
> (find-first-odd '(4 8 7 2 3)
4 8 (success 7)
> (find-first-odd '(2 4 6 8 10))
2 4 6 8 10 (failure #f)
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EXCEPTION HANDLING USING CONTINUATIONS

(define (double-odds lst)
(let ([result

(call/cc
(lambda (throw)
`(succ ,(let loop ([lst lst])

(cond [(null? lst) '()]
[(even? (car lst))
(throw '(err "Found an even number"))]

[else
(cons (* 2 (car lst))

(loop (cdr lst)))])))))])
(if (eq? (car result) 'succ)

(cadr result)
(begin (display (cadr result))

(newline)
(exit 1)))))
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COROUTINES

Coroutines are separate threads of execution that voluntarily transfer control to
each other. (Contrast this with threads.)

Coroutine A Coroutine B

Transfer B

Transfer B

Transfer A

Transfer A

Useful to implement generators, e.g., in Python
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COROUTINES USING CONTINUATIONS

(define (range yield start end)
(let* [(cur start)

(resume (call/cc (lambda (r) r)))]
(if (< cur end)

(begin (set! cur (+ cur 1))
(yield (- cur 1) resume))

(yield #f resume))))

(define (print-range start end)
(let-values ([(val resume) (call/cc (lambda (yield)

(range yield start end)))])
(if val

(begin (display val)
(newline)
(resume resume)))))
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EXCEPTIONS

Scheme has a fairly powerful exception handling mechanism.

For details, read The Scheme Programming Language, Chapter 11.
https://www.scheme.com/tspl4/exceptions.html#./exceptions:h0.
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