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LEXICAL ANALYSIS

Goal
Transform input text into much more compact token stream (keywords,
parentheses, operators, identifiers, …).

class DictEntry {
int key ; // The key
float value ; // The associated value

} ;

kwClass identifier ‘{’
identifier identifier ‘;’
identifier identifier ‘;’

‘}’ ‘;’

Tools

• Regular expressions
• Finite automata: Very simple and efficient machines just powerful enough
to carry out lexical analysis
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ROAD MAP

• Regular languages
• Regular expressions
• Deterministic finite automata (DFA)
• Non-deterministic finite automata (NFA)
• Expressive power of DFA and NFA
• Equivalence of regular expressions, DFA, and NFA

• Building a scanner
• Regular expression→ NFA→ DFA
• Minimizing the DFA

• Limitations of regular languages
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REGULAR LANGUAGES

Definition: Regular Language

Base cases:

∅, {ϵ}, and {a} are regular languages, where a ∈ Σ.

Induction: If A and B are regular languages, then

• A ∪ B is a regular language,
• AB = {ab | a ∈ A,b ∈ B} is a regular language,
(ab is the concatenation of a and b)

• A∗ = A0 ∪ A1 ∪ A2 ∪ · · · is a regular language:

This is the only way
to produce infinite
regular languages!

• A0 = {ϵ}

• Ai = {σ1σ2 | σ1 ∈ Ai−1, σ2 ∈ A}

5/65



REGULAR LANGUAGES

Definition: Regular Language
Base cases:

∅, {ϵ}, and {a} are regular languages, where a ∈ Σ.

Induction: If A and B are regular languages, then

• A ∪ B is a regular language,
• AB = {ab | a ∈ A,b ∈ B} is a regular language,
(ab is the concatenation of a and b)

• A∗ = A0 ∪ A1 ∪ A2 ∪ · · · is a regular language:

This is the only way
to produce infinite
regular languages!

• A0 = {ϵ}

• Ai = {σ1σ2 | σ1 ∈ Ai−1, σ2 ∈ A}

5/65



REGULAR LANGUAGES

Definition: Regular Language
Base cases: ∅,

{ϵ}, and {a}

are regular languages

, where a ∈ Σ.

Induction: If A and B are regular languages, then

• A ∪ B is a regular language,
• AB = {ab | a ∈ A,b ∈ B} is a regular language,
(ab is the concatenation of a and b)

• A∗ = A0 ∪ A1 ∪ A2 ∪ · · · is a regular language:

This is the only way
to produce infinite
regular languages!

• A0 = {ϵ}

• Ai = {σ1σ2 | σ1 ∈ Ai−1, σ2 ∈ A}

5/65



REGULAR LANGUAGES

Definition: Regular Language
Base cases: ∅, {ϵ},

and {a}

are regular languages

, where a ∈ Σ.

Induction: If A and B are regular languages, then

• A ∪ B is a regular language,
• AB = {ab | a ∈ A,b ∈ B} is a regular language,
(ab is the concatenation of a and b)

• A∗ = A0 ∪ A1 ∪ A2 ∪ · · · is a regular language:

This is the only way
to produce infinite
regular languages!

• A0 = {ϵ}

• Ai = {σ1σ2 | σ1 ∈ Ai−1, σ2 ∈ A}

5/65



REGULAR LANGUAGES

Definition: Regular Language
Base cases: ∅, {ϵ}, and {a} are regular languages, where a ∈ Σ.

Induction: If A and B are regular languages, then

• A ∪ B is a regular language,
• AB = {ab | a ∈ A,b ∈ B} is a regular language,
(ab is the concatenation of a and b)

• A∗ = A0 ∪ A1 ∪ A2 ∪ · · · is a regular language:

This is the only way
to produce infinite
regular languages!

• A0 = {ϵ}

• Ai = {σ1σ2 | σ1 ∈ Ai−1, σ2 ∈ A}

5/65



REGULAR LANGUAGES

Definition: Regular Language
Base cases: ∅, {ϵ}, and {a} are regular languages, where a ∈ Σ.

Induction: If A and B are regular languages, then

• A ∪ B is a regular language,
• AB = {ab | a ∈ A,b ∈ B} is a regular language,
(ab is the concatenation of a and b)

• A∗ = A0 ∪ A1 ∪ A2 ∪ · · · is a regular language:

This is the only way
to produce infinite
regular languages!

• A0 = {ϵ}

• Ai = {σ1σ2 | σ1 ∈ Ai−1, σ2 ∈ A}

5/65



REGULAR LANGUAGES

Definition: Regular Language
Base cases: ∅, {ϵ}, and {a} are regular languages, where a ∈ Σ.

Induction: If A and B are regular languages, then

• A ∪ B is a regular language,

• AB = {ab | a ∈ A,b ∈ B} is a regular language,
(ab is the concatenation of a and b)

• A∗ = A0 ∪ A1 ∪ A2 ∪ · · · is a regular language:

This is the only way
to produce infinite
regular languages!

• A0 = {ϵ}

• Ai = {σ1σ2 | σ1 ∈ Ai−1, σ2 ∈ A}

5/65



REGULAR LANGUAGES

Definition: Regular Language
Base cases: ∅, {ϵ}, and {a} are regular languages, where a ∈ Σ.

Induction: If A and B are regular languages, then

• A ∪ B is a regular language,
• AB = {ab | a ∈ A,b ∈ B} is a regular language,
(ab is the concatenation of a and b)

• A∗ = A0 ∪ A1 ∪ A2 ∪ · · · is a regular language:

This is the only way
to produce infinite
regular languages!

• A0 = {ϵ}

• Ai = {σ1σ2 | σ1 ∈ Ai−1, σ2 ∈ A}

5/65



REGULAR LANGUAGES

Definition: Regular Language
Base cases: ∅, {ϵ}, and {a} are regular languages, where a ∈ Σ.

Induction: If A and B are regular languages, then

• A ∪ B is a regular language,
• AB = {ab | a ∈ A,b ∈ B} is a regular language,
(ab is the concatenation of a and b)

• A∗ = A0 ∪ A1 ∪ A2 ∪ · · · is a regular language:

This is the only way
to produce infinite
regular languages!

• A0 = {ϵ}

• Ai = {σ1σ2 | σ1 ∈ Ai−1, σ2 ∈ A}

5/65



REGULAR LANGUAGES

Definition: Regular Language
Base cases: ∅, {ϵ}, and {a} are regular languages, where a ∈ Σ.

Induction: If A and B are regular languages, then

• A ∪ B is a regular language,
• AB = {ab | a ∈ A,b ∈ B} is a regular language,
(ab is the concatenation of a and b)

• A∗ = A0 ∪ A1 ∪ A2 ∪ · · · is a regular language: This is the only way
to produce infinite
regular languages!

• A0 = {ϵ}

• Ai = {σ1σ2 | σ1 ∈ Ai−1, σ2 ∈ A}

5/65



EXAMPLES OF REGULAR LANGUAGES

• {a,b, ab}
• Any finite language!
• {0}∗

• {0, 1}∗

• {a,b, c}∗

• {01n0 | n ≥ 0}
• Set of all positive integers in decimal representation
• {0m1n | m ≥ 0,n ≥ 0}
• {akbmcn | k ≥ 0,m ≥ 0,n ≥ 0}
• {(n)n | n ≥ 0}
• {ap | p is a prime number}
• All syntactically correct C programs
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ROAD MAP

• Regular languages
• Regular expressions
• Deterministic finite automata (DFA)
• Non-deterministic finite automata (NFA)
• Expressive power of DFA and NFA
• Equivalence of regular expressions, DFA, and NFA

• Building a scanner
• Regular expression→ NFA→ DFA
• Minimizing the DFA

• Limitations of regular languages
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REGULAR EXPRESSIONS

… are a notation for specifying regular languages.

Definition: Regular expression

Base cases: ∅, ϵ, and a are regular expressions, where a ∈ Σ.

Induction: If A and B are regular expressions, then

• A|B is a regular expression,
• AB is a regular expression,
• (A) is a regular expression,
• A∗ is a regular expression.

Interpretation:

• Precedence: Kleene star (*), Concatenation, Union (|)
• Parentheses indicate grouping
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REGULAR EXPRESSIONS MODEL REGULAR LANGUAGES

Every regular expression R defines a corresponding regular language L(R):

R = ∅ =⇒ L(R) = ∅
R = ϵ =⇒ L(R) = {ϵ}

R = a =⇒ L(R) = {a}
R = A|B =⇒ L(R) = L(A) ∪ L(B)
R = AB =⇒ L(R) = L(A)L(B)
R = (A) =⇒ L(R) = L(A)
R = A∗ =⇒ L(R) = L(A)∗
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EXAMPLES OF REGULAR EXPRESSIONS

(0|1)∗

all binary strings
(0|1)∗0 all binary strings that end in 0
(0|1)00∗ all binary strings that start with 0 or 1, followed by one or more 0s
0|1(0|1)∗ all binary numbers without leading 0s

What regular expression describes the set L of binary strings that do not
contain 101 as a substring?

• 1001001110 ∈ L
• 00010010100 /∈ L

(0|ϵ)(1|000∗)∗(0|ϵ)
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REGULAR EXPRESSIONS IN PRACTICE (1)

No ϵ or ∅:

• The empty string is represented as the empty string: a(b|) instead of a(b|ϵ)
to express the language {a, ab}.

• The empty language is not very useful in practice.

Additional repetition constructs:

• R+ = RR∗: one or more repetitions of R
• R? = (R|): zero or one repetition of R
• R{n}, R{,n}, R{m, }, R{m,n}: n, up to n, at least m, between m and n repetitions
of R

Some capabilities beyond regular languages:

• Allow, for example, recognition of languages such as αβα, for α,β ∈ Σ∗.
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REGULAR EXPRESSIONS IN PRACTICE (2)

Character classes allow us to write tedious expressions such as a|b| · · · |z more
easily.

Examples:

• “Recent” years: 199(6|7|8|9)|20(0(0|1|2|3|4|5|6|7|8|9)|1(0|1|2|3|4|5|6|7|8))

→ 199[6–9]|20(0[0–9]|1[0–8])
• Identifier in C: (a|b| · · · |z|A|B| · · · |Z|_)(a|b| · · · |z|A|B| · · · |Z|0|1| · · · |9|_)∗

→ [a–zA–Z_][a–zA–Z0–9_]∗

• Anything but a lowercase letter: [^a–z]
• Any letter: .
• Digit, non-digit: \d, \D
• Whitespace, non-whitespace: \s, \S
• Word character, non-word character: \w, \W
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REGULAR EXPRESSIONS FOR LEXICAL ANALYSIS

• Special characters: ‘(’ ‘)’ ‘{’ ‘}’ ‘[’ ‘]’ ‘,’ ‘;’ ‘:’
• Mathematical operators: ‘+|-|*|/|=|+=|-=|*=|/=’
• Keywords (C++): ‘class|struct|union|if|else|for|while|…’
• Integer: ‘[+-]?\d+’
• Float: ‘[+-]?\d*\.?\d+([Ee][+-]?\d+)?’
• Identifier (C++): ‘[a-zA-Z_][a-zA-Z0-9_]*’
• …
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ROAD MAP

• Regular languages
• Regular expressions
• Deterministic finite automata (DFA)
• Non-deterministic finite automata (NFA)
• Expressive power of DFA and NFA
• Equivalence of regular expressions, DFA, and NFA

• Building a scanner
• Regular expression→ NFA→ DFA
• Minimizing the DFA

• Limitations of regular languages

14/65



ROAD MAP

• Regular languages
• Regular expressions
• Deterministic finite automata (DFA)
• Non-deterministic finite automata (NFA)
• Expressive power of DFA and NFA
• Equivalence of regular expressions, DFA, and NFA

• Building a scanner
• Regular expression→ NFA→ DFA
• Minimizing the DFA

• Limitations of regular languages

14/65



DETERMINISTIC FINITE AUTOMATON (DFA)

… is a simple type of machine that can be used to decide regular languages.

Definition:
Deterministic finite automaton (DFA)
A tuple D = (S, Σ, δ, s0, F):

• Set S of states
• Finite alphabet Σ
• Transition function δ : S× Σ→ S
• Initial state s0 ∈ S
• Set of final states F ⊆ S

Tabular representation:

Σ

δ 0 1

S
→ s1 s1 s2
∗s2 s2 s1

Graph representation:

s1start s2
1

0

1

0
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THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:
Intuition
A DFA D = (S, Σ, δ, s0, F) accepts a
string σ ∈ Σ∗ if, after starting in
state s0 and reading σ, it finishes
in an accepting state. Otherwise, it
rejects σ.

Language decided by a DFA
L(D) = {σ ∈ Σ∗ | D accepts σ}

s1start s2
1

0

1

0

0 0 0 1 0 1 1 0

1 0 1 1 0 0 1 0

This DFA decides the language of all
binary strings with

16/65



THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:
Intuition
A DFA D = (S, Σ, δ, s0, F) accepts a
string σ ∈ Σ∗ if, after starting in
state s0 and reading σ, it finishes
in an accepting state. Otherwise, it
rejects σ.

Language decided by a DFA
L(D) = {σ ∈ Σ∗ | D accepts σ}

s1start s2
1

0

1

0

0 0 0 1 0 1 1 0

1 0 1 1 0 0 1 0

This DFA decides the language of all
binary strings with

16/65



THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:
Intuition
A DFA D = (S, Σ, δ, s0, F) accepts a
string σ ∈ Σ∗ if, after starting in
state s0 and reading σ, it finishes
in an accepting state. Otherwise, it
rejects σ.

Language decided by a DFA
L(D) = {σ ∈ Σ∗ | D accepts σ}

s1start s2
1

0

1

0

0 0 0 1 0 1 1 0

1 0 1 1 0 0 1 0

This DFA decides the language of all
binary strings with

16/65



THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:
Intuition
A DFA D = (S, Σ, δ, s0, F) accepts a
string σ ∈ Σ∗ if, after starting in
state s0 and reading σ, it finishes
in an accepting state. Otherwise, it
rejects σ.

Language decided by a DFA
L(D) = {σ ∈ Σ∗ | D accepts σ}

s1start s2
1

0

1

0

0 0 0 1 0 1 1 0

1 0 1 1 0 0 1 0

This DFA decides the language of all
binary strings with

16/65



THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:
Intuition
A DFA D = (S, Σ, δ, s0, F) accepts a
string σ ∈ Σ∗ if, after starting in
state s0 and reading σ, it finishes
in an accepting state. Otherwise, it
rejects σ.

Language decided by a DFA
L(D) = {σ ∈ Σ∗ | D accepts σ}

s1start s2
1

0

1

0

0 0 0 1 0 1 1 0

1 0 1 1 0 0 1 0

This DFA decides the language of all
binary strings with

16/65



THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:
Intuition
A DFA D = (S, Σ, δ, s0, F) accepts a
string σ ∈ Σ∗ if, after starting in
state s0 and reading σ, it finishes
in an accepting state. Otherwise, it
rejects σ.

Language decided by a DFA
L(D) = {σ ∈ Σ∗ | D accepts σ}

s1start s2
1

0

1

0

0 0 0 1 0 1 1 0

1 0 1 1 0 0 1 0

This DFA decides the language of all
binary strings with

16/65



THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:
Intuition
A DFA D = (S, Σ, δ, s0, F) accepts a
string σ ∈ Σ∗ if, after starting in
state s0 and reading σ, it finishes
in an accepting state. Otherwise, it
rejects σ.

Language decided by a DFA
L(D) = {σ ∈ Σ∗ | D accepts σ}

s1start s2
1

0

1

0

0 0 0 1 0 1 1 0

1 0 1 1 0 0 1 0

This DFA decides the language of all
binary strings with

16/65



THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:
Intuition
A DFA D = (S, Σ, δ, s0, F) accepts a
string σ ∈ Σ∗ if, after starting in
state s0 and reading σ, it finishes
in an accepting state. Otherwise, it
rejects σ.

Language decided by a DFA
L(D) = {σ ∈ Σ∗ | D accepts σ}

s1start s2
1

0

1

0

0 0 0 1 0 1 1 0

1 0 1 1 0 0 1 0

This DFA decides the language of all
binary strings with

16/65



THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:
Intuition
A DFA D = (S, Σ, δ, s0, F) accepts a
string σ ∈ Σ∗ if, after starting in
state s0 and reading σ, it finishes
in an accepting state. Otherwise, it
rejects σ.

Language decided by a DFA
L(D) = {σ ∈ Σ∗ | D accepts σ}

s1start s2
1

0

1

0

0 0 0 1 0 1 1 0

1 0 1 1 0 0 1 0

This DFA decides the language of all
binary strings with

16/65



THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:
Intuition
A DFA D = (S, Σ, δ, s0, F) accepts a
string σ ∈ Σ∗ if, after starting in
state s0 and reading σ, it finishes
in an accepting state. Otherwise, it
rejects σ.

Language decided by a DFA
L(D) = {σ ∈ Σ∗ | D accepts σ}

s1start s2
1

0

1

0

0 0 0 1 0 1 1 0

1 0 1 1 0 0 1 0

This DFA decides the language of all
binary strings with

16/65



THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:
Intuition
A DFA D = (S, Σ, δ, s0, F) accepts a
string σ ∈ Σ∗ if, after starting in
state s0 and reading σ, it finishes
in an accepting state. Otherwise, it
rejects σ.

Language decided by a DFA
L(D) = {σ ∈ Σ∗ | D accepts σ}

s1start s2
1

0

1

0

0 0 0 1 0 1 1 0

1 0 1 1 0 0 1 0

This DFA decides the language of all
binary strings with

16/65



THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:
Intuition
A DFA D = (S, Σ, δ, s0, F) accepts a
string σ ∈ Σ∗ if, after starting in
state s0 and reading σ, it finishes
in an accepting state. Otherwise, it
rejects σ.

Language decided by a DFA
L(D) = {σ ∈ Σ∗ | D accepts σ}

s1start s2
1

0

1

0

0 0 0 1 0 1 1 0

1 0 1 1 0 0 1 0

This DFA decides the language of all
binary strings with

16/65



THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:
Intuition
A DFA D = (S, Σ, δ, s0, F) accepts a
string σ ∈ Σ∗ if, after starting in
state s0 and reading σ, it finishes
in an accepting state. Otherwise, it
rejects σ.

Language decided by a DFA
L(D) = {σ ∈ Σ∗ | D accepts σ}

s1start s2
1

0

1

0

0 0 0 1 0 1 1 0

1 0 1 1 0 0 1 0

This DFA decides the language of all
binary strings with

16/65



THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:
Intuition
A DFA D = (S, Σ, δ, s0, F) accepts a
string σ ∈ Σ∗ if, after starting in
state s0 and reading σ, it finishes
in an accepting state. Otherwise, it
rejects σ.

Language decided by a DFA
L(D) = {σ ∈ Σ∗ | D accepts σ}

s1start s2
1

0

1

0

0 0 0 1 0 1 1 0

1 0 1 1 0 0 1 0

This DFA decides the language of all
binary strings with

16/65



THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:
Intuition
A DFA D = (S, Σ, δ, s0, F) accepts a
string σ ∈ Σ∗ if, after starting in
state s0 and reading σ, it finishes
in an accepting state. Otherwise, it
rejects σ.

Language decided by a DFA
L(D) = {σ ∈ Σ∗ | D accepts σ}

s1start s2
1

0

1

0

0 0 0 1 0 1 1 0

1 0 1 1 0 0 1 0

This DFA decides the language of all
binary strings with

16/65



THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:
Intuition
A DFA D = (S, Σ, δ, s0, F) accepts a
string σ ∈ Σ∗ if, after starting in
state s0 and reading σ, it finishes
in an accepting state. Otherwise, it
rejects σ.

Language decided by a DFA
L(D) = {σ ∈ Σ∗ | D accepts σ}

s1start s2
1

0

1

0

0 0 0 1 0 1 1 0

1 0 1 1 0 0 1 0

This DFA decides the language of all
binary strings with

16/65



THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:
Intuition
A DFA D = (S, Σ, δ, s0, F) accepts a
string σ ∈ Σ∗ if, after starting in
state s0 and reading σ, it finishes
in an accepting state. Otherwise, it
rejects σ.

Language decided by a DFA
L(D) = {σ ∈ Σ∗ | D accepts σ}

s1start s2
1

0

1

0

0 0 0 1 0 1 1 0

1 0 1 1 0 0 1 0

This DFA decides the language of all
binary strings with

16/65



THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:
Intuition
A DFA D = (S, Σ, δ, s0, F) accepts a
string σ ∈ Σ∗ if, after starting in
state s0 and reading σ, it finishes
in an accepting state. Otherwise, it
rejects σ.

Language decided by a DFA
L(D) = {σ ∈ Σ∗ | D accepts σ}

s1start s2
1

0

1

0

0 0 0 1 0 1 1 0

1 0 1 1 0 0 1 0

This DFA decides the language of all
binary strings with

16/65



THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:
Intuition
A DFA D = (S, Σ, δ, s0, F) accepts a
string σ ∈ Σ∗ if, after starting in
state s0 and reading σ, it finishes
in an accepting state. Otherwise, it
rejects σ.

Language decided by a DFA
L(D) = {σ ∈ Σ∗ | D accepts σ}

s1start s2
1

0

1

0

0 0 0 1 0 1 1 0

1 0 1 1 0 0 1 0

This DFA decides the language of all
binary strings with

16/65



THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:
Intuition
A DFA D = (S, Σ, δ, s0, F) accepts a
string σ ∈ Σ∗ if, after starting in
state s0 and reading σ, it finishes
in an accepting state. Otherwise, it
rejects σ.

Language decided by a DFA
L(D) = {σ ∈ Σ∗ | D accepts σ}

s1start s2
1

0

1

0

0 0 0 1 0 1 1 0

1 0 1 1 0 0 1 0

This DFA decides the language of all
binary strings with

16/65



THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:
Intuition
A DFA D = (S, Σ, δ, s0, F) accepts a
string σ ∈ Σ∗ if, after starting in
state s0 and reading σ, it finishes
in an accepting state. Otherwise, it
rejects σ.

Language decided by a DFA
L(D) = {σ ∈ Σ∗ | D accepts σ}

s1start s2
1

0

1

0

0 0 0 1 0 1 1 0

1 0 1 1 0 0 1 0

This DFA decides the language of all
binary strings with

16/65



THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:
Intuition
A DFA D = (S, Σ, δ, s0, F) accepts a
string σ ∈ Σ∗ if, after starting in
state s0 and reading σ, it finishes
in an accepting state. Otherwise, it
rejects σ.

Language decided by a DFA
L(D) = {σ ∈ Σ∗ | D accepts σ}

s1start s2
1

0

1

0

0 0 0 1 0 1 1 0

1 0 1 1 0 0 1 0

This DFA decides the language of all
binary strings with

16/65



THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:
Intuition
A DFA D = (S, Σ, δ, s0, F) accepts a
string σ ∈ Σ∗ if, after starting in
state s0 and reading σ, it finishes
in an accepting state. Otherwise, it
rejects σ.

Language decided by a DFA
L(D) = {σ ∈ Σ∗ | D accepts σ}

s1start s2
1

0

1

0

0 0 0 1 0 1 1 0

1 0 1 1 0 0 1 0

This DFA decides the language of all
binary strings with

16/65



THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:
Intuition
A DFA D = (S, Σ, δ, s0, F) accepts a
string σ ∈ Σ∗ if, after starting in
state s0 and reading σ, it finishes
in an accepting state. Otherwise, it
rejects σ.

Language decided by a DFA
L(D) = {σ ∈ Σ∗ | D accepts σ}

s1start s2
1

0

1

0

0 0 0 1 0 1 1 0

1 0 1 1 0 0 1 0

This DFA decides the language of all
binary strings with …

16/65



THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:
Intuition
A DFA D = (S, Σ, δ, s0, F) accepts a
string σ ∈ Σ∗ if, after starting in
state s0 and reading σ, it finishes
in an accepting state. Otherwise, it
rejects σ.

Language decided by a DFA
L(D) = {σ ∈ Σ∗ | D accepts σ}

s1start s2
1

0

1

0

0 0 0 1 0 1 1 0

1 0 1 1 0 0 1 0

This DFA decides the language of all
binary strings with an odd number of 1s.

16/65



THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:
Intuition
A DFA D = (S, Σ, δ, s0, F) accepts a
string σ ∈ Σ∗ if, after starting in
state s0 and reading σ, it finishes
in an accepting state. Otherwise, it
rejects σ.

Language decided by a DFA
L(D) = {σ ∈ Σ∗ | D accepts σ}

s1start s2
1

0

1

0

I’ve seen an even
number of 1s so far.

I’ve seen an odd
number of 1s so far.

0 0 0 1 0 1 1 0

1 0 1 1 0 0 1 0

This DFA decides the language of all
binary strings with an odd number of 1s.

16/65



THE LANGUAGE DECIDED BY A DFA (2)

A transition function for strings

δ∗ : S× Σ∗ → S
δ∗(s, σ): the state reached after consuming σ if we start in state s.

• δ∗(s, ϵ) = s
• δ∗(s, xσ) = δ∗(δ(s, x), σ)

δ∗(s, x1x2 . . . xn) = δ∗(δ(s, x1), x2x3 . . . xn)

Language decided by a DFA
For a DFA D = (S, Σ, δ, s0, F),

L(D) = {σ ∈ Σ∗ | δ∗(s0, σ) ∈ F}.
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EXAMPLES OF DFA

• {σ ∈ {0, 1}∗ | σ does not contain the substring 101}

s1start s2 s3 s4

0

1

1

0

0

1 0, 1

I have not seen any part
of a 101 substring

The current string ends in 1 The current string ends in 10

I’ve seen 101 as a substring
“Death trap”

(Non-accepting state we cannot leave)

• Valid C comments (/*…*/)

s1start s2 s3 s4 s5
/ *

*
[^*]

/

*

[^*/]

I haven’t seen anything

I have seen ‘/’,
may be start of a comment.

I have seen ‘/*’,
inside the comment now.

I have seen ‘*’,
may be end of comment.

Done reading the comment.
Accept if end of string;
reject otherwise.
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reject otherwise.
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ROAD MAP

• Regular languages
• Regular expressions
• Deterministic finite automata (DFA)
• Non-deterministic finite automata (NFA)
• Expressive power of DFA and NFA
• Equivalence of regular expressions, DFA, and NFA

• Building a scanner
• Regular expression→ NFA→ DFA
• Minimizing the DFA

• Limitations of regular languages
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NON-DETERMINISTIC FINITE AUTOMATON (NFA) (1)

For a DFA D = (S, Σ, δ, s0, F), reading a string σ puts the DFA into a unique state
δ∗(s0, σ). That’s why it’s called “deterministic”.

A non-deterministic finite automaton (NFA) has the ability to choose between
multiple states to transition to after reading a character and may even
“spontaneously” transition to a new state without reading anything.

⇒ δ∗(s0, σ) is potentially one of many states.
Formally, δ∗(s0, σ) is a set of states.

An NFA N = (S, Σ, δ, s0, F) accepts σ if δ∗(s0, σ) ∩ F ̸= ∅.
(N has the ability to reach an accepting state while reading σ, assuming it makes
the right choices.)
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NON-DETERMINISTIC FINITE AUTOMATON (NFA) (2)

Definition:
Non-deterministic finite automaton (NFA)
A tuple D = (S, Σ, δ, s0, F):

• Set of states S
• Finite alphabet Σ
• Transition function δ : S× (Σ ∪ {ϵ})→ 2S

• Initial state s0 ∈ S
• Set of final states F ⊆ S

s1start s2 s3

0,1

0 1 s1start s2 s3 s4

0,1

ϵ 0 1
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THE LANGUAGE DECIDED BY AN NFA (1)

s1start

s1start

s2

s2

s3

s3

0,1

0 1

0 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0

L(N) = L((0|1)∗01)
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THE LANGUAGE DECIDED BY AN NFA (3)

Language decided by a DFA
For a DFA D = (S, Σ, δ, s0, F),

L(D) = {σ ∈ Σ∗ | δ∗(s0, σ) ∈ F}.

What should this definition look like for an NFA?

• What is δ∗(s0, σ)?

The set of states reachable from s0 by reading σ.

• How should it be related to F for N to accept σ?
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ϵ-CLOSURE

Definition: ϵ-Closure
For some subset S ′ ⊆ S of states, ECLOSE(S ′) is the set of all states that can be
reached from states in S ′ using only ϵ-transitions.

Formally, ECLOSE(S ′) is the smallest superset ECLOSE(S ′) ⊇ S ′ such that
δ(s, ϵ) ⊆ ECLOSE(S ′) for all s ∈ ECLOSE(S ′).

s0start s1 s2 s3 s4 s5

s6 s7 s8

s9 s10 s11

0 1 ϵ
ϵ

ϵ

1 0

0 0

1 1

ϵ

ϵ
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THE LANGUAGE DECIDED BY AN NFA (4)

A transition function for strings
δ∗(s, σ) = the set of states reachable from s by reading σ.

• δ∗(s, ϵ) =

ECLOSE({s})

• δ∗(s, xσ) =

∪
s1∈ECLOSE({s})

∪
s2∈δ(s1,x) δ

∗(s2, σ)

s
ϵ

δ∗(s, ϵ) s

σxϵ

δ∗(s, xσ)
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ROAD MAP

• Regular languages
• Regular expressions
• Deterministic finite automata (DFA)
• Non-deterministic finite automata (NFA)
• Expressive power of DFA and NFA
• Equivalence of regular expressions, DFA, and NFA

• Building a scanner
• Regular expression→ NFA→ DFA
• Minimizing the DFA

• Limitations of regular languages
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NFA CAN BE MORE CONVENIENT THAN DFA (1)

• All binary strings that have 101 as a substring.
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0, 1DFA:

s1start s2 s3 s4

.

1 0 1

.NFA:

• All binary strings that do not have 101 as a substring.
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NFA CAN BE MORE CONVENIENT THAN DFA (2)

A more compelling example: L(.∗1..)

NFA

DFA
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NFA CAN BE MORE CONVENIENT THAN DFA (3)

When testing for the presence of patterns, NFA are more convenient than DFA.
They only have to guess right where the pattern starts! This does not work for
testing for their absence.

Testing for the presence of patterns is the common case in parsing programming
languages (keywords, identifiers, …).

But … computers are not good at guessing!→ We need to construct DFA.
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ROAD MAP

• Regular languages
• Regular expressions
• Deterministic finite automata (DFA)
• Non-deterministic finite automata (NFA)
• Expressive power of DFA and NFA
• Equivalence of regular expressions, DFA, and NFA

• Building a scanner
• Regular expression→ NFA→ DFA
• Minimizing the DFA

• Limitations of regular languages
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ARE NFA MORE POWERFUL THAN DFA?

No!
Theorem
The following statements are equivalent:

• L is a regular language.
• L can be decided by a DFA.
• L can be decided by an NFA.

Regular expression DFA

NFA

?

Proof outline:

• Given an NFA N, construct a DFA D with L(D) = L(N).
• Given a regular expression R, construct an NFA that decides L(R).
• Given an NFA N, construct a regular expression R with L(R) = L(N).
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FROM NFA TO DFA

Idea: Each DFA state represents a set of NFA states the NFA can be in after
reading some string.

Trivial construction: N = (S, Σ, δ, s0, F)→ D = (2S, Σ, γ, t0,G)

• 2S = {S ′ | S ′ ⊆ S} (set of all subsets of S)

Problem: |2S| = 2|S|→ Can we construct only the subset of states in 2S that are reachable from t0?
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INITIAL STATE AND ACCEPTING STATES OF THE DFA

Idea: Each DFA state represents a set of NFA states the NFA can be in after
reading some string.

Trivial construction: N = (S, Σ, δ, s0, F)→ D = (2S, Σ, γ, t0,G)

Initial state of DFA: The states the NFA can reach without consuming any input.

t0 = ECLOSE({s0})

Accepting states of the DFA: All subsets of S that include an accepting state.

G = {S ′ ⊆ S | S ′ ∩ F ̸= ∅}
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TRANSITION FUNCTION OF THE DFA (1)

Idea: Each DFA state represents a set of NFA states the NFA can be in after
reading some string.

Trivial construction: N = (S, Σ, δ, s0, F)→ D = (2S, Σ, γ, t0,G)

We want γ∗(t0, σ) = γ∗(ECLOSE({s0}), σ) = δ∗(s0, σ).
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TRANSITION FUNCTION OF THE DFA (2)

A transition function for sets of states of the NFA
δ∗(S ′, σ) = the set of states reachable from any state in S ′ by reading σ.

• δ∗(S ′, ϵ) =

ECLOSE(S ′)

• δ∗(S ′, xσ) =

∪
s1∈ECLOSE(S ′)

∪
s2∈δ(s1,x) δ

∗(s2, σ)

S ′

ϵ

δ∗(S ′, ϵ) S ′

σxϵ

δ∗(S ′, xσ)
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∗(s2, σ)

S ′

ϵ
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TRANSITION FUNCTION OF THE DFA (3)

Transition function of the DFA
Let
• γ(S ′, x) =

∪
s∈S ′ ECLOSE(δ(s, x)),

• γ∗(S ′, ϵ) = S ′, and
• γ∗(S ′, xσ) = γ∗(γ(S ′, x), σ).

Then

δ∗(S ′, σ) = γ∗(ECLOSE(S ′), σ).

S ′

x2x3ϵ ϵ ϵx1 x2 x3ϵ

δ∗(S ′, x1x2x3)γ∗(ECLOSE(S ′), x1x2x3)

γ(E.(S1), x1) γ(E.(S2), x2) γ(E.(S3), x3)

S3S2S1
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FROM NFA TO DFA: CONSTRUCTING ONLY THE STATES WE NEED

N = (S, Σ, δ, s0, F)→ D = (T, Σ, γ, t0,G)

So far, T = 2S, but only a subset of states may be reachable from t0.→ We would like to choose T to be this subset.

Obvious idea: Construct D with T = 2S, then throw away the states not reachable
from t0.
Too costly!

Almost as obvious: Generate only the states we can reach from t0:

• Start with T = {t0} and a queue Q = {t0} of new states.
• While Q ̸= ∅:

• Remove some t ∈ Q from Q.
• For each x ∈ Σ, add γ(t, x) to T, and to Q if γ(t, x) was not in T before.
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FROM NFA TO DFA: EXAMPLE

s2s1s0start s3 s4 s5

s6 s7 s8

s9 s10 s11

0 1 ϵ
ϵ

ϵ

1 0

0 0

1 1

ϵ

ϵ

δ 0 1→

{s0} {s1} ∅
{s1} ∅ {s2, s3, s6, s9}
∅ ∅ ∅

{s2, s3, s6, s9} {s7} {s4, s10}
{s7} {s2, s3, s6, s8, s9} ∅

{s4, s10} {s5} {s2, s3, s6, s9, s11}
{s2, s3, s6, s8, s9} {s7} {s4, s10}

* {s5} ∅ ∅
{s2, s3, s6, s9, s11} {s7} {s4, s10}
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FROM NFA TO DFA: EXPONENTIAL NUMBER OF STATES (1)

Our construction aims to avoid constructing an NFA with an exponential number
of states.

This works for most languages (e.g., the ones used in lexical analysis).

However, there are languages where a DFA needs exponentially more states than
an NFA:

L(.∗1.{n− 1})

The NFA has n+ 1 states:

q0start q1 q2 qn−1 qn1

.

. .
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FROM NFA TO DFA: EXPONENTIAL NUMBER OF STATES (2)

Claim
Any DFA that decides L = L(.∗1.{n− 1}) has at least 2n states. (Σ = {0, 1}.)

Proof:

• Assume there exists a DFA D = (S, Σ, δ, s0, F) with L(D) = L and |S| < 2n.⇒ There exist two strings σ1 ̸= σ2 ∈ Σn such that δ∗(s0, σ1) = δ∗(s0, σ2).
• Since σ1 ̸= σ2, w.l.o.g. σ1 = .{m}0.{n−m− 1} and σ2 = .{m}1.{n−m− 1}.
• Since δ∗(s0, σ1) = δ∗(s0, σ2), we also have δ∗(s0, σ10m) = δ∗(s0, σ20m).⇒ Either D accepts both σ10m and σ20m or D rejects both σ10m and σ20m.
• However, σ10m /∈ L and σ20m ∈ L.⇒ D does not decide L.
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FROM REGULAR EXPRESSION TO NFA

Base cases:

∅ s0start

ϵ s0start

x (x ∈ Σ) s0start s1
x

Inductive steps:

A|B

MA

MB

ϵ

ϵ

AB MA MB
ϵ

ϵ

A∗ MA
ϵ ϵ

ϵ

ϵ
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FROM NFA TO REGULAR EXPRESSION (1)

Acceptance of a string by (D/N)FA: Intuition
Concatenating the labels of the edges of a path
in a (D/N)FA N = (S, Σ, δ, s0, F) produces a
string, called the label of the path.

N accepts a string σ if there exists a path from
s0 to an accepting state whose label is σ.

0

1

1 0

1

0

1

Accepts 01101

Definition: Regular Expression NFA (RNFA)
An RNFA N is a finite automaton whose edges
are labelled with regular expressions.

N accepts a string σ if there exists a path from
s0 to an accepting state whose label is R and
σ ∈ L(R).

0|1
1 . .

Accepts
01101 ∈ L((0|1)(0|1)1..)

44/65



FROM NFA TO REGULAR EXPRESSION (1)

Acceptance of a string by (D/N)FA: Intuition
Concatenating the labels of the edges of a path
in a (D/N)FA N = (S, Σ, δ, s0, F) produces a
string, called the label of the path.

N accepts a string σ if there exists a path from
s0 to an accepting state whose label is σ.

0

1

1 0

1

0

1

Accepts 01101

Definition: Regular Expression NFA (RNFA)
An RNFA N is a finite automaton whose edges
are labelled with regular expressions.

N accepts a string σ if there exists a path from
s0 to an accepting state whose label is R and
σ ∈ L(R).

0|1
1 . .

Accepts
01101 ∈ L((0|1)(0|1)1..)

44/65



FROM NFA TO REGULAR EXPRESSION (1)

Acceptance of a string by (D/N)FA: Intuition
Concatenating the labels of the edges of a path
in a (D/N)FA N = (S, Σ, δ, s0, F) produces a
string, called the label of the path.

N accepts a string σ if there exists a path from
s0 to an accepting state whose label is σ.

0

1

1 0

1

0

1

Accepts 01101

Definition: Regular Expression NFA (RNFA)
An RNFA N is a finite automaton whose edges
are labelled with regular expressions.

N accepts a string σ if there exists a path from
s0 to an accepting state whose label is R and
σ ∈ L(R).

0|1
1 . .

Accepts
01101 ∈ L((0|1)(0|1)1..)

44/65



FROM NFA TO REGULAR EXPRESSION (1)

Acceptance of a string by (D/N)FA: Intuition
Concatenating the labels of the edges of a path
in a (D/N)FA N = (S, Σ, δ, s0, F) produces a
string, called the label of the path.

N accepts a string σ if there exists a path from
s0 to an accepting state whose label is σ.

0

1

1 0

1

0

1

Accepts 01101

Definition: Regular Expression NFA (RNFA)
An RNFA N is a finite automaton whose edges
are labelled with regular expressions.

N accepts a string σ if there exists a path from
s0 to an accepting state whose label is R and
σ ∈ L(R).

0|1
1 . .

Accepts
01101 ∈ L((0|1)(0|1)1..)

44/65



FROM NFA TO REGULAR EXPRESSION (2)

Proof idea:

NFA→ RFA1 → RFA2 → · · ·→ RFAn
L(NFA) = L(RFA1) = L(RFA2) = · · · = L(RFAn)

RFAn has two states, an initial state and an accepting state:

s1start s2

R2
R1

R3

R4

L(NFA) = L(RFAn) = L((R1|R2R4∗R3)∗R2R4∗)
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FROM NFA TO REGULAR EXPRESSION (3)

NFA → RFA1:

• L(NFA) = L(RFA1)
• RFA1 has one initial and one accepting state.

NFA

ϵ

ϵ
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FROM NFA TO REGULAR EXPRESSION (4)

RFAk → RFAk+1:

• L(RFAk) = L(RFAk+1)
• RFAk+1 has one state less than RFAk.

s

qi
rj

qi
rj

Note: This may create loops because some states may simultaneously be in- and
out-neighbours of s.
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FROM NFA TO REGULAR EXPRESSION: EXAMPLE

L((0|ϵ)(1|000∗)∗(0|ϵ)): All strings that do not contain 101 as a substring

s0start s1 s2

f

s0start s1 s2

0

11∗00|0

1

1

0

0

00

ϵ11∗(ϵ|0)|ϵ ϵϵ|0 ϵ

Regular expression: (11∗00|0)∗(11∗(ϵ|0)|ϵ)
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ROAD MAP

• Regular languages
• Regular expressions
• Deterministic finite automata (DFA)
• Non-deterministic finite automata (NFA)
• Expressive power of DFA and NFA
• Equivalence of regular expressions, DFA, and NFA

• Building a scanner
• Regular expression→ NFA→ DFA
• Minimizing the DFA

• Limitations of regular languages
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SCANNING (1)

Scanner
A scanner produces a token (token type, value) stream from a character stream.

Modes of operation

• Complete pass produces token stream, which is then passed to the parser.
• Parser calls scanner to request next token

In either case, the scanner greedily recognizes the longest possible token.
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SCANNING (2)

Scanner implementation

• Hand-written, ad-hoc: Usually when speed is a concern.
• From regular expression using scanner generator: More convenient.
Result:

• Case statements representing transitions of the DFA.
• Table representing the DFA’s transition function
plus driver code to implement the DFA.
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BUILDING A SCANNER

Workflow
Regular expression→ NFA→ DFA→ minimized DFA

Extensions to pure DFA:

• Not enough to accept a token; need to know which token was accepted and
its value:

• One accepting state per token type
• Return string read along the path to the accepting state

• Keywords are not identifiers:
• Look up identifier in keyword table (e.g., hash table) to see whether it is in fact
a keyword

• “Look ahead” to distinguish tokens with common prefix (e.g., 100 vs 100.5):
• Try to find the longest possible match by continuing to scan from an accepting
state.

• Backtrack to last accepting state when “stuck”.
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• Try to find the longest possible match by continuing to scan from an accepting
state.

• Backtrack to last accepting state when “stuck”.
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EXTENDED EXAMPLE: AN INCOMPLETE SCANNER FOR PASCAL (1)

Regular expressions for the different tokens:

lparen: \(
rparen: \)
lbrac: \[
rbrac: \]
comma: ,
dot: \.
dotdot: \.\.
lt: <
le: <=
ident: [A-Za-z][A-Za-z0-9_]*
int: [+-]?[0-9]+
real: [+-]?[0-9]+(\.[0-9]+)?([Ee][+-]?[0-9]+)?
…
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EXTENDED EXAMPLE: AN INCOMPLETE SCANNER FOR PASCAL (2)

Construction of the DFA:

• Turn each regular expression into an NFA,
label each accepting state with the token represented by this expression.

• Add an NFA that consumes spaces and comments.
• Join the NFA using ϵ-edges from a new start state to their start states.
• Add ϵ-transitions from the accepting states of the spaces/comments NFA to
the start state.

• Turn the NFA into a DFA:
• If the tokens are unambiguous, each accepting state of the DFA, viewed as a set,
includes accepting states from only one of the regular expression NFA.

• Label the DFA accepting state with this token.

• Minimize the DFA.
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EXTENDED EXAMPLE: AN INCOMPLETE SCANNER FOR PASCAL (3)

start
space, tab, newline, return

( ) digit [ ] , . < letter

*

*

[^*]

[^*)]

*

)

. = letter,
digit,_

.

[eE]

digit [eE]
digit

[+-]

digit

digit
digit

lparen rparen lbrac rbrac comma
dot

dotdot

lt

le

ident

int real real
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EXTENDED EXAMPLE: AN INCOMPLETE SCANNER FOR PASCAL (4)

Driver code:

• Whenever the scan reaches an accepting state of the spaces/comments NFA,
set a start marker.

• Whenever the scan reaches an accepting state of any other NFA, set an end
marker and remember the token.

• Whenever the scan reaches state ∅,
• Go back to the end marker.
• Report the remembered token.
• Turn the text between start and end marker into a representation of the
scanned token (integer, identifier string, …).

• Set the start marker to be equal to the end marker.
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MINIMIZING THE DFA (1)

Goal
Given a DFA D, produce a DFA D ′ with
the minimum number of states and
such that L(D) = L(D ′).

Idea
Group states of D into classes of
equivalent states (accepting/
non-accepting, same transitions).

Procedure

• Start with two equivalence classes: accepting and non-accepting
• Find an equivalence class C and a letter a such that, upon reading a, the
states in C transition to k > 1 equivalence classes C ′

1, C ′
2, . . . , C ′

k.
Partition C into subclasses C1, C2, . . . , Ck such that, upon reading a, the states
in Ci transition to states in C ′

i .
• Repeat until no such “partitionable” equivalence class C can be found.
• The final set of equivalence classes is the set of states of the minimized DFA.

57/65



MINIMIZING THE DFA (1)

Goal
Given a DFA D, produce a DFA D ′ with
the minimum number of states and
such that L(D) = L(D ′).

Idea
Group states of D into classes of
equivalent states (accepting/
non-accepting, same transitions).

Procedure

• Start with two equivalence classes: accepting and non-accepting
• Find an equivalence class C and a letter a such that, upon reading a, the
states in C transition to k > 1 equivalence classes C ′

1, C ′
2, . . . , C ′

k.
Partition C into subclasses C1, C2, . . . , Ck such that, upon reading a, the states
in Ci transition to states in C ′

i .
• Repeat until no such “partitionable” equivalence class C can be found.
• The final set of equivalence classes is the set of states of the minimized DFA.

57/65



MINIMIZING THE DFA (1)

Goal
Given a DFA D, produce a DFA D ′ with
the minimum number of states and
such that L(D) = L(D ′).

Idea
Group states of D into classes of
equivalent states (accepting/
non-accepting, same transitions).

Procedure

• Start with two equivalence classes: accepting and non-accepting
• Find an equivalence class C and a letter a such that, upon reading a, the
states in C transition to k > 1 equivalence classes C ′

1, C ′
2, . . . , C ′

k.
Partition C into subclasses C1, C2, . . . , Ck such that, upon reading a, the states
in Ci transition to states in C ′

i .
• Repeat until no such “partitionable” equivalence class C can be found.
• The final set of equivalence classes is the set of states of the minimized DFA.

57/65



MINIMIZING THE DFA (1)

Goal
Given a DFA D, produce a DFA D ′ with
the minimum number of states and
such that L(D) = L(D ′).

Idea
Group states of D into classes of
equivalent states (accepting/
non-accepting, same transitions).

Procedure

• Start with two equivalence classes: accepting and non-accepting

• Find an equivalence class C and a letter a such that, upon reading a, the
states in C transition to k > 1 equivalence classes C ′

1, C ′
2, . . . , C ′

k.
Partition C into subclasses C1, C2, . . . , Ck such that, upon reading a, the states
in Ci transition to states in C ′

i .
• Repeat until no such “partitionable” equivalence class C can be found.
• The final set of equivalence classes is the set of states of the minimized DFA.

57/65



MINIMIZING THE DFA (1)

Goal
Given a DFA D, produce a DFA D ′ with
the minimum number of states and
such that L(D) = L(D ′).

Idea
Group states of D into classes of
equivalent states (accepting/
non-accepting, same transitions).

Procedure

• Start with two equivalence classes: accepting and non-accepting
• Find an equivalence class C and a letter a such that, upon reading a, the
states in C transition to k > 1 equivalence classes C ′

1, C ′
2, . . . , C ′

k.
Partition C into subclasses C1, C2, . . . , Ck such that, upon reading a, the states
in Ci transition to states in C ′

i .

• Repeat until no such “partitionable” equivalence class C can be found.
• The final set of equivalence classes is the set of states of the minimized DFA.

57/65



MINIMIZING THE DFA (1)

Goal
Given a DFA D, produce a DFA D ′ with
the minimum number of states and
such that L(D) = L(D ′).

Idea
Group states of D into classes of
equivalent states (accepting/
non-accepting, same transitions).

Procedure

• Start with two equivalence classes: accepting and non-accepting
• Find an equivalence class C and a letter a such that, upon reading a, the
states in C transition to k > 1 equivalence classes C ′

1, C ′
2, . . . , C ′

k.
Partition C into subclasses C1, C2, . . . , Ck such that, upon reading a, the states
in Ci transition to states in C ′

i .
• Repeat until no such “partitionable” equivalence class C can be found.

• The final set of equivalence classes is the set of states of the minimized DFA.

57/65



MINIMIZING THE DFA (1)

Goal
Given a DFA D, produce a DFA D ′ with
the minimum number of states and
such that L(D) = L(D ′).

Idea
Group states of D into classes of
equivalent states (accepting/
non-accepting, same transitions).

Procedure

• Start with two equivalence classes: accepting and non-accepting
• Find an equivalence class C and a letter a such that, upon reading a, the
states in C transition to k > 1 equivalence classes C ′

1, C ′
2, . . . , C ′

k.
Partition C into subclasses C1, C2, . . . , Ck such that, upon reading a, the states
in Ci transition to states in C ′

i .
• Repeat until no such “partitionable” equivalence class C can be found.
• The final set of equivalence classes is the set of states of the minimized DFA.

57/65



MINIMIZING THE DFA: EXAMPLE

s0start

s1

s2

s3

s4

s5

1

0

0

1

0 1

0

1

1 0

1

0

0|1

s0
s1
s2
s3
s4
s5

s0 s1
0 1

s2 s3
0 1

s0 s3
0 1

s4 s3
0 1

s5 s3
0 1

s5 s3
0 1
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MINIMIZING THE DFA (2)

The described procedure ensures that L(D) = L(D ′) but does not distinguish
between different types of accepting states (corresponding to tokens).

To distinguish between different types of accepting states, start with one
equivalence class per type of accepting state.
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ROAD MAP

• Regular languages
• Regular expressions
• Deterministic finite automata (DFA)
• Non-deterministic finite automata (NFA)
• Expressive power of DFA and NFA
• Equivalence of regular expressions, DFA, and NFA

• Building a scanner
• Regular expression→ NFA→ DFA
• Minimizing the DFA

• Limitations of regular languages
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HOW GENERAL ARE REGULAR LANGUAGES?

If R and S are regular languages, then so are

• RS, R ∪ S, R∗

By definition

• R ∩ S

R ∩ S = Σ∗ \ ((Σ∗ \ R) ∪ (Σ∗ \ S))

• R \ S

R \ S = R ∩ (Σ∗ \ S)

• Σ∗ \ R (the complement of R)

Build a DFA for Σ∗ \ R from a DFA
for R by making accepting states
non-accepting and vice versa.

• ←−R = {←−σ | σ ∈ R}, where←−σ is σ
written backwards

A regular expression for R “written
backwards” is a regular expression
for←−R .
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NOT ALL LANGUAGES ARE REGULAR

Pumping Lemma
For every regular language L, there
exists a constant nL such that
every σ ∈ L with |σ| ≥ nL can be
written as σ = αβγ with

• |αβ| ≤ nL,
• |β| > 0, and
• αβkγ ∈ L for all k ≥ 0.

⇒ The language L = {0n1n | n ≥ 0}
is not regular!

• Assume L is regular and let nL
be as in the Pumping Lemma.

• Let σ = 0nL1nL ∈ L.
• Then σ = αβγ with |αβ| ≤ nL
and |β| > 0 and αββγ ∈ L.

• Since |αβ| ≤ nL, we have α = 0k

and β = 0m, where m = |β| > 0.
• Thus, αββγ = 0m+nL1nL /∈ L, a
contradiction.
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PROOF OF THE PUMPING LEMMA

Pumping Lemma
For every regular language L, there
exists a constant nL such that
every σ ∈ L with |σ| ≥ nL can be
written as σ = αβγ with

• |αβ| ≤ nL,
• |β| > 0, and
• αβkγ ∈ L for all k ≥ 0.

Let D = (S, Σ, δ, s0, F) be a DFA such that
L = L(D).
Let nL = |S|+ 1.

startstart
α

β

γ
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PUMPING LEMMA: MORE APPLICATIONS

Pumping Lemma
For every regular language L, there
exists a constant nL such that
every σ ∈ L with |σ| ≥ nL can be
written as σ = αβγ with

• |αβ| ≤ nL,
• |β| > 0, and
• αβkγ ∈ L for all k ≥ 0.

• L = {(m)m | m ≥ 0} is not regular.

Same structure as L ′ = {0n1n | n ≥ 0}.

• L = {ap | p is a prime number} is not
regular.

• Assume L is regular.
• Choose prime number p ≥ nL + 2⇒ σ = ap ∈ L.
• σ = αβγ, where α = aa, β = ab,
a+ b ≤ nL and b > 0.

• αβcγ ∈ L, where c = |αγ| = p− b ≥ 2.
• However, |αβcγ| = (b+ 1)c, which is
not prime because b+ 1 ≥ 2 and
c ≥ 2. Contradiction.
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SUMMARY

• Parsing is complex⇒ Apply to a token stream rather than a character stream.

• Lexical analysis turns character stream into more compact token stream.

• Regular languages are general enough to capture the structure of tokens but
not general enough to capture the structure of programming languages.

• There exist languages that are not regular.

• Regular languages are described using regular expressions and recognized
using DFA.

• DFA are very simple machines that can be implemented very efficiently.
• NFA are mainly a tool for translating regular expressions to DFA.
• Lexical analysis requires some simple extensions to DFA because we need to
know which token wa accepted and we need to support
greediness/backtracking.
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