
DATA TYPES & MEMORY MANAGEMENT
PRINCIPLES OF PROGRAMMING LANGUAGES

Norbert Zeh
Winter 2018

Dalhousie University

1/41



DATA ABSTRACTION

Where subroutines allow us to build control abstractions, a language’s type
system determines the kind of data abstractions we can build.

2/41



ROAD MAP

• Type Systems
• Records
• Arrays
• Associative arrays
• Pointers
• Memory management
• Garbage collection

3/41



ROAD MAP

• Type Systems
• Records
• Arrays
• Associative arrays
• Pointers
• Memory management
• Garbage collection

3/41



TYPE SYSTEMS

Type System
Mechanism for defining types and associating them with operations that can be
performed on objects of each type:

• Built-in types with built-in operations
• Custom operations for built-in and custom types

A type system includes rules that specify

• Type equivalence: Do two values have the same type? (Structural
equivalence vs name equivalence)

• Type compatibility: Can a value of a certain type be used in a certain
context?

• Type inference: How is the type of an expression computed from the types of
its parts?

4/41



TYPE SYSTEMS

Type System
Mechanism for defining types and associating them with operations that can be
performed on objects of each type:

• Built-in types with built-in operations
• Custom operations for built-in and custom types

A type system includes rules that specify

• Type equivalence: Do two values have the same type? (Structural
equivalence vs name equivalence)

• Type compatibility: Can a value of a certain type be used in a certain
context?

• Type inference: How is the type of an expression computed from the types of
its parts?

4/41



TYPE SYSTEMS

Type System
Mechanism for defining types and associating them with operations that can be
performed on objects of each type:

• Built-in types with built-in operations
• Custom operations for built-in and custom types

A type system includes rules that specify

• Type equivalence: Do two values have the same type? (Structural
equivalence vs name equivalence)

• Type compatibility: Can a value of a certain type be used in a certain
context?

• Type inference: How is the type of an expression computed from the types of
its parts?

4/41



TYPE SYSTEMS

Type System
Mechanism for defining types and associating them with operations that can be
performed on objects of each type:

• Built-in types with built-in operations
• Custom operations for built-in and custom types

A type system includes rules that specify

• Type equivalence: Do two values have the same type? (Structural
equivalence vs name equivalence)

• Type compatibility: Can a value of a certain type be used in a certain
context?

• Type inference: How is the type of an expression computed from the types of
its parts?

4/41



COMMON KINDS OF TYPE SYSTEMS

Strongly typed
Prohibits the application of an operation to any object not supporting this
operation.

Statically typed
Strongly typed and type checking is performed at compile time (Pascal, C,
Haskell, …)

Dynamically typed
Strongly typed and type checking is performed at runtime (LISP, Smalltalk,
Python, …)

In some statically typed languages (e.g., ML), the programmer does not specify
types at all. They are inferred by the compiler.

5/41



COMMON KINDS OF TYPE SYSTEMS

Strongly typed
Prohibits the application of an operation to any object not supporting this
operation.

Statically typed
Strongly typed and type checking is performed at compile time (Pascal, C,
Haskell, …)

Dynamically typed
Strongly typed and type checking is performed at runtime (LISP, Smalltalk,
Python, …)

In some statically typed languages (e.g., ML), the programmer does not specify
types at all. They are inferred by the compiler.

5/41



COMMON KINDS OF TYPE SYSTEMS

Strongly typed
Prohibits the application of an operation to any object not supporting this
operation.

Statically typed
Strongly typed and type checking is performed at compile time (Pascal, C,
Haskell, …)

Dynamically typed
Strongly typed and type checking is performed at runtime (LISP, Smalltalk,
Python, …)

In some statically typed languages (e.g., ML), the programmer does not specify
types at all. They are inferred by the compiler.

5/41



COMMON KINDS OF TYPE SYSTEMS

Strongly typed
Prohibits the application of an operation to any object not supporting this
operation.

Statically typed
Strongly typed and type checking is performed at compile time (Pascal, C,
Haskell, …)

Dynamically typed
Strongly typed and type checking is performed at runtime (LISP, Smalltalk,
Python, …)

In some statically typed languages (e.g., ML), the programmer does not specify
types at all. They are inferred by the compiler.

5/41



DEFINITION OF TYPES

Similar to subroutines in many languages, defining a type has two parts:

• A type’s declaration introduces its name into the current scope.
• A type’s definition describes the type (the simpler types it is composed of).

Classification of types:

• Denotational: A type is a set of values.
• Constructive: A type is built-in or composite.
• Abstration-based: A type is defined by an interface, the set of operations it
supports.

6/41



DEFINITION OF TYPES

Similar to subroutines in many languages, defining a type has two parts:

• A type’s declaration introduces its name into the current scope.
• A type’s definition describes the type (the simpler types it is composed of).

Classification of types:

• Denotational: A type is a set of values.
• Constructive: A type is built-in or composite.
• Abstration-based: A type is defined by an interface, the set of operations it
supports.

6/41



DEFINITION OF TYPES

Similar to subroutines in many languages, defining a type has two parts:

• A type’s declaration introduces its name into the current scope.
• A type’s definition describes the type (the simpler types it is composed of).

Classification of types:

• Denotational: A type is a set of values.

• Constructive: A type is built-in or composite.
• Abstration-based: A type is defined by an interface, the set of operations it
supports.

6/41



DEFINITION OF TYPES

Similar to subroutines in many languages, defining a type has two parts:

• A type’s declaration introduces its name into the current scope.
• A type’s definition describes the type (the simpler types it is composed of).

Classification of types:

• Denotational: A type is a set of values.
• Constructive: A type is built-in or composite.

• Abstration-based: A type is defined by an interface, the set of operations it
supports.

6/41



DEFINITION OF TYPES

Similar to subroutines in many languages, defining a type has two parts:

• A type’s declaration introduces its name into the current scope.
• A type’s definition describes the type (the simpler types it is composed of).

Classification of types:

• Denotational: A type is a set of values.
• Constructive: A type is built-in or composite.
• Abstration-based: A type is defined by an interface, the set of operations it
supports.

6/41



CONSTRUCTIVE CLASSIFICATION OF TYPES

Built-in types: Integers, Booleans, characters, “real” numbers, …

Enumeration and range types: (Neither built-in nor composite)

• C: enum t { A, B };
• Pascal: 0..100

Composite types: Records, arrays, files, lists, sets, pointers, …

7/41



CONSTRUCTIVE CLASSIFICATION OF TYPES

Built-in types: Integers, Booleans, characters, “real” numbers, …

Enumeration and range types: (Neither built-in nor composite)

• C: enum t { A, B };
• Pascal: 0..100

Composite types: Records, arrays, files, lists, sets, pointers, …

7/41



CONSTRUCTIVE CLASSIFICATION OF TYPES

Built-in types: Integers, Booleans, characters, “real” numbers, …

Enumeration and range types: (Neither built-in nor composite)

• C: enum t { A, B };
• Pascal: 0..100

Composite types: Records, arrays, files, lists, sets, pointers, …

7/41



ROAD MAP

• Type Systems
• Records
• Arrays
• Associative arrays
• Pointers
• Memory management
• Garbage collection

8/41



ROAD MAP

• Type Systems
• Records
• Arrays
• Associative arrays
• Pointers
• Memory management
• Garbage collection

8/41



RECORDS

A nested record definition in Pascal:

type ore = record
name : short_string;
element_yielded : record

name : two_chars;
atomic_n : integers;
atomic_weight : real;
metallic : Boolean

end
end;

Accessing fields:

• ore.element_yielded.name
• name of element_yielded of ore

9/41



RECORDS

A nested record definition in Pascal:

type ore = record
name : short_string;
element_yielded : record

name : two_chars;
atomic_n : integers;
atomic_weight : real;
metallic : Boolean

end
end;

Accessing fields:

• ore.element_yielded.name
• name of element_yielded of ore

9/41



MEMORY LAYOUT OF RECORDS

Aligned (fixed ordering):
name

atomic_number

atomic_weight

metallic

− Potential waste of space
+ One instruction per element access
+ Guaranteed layout in memory
(Good for systems programming)

Packed:
name atomic_number

atomic_weight
metallic

+ No waste of space
− Multiple instructions per element access
+ Guaranteed layout in memory
(Good for systems programming)

Aligned (optimized ordering):
name

atomic_number

atomic_weight

metallic
± Reduced space overhead
+ One instruction per element access
− No guarantee of layout in memory
(Bad for systems programming)

10/41



MEMORY LAYOUT OF RECORDS

Aligned (fixed ordering):
name

atomic_number

atomic_weight

metallic

− Potential waste of space
+ One instruction per element access
+ Guaranteed layout in memory
(Good for systems programming)

Packed:
name atomic_number

atomic_weight
metallic

+ No waste of space
− Multiple instructions per element access
+ Guaranteed layout in memory
(Good for systems programming)

Aligned (optimized ordering):
name

atomic_number

atomic_weight

metallic
± Reduced space overhead
+ One instruction per element access
− No guarantee of layout in memory
(Bad for systems programming)

10/41



MEMORY LAYOUT OF RECORDS

Aligned (fixed ordering):
name

atomic_number

atomic_weight

metallic

− Potential waste of space
+ One instruction per element access
+ Guaranteed layout in memory
(Good for systems programming)

Packed:
name atomic_number

atomic_weight
metallic

+ No waste of space
− Multiple instructions per element access
+ Guaranteed layout in memory
(Good for systems programming)

Aligned (optimized ordering):
name

atomic_number

atomic_weight

metallic
± Reduced space overhead
+ One instruction per element access
− No guarantee of layout in memory
(Bad for systems programming)

10/41



MEMORY LAYOUT OF RECORDS

Aligned (fixed ordering):
name

atomic_number

atomic_weight

metallic

− Potential waste of space
+ One instruction per element access
+ Guaranteed layout in memory
(Good for systems programming)

Packed:
name atomic_number

atomic_weight
metallic

+ No waste of space
− Multiple instructions per element access
+ Guaranteed layout in memory
(Good for systems programming)

Aligned (optimized ordering):
name

atomic_number

atomic_weight

metallic
± Reduced space overhead
+ One instruction per element access
− No guarantee of layout in memory
(Bad for systems programming)

10/41



MEMORY LAYOUT OF RECORDS

Aligned (fixed ordering):
name

atomic_number

atomic_weight

metallic

− Potential waste of space
+ One instruction per element access
+ Guaranteed layout in memory
(Good for systems programming)

Packed:
name atomic_number

atomic_weight
metallic

+ No waste of space
− Multiple instructions per element access
+ Guaranteed layout in memory
(Good for systems programming)

Aligned (optimized ordering):
name

atomic_number

atomic_weight

metallic
± Reduced space overhead
+ One instruction per element access
− No guarantee of layout in memory
(Bad for systems programming)

10/41



MEMORY LAYOUT OF RECORDS

Aligned (fixed ordering):
name

atomic_number

atomic_weight

metallic

− Potential waste of space
+ One instruction per element access
+ Guaranteed layout in memory
(Good for systems programming)

Packed:
name atomic_number

atomic_weight
metallic

+ No waste of space
− Multiple instructions per element access
+ Guaranteed layout in memory
(Good for systems programming)

Aligned (optimized ordering):
name

atomic_number

atomic_weight

metallic

± Reduced space overhead
+ One instruction per element access
− No guarantee of layout in memory
(Bad for systems programming)

10/41



MEMORY LAYOUT OF RECORDS

Aligned (fixed ordering):
name

atomic_number

atomic_weight

metallic

− Potential waste of space
+ One instruction per element access
+ Guaranteed layout in memory
(Good for systems programming)

Packed:
name atomic_number

atomic_weight
metallic

+ No waste of space
− Multiple instructions per element access
+ Guaranteed layout in memory
(Good for systems programming)

Aligned (optimized ordering):
name

atomic_number

atomic_weight

metallic
± Reduced space overhead
+ One instruction per element access
− No guarantee of layout in memory
(Bad for systems programming) 10/41



ROAD MAP

• Type Systems
• Records
• Arrays
• Associative arrays
• Pointers
• Memory management
• Garbage collection

11/41



ROAD MAP

• Type Systems
• Records
• Arrays
• Associative arrays
• Pointers
• Memory management
• Garbage collection

11/41



ARRAYS

Shape fixed when?Stored where?
Compile time Elaboration time Dynamic

Static address Static — —
Stack Local Local —
Heap Dynamic Dynamic Dynamic

Issues:

• Memory allocation
• Bounds checks
• Index calculations (higher-dimensional arrays)

12/41



ELABORATION-TIME SHAPE BINDING AND DOPE VECTORS
St
ac
k
fra
m
e

“Static” part

“Dynamic” part

Efficient access to stack-allocated objects is based on
every element having a fixed offset in the stack frame.

How can we achieve this when we allow
stack-allocated objects (e.g., arrays) to have sizes
determined at elaboration time?

How do we allow index calculation and bounds
checking for such arrays (and heap-allocated arrays)?

Dope vector:

Range Dimension 3
Range Dimension 2
Range Dimension 1
Pointer Location

13/41



ELABORATION-TIME SHAPE BINDING AND DOPE VECTORS
St
ac
k
fra
m
e

“Static” part

“Dynamic” part

Efficient access to stack-allocated objects is based on
every element having a fixed offset in the stack frame.

How can we achieve this when we allow
stack-allocated objects (e.g., arrays) to have sizes
determined at elaboration time?

How do we allow index calculation and bounds
checking for such arrays (and heap-allocated arrays)?

Dope vector:

Range Dimension 3
Range Dimension 2
Range Dimension 1
Pointer Location

13/41



ELABORATION-TIME SHAPE BINDING AND DOPE VECTORS
St
ac
k
fra
m
e

“Static” part

“Dynamic” part

Efficient access to stack-allocated objects is based on
every element having a fixed offset in the stack frame.

How can we achieve this when we allow
stack-allocated objects (e.g., arrays) to have sizes
determined at elaboration time?

How do we allow index calculation and bounds
checking for such arrays (and heap-allocated arrays)?

Dope vector:

Range Dimension 3
Range Dimension 2
Range Dimension 1
Pointer Location

13/41



ELABORATION-TIME SHAPE BINDING AND DOPE VECTORS
St
ac
k
fra
m
e

“Static” part

“Dynamic” part

Efficient access to stack-allocated objects is based on
every element having a fixed offset in the stack frame.

How can we achieve this when we allow
stack-allocated objects (e.g., arrays) to have sizes
determined at elaboration time?

How do we allow index calculation and bounds
checking for such arrays (and heap-allocated arrays)?

Dope vector:

Range Dimension 3
Range Dimension 2
Range Dimension 1
Pointer Location

13/41



ELABORATION-TIME SHAPE BINDING AND DOPE VECTORS
St
ac
k
fra
m
e

“Static” part

“Dynamic” part

Efficient access to stack-allocated objects is based on
every element having a fixed offset in the stack frame.

How can we achieve this when we allow
stack-allocated objects (e.g., arrays) to have sizes
determined at elaboration time?

How do we allow index calculation and bounds
checking for such arrays (and heap-allocated arrays)?

Dope vector:

Range Dimension 3
Range Dimension 2
Range Dimension 1
Pointer Location

13/41



CONTIGUOUS MEMORY LAYOUT OF 2-D ARRAYS

Row-major layout Column-major layout

There are more sophisticated block-recursive layouts which, combined with the
right algorithms, achieve much better cache efficiency than the above.

14/41



CONTIGUOUS MEMORY LAYOUT OF 2-D ARRAYS

Row-major layout Column-major layout

There are more sophisticated block-recursive layouts which, combined with the
right algorithms, achieve much better cache efficiency than the above.

14/41



CONTIGUOUS VS ROW-POINTER LAYOUT

char days[][10] = {
"Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday",
"Sunday"

};
days[2][3] == 's';

S u n d a y \0
S a t u r d a y \0
F r i d a y \0
T h u r s d a y \0
W e d n e s d a y \0
T u e s d a y \0
M o n d a y \0

char *days[] = {
"Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday",
"Sunday"

};
days[2][3] == 's';

M o n d a y \0 T u e
s d a y \0 W e d n e
s d a y \0 T h u r s
d a y \0 F r i d a y
\0 S a t u r d a y \0
S u n d a y \0

15/41



CONTIGUOUS VS ROW-POINTER LAYOUT

char days[][10] = {
"Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday",
"Sunday"

};
days[2][3] == 's';

S u n d a y \0
S a t u r d a y \0
F r i d a y \0
T h u r s d a y \0
W e d n e s d a y \0
T u e s d a y \0
M o n d a y \0

char *days[] = {
"Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday",
"Sunday"

};
days[2][3] == 's';

M o n d a y \0 T u e
s d a y \0 W e d n e
s d a y \0 T h u r s
d a y \0 F r i d a y
\0 S a t u r d a y \0
S u n d a y \0

15/41



ROAD MAP

• Type Systems
• Records
• Arrays
• Associative arrays
• Pointers
• Memory management
• Garbage collection

16/41



ROAD MAP

• Type Systems
• Records
• Arrays
• Associative arrays
• Pointers
• Memory management
• Garbage collection

16/41



ASSOCIATIVE ARRAYS

• Allow arbitrary elements as indexes.
• Directly supported in Perl and many other scripting languages.
• C++ and Java call them maps (because they’re not really arrays!)
• Scheme calls them association lists (A-lists).

Example:
After (define e '((a 1) (b 2) (c 3))), (assoc 'a e) returns (a 1).

Different lookup operations for different notions of equality:

• assq uses eq? (identity)
• assoc uses equal? (same value)
• assv uses eqv? (halfway in between)

17/41



ASSOCIATIVE ARRAYS

• Allow arbitrary elements as indexes.
• Directly supported in Perl and many other scripting languages.
• C++ and Java call them maps (because they’re not really arrays!)
• Scheme calls them association lists (A-lists).

Example:
After (define e '((a 1) (b 2) (c 3))), (assoc 'a e) returns (a 1).

Different lookup operations for different notions of equality:

• assq uses eq? (identity)
• assoc uses equal? (same value)
• assv uses eqv? (halfway in between)

17/41



ASSOCIATIVE ARRAYS

• Allow arbitrary elements as indexes.
• Directly supported in Perl and many other scripting languages.
• C++ and Java call them maps (because they’re not really arrays!)
• Scheme calls them association lists (A-lists).

Example:
After (define e '((a 1) (b 2) (c 3))), (assoc 'a e) returns (a 1).

Different lookup operations for different notions of equality:

• assq uses eq? (identity)
• assoc uses equal? (same value)
• assv uses eqv? (halfway in between)

17/41



ARRAYS, LISTS, AND STRINGS

Most imperative languages provide excellent built-in support for array
manipulation but not for operations on lists.

Most functional languages provide excellent built-in support for list manipulation
but not for operations on arrays.

Arrays are a natural way to store sequences when manipulating individual
elements in place (i.e., imperatively).

Functional arrays that allow updates without copying the entire array are
seriously non-trivial to implement.

Lists are naturally recursive and thus fit extremely well into the recursive
approach taken to most problems in functional programming.

Strings are arrays of characters in imperative languages and lists of characters in
functional languages.

18/41



ARRAYS, LISTS, AND STRINGS

Most imperative languages provide excellent built-in support for array
manipulation but not for operations on lists.

Most functional languages provide excellent built-in support for list manipulation
but not for operations on arrays.

Arrays are a natural way to store sequences when manipulating individual
elements in place (i.e., imperatively).

Functional arrays that allow updates without copying the entire array are
seriously non-trivial to implement.

Lists are naturally recursive and thus fit extremely well into the recursive
approach taken to most problems in functional programming.

Strings are arrays of characters in imperative languages and lists of characters in
functional languages.

18/41



ARRAYS, LISTS, AND STRINGS

Most imperative languages provide excellent built-in support for array
manipulation but not for operations on lists.

Most functional languages provide excellent built-in support for list manipulation
but not for operations on arrays.

Arrays are a natural way to store sequences when manipulating individual
elements in place (i.e., imperatively).

Functional arrays that allow updates without copying the entire array are
seriously non-trivial to implement.

Lists are naturally recursive and thus fit extremely well into the recursive
approach taken to most problems in functional programming.

Strings are arrays of characters in imperative languages and lists of characters in
functional languages.

18/41



ARRAYS, LISTS, AND STRINGS

Most imperative languages provide excellent built-in support for array
manipulation but not for operations on lists.

Most functional languages provide excellent built-in support for list manipulation
but not for operations on arrays.

Arrays are a natural way to store sequences when manipulating individual
elements in place (i.e., imperatively).

Functional arrays that allow updates without copying the entire array are
seriously non-trivial to implement.

Lists are naturally recursive and thus fit extremely well into the recursive
approach taken to most problems in functional programming.

Strings are arrays of characters in imperative languages and lists of characters in
functional languages.

18/41



ARRAYS, LISTS, AND STRINGS

Most imperative languages provide excellent built-in support for array
manipulation but not for operations on lists.

Most functional languages provide excellent built-in support for list manipulation
but not for operations on arrays.

Arrays are a natural way to store sequences when manipulating individual
elements in place (i.e., imperatively).

Functional arrays that allow updates without copying the entire array are
seriously non-trivial to implement.

Lists are naturally recursive and thus fit extremely well into the recursive
approach taken to most problems in functional programming.

Strings are arrays of characters in imperative languages and lists of characters in
functional languages.

18/41



ROAD MAP

• Type Systems
• Records
• Arrays
• Associative arrays
• Pointers
• Memory management
• Garbage collection

19/41



ROAD MAP

• Type Systems
• Records
• Arrays
• Associative arrays
• Pointers
• Memory management
• Garbage collection

19/41



POINTERS

• Point to memory locations that store data (often typed, e.g., int*).
• Not needed when using a reference model of variables (Lisp, ML, Clu, Java).
• Needed for recursive types when using a value model of variables (C, Pascal,
Ada).

Storage reclamation:

• Explicit (manual)
• Automatic (garbage collection)

Advantages and disadvantages of explicit storage reclamation:

+ Garbage collection can incur serious run-time overhead.
− Potential for memory leaks.
− Potential for dangling pointers and segmentation faults.

20/41



POINTERS

• Point to memory locations that store data (often typed, e.g., int*).
• Not needed when using a reference model of variables (Lisp, ML, Clu, Java).
• Needed for recursive types when using a value model of variables (C, Pascal,
Ada).

Storage reclamation:

• Explicit (manual)
• Automatic (garbage collection)

Advantages and disadvantages of explicit storage reclamation:

+ Garbage collection can incur serious run-time overhead.
− Potential for memory leaks.
− Potential for dangling pointers and segmentation faults.

20/41



POINTERS

• Point to memory locations that store data (often typed, e.g., int*).
• Not needed when using a reference model of variables (Lisp, ML, Clu, Java).
• Needed for recursive types when using a value model of variables (C, Pascal,
Ada).

Storage reclamation:

• Explicit (manual)
• Automatic (garbage collection)

Advantages and disadvantages of explicit storage reclamation:

+ Garbage collection can incur serious run-time overhead.
− Potential for memory leaks.
− Potential for dangling pointers and segmentation faults.

20/41



POINTER ALLOCATION AND DEALLOCATION

C:

• p = (element *)malloc(sizeof(element))
• free(p)
• Not type-safe, explicit deallocation

Pascal:

• new(p)
• dispose(p)
• Type-safe, explicit deallocation

Java/C++:

• p = new element() (semantics different between Java and C++, how?)
• delete p (in C++)
• Type-safe, explicit deallocation in C++, garbage collection in Java

21/41



ROAD MAP

• Type Systems
• Records
• Arrays
• Associative arrays
• Pointers
• Memory management
• Garbage collection

22/41



ROAD MAP

• Type Systems
• Records
• Arrays
• Associative arrays
• Pointers
• Memory management
• Garbage collection

22/41



DANGLING REFERENCES

Dangling reference
A pointer to an already reclaimed object

Can only happen when reclamation of objects is the responsibility of the
programmer.

Dangling references are notoriously hard to debug and a major source of
program misbehaviour and security holes.

Techniques to catch them:

• Tombstones
• Keys and locks

Idea: Better crash and expose the bug than do the wrong thing.

23/41



DANGLING REFERENCES

Dangling reference
A pointer to an already reclaimed object

Can only happen when reclamation of objects is the responsibility of the
programmer.

Dangling references are notoriously hard to debug and a major source of
program misbehaviour and security holes.

Techniques to catch them:

• Tombstones
• Keys and locks

Idea: Better crash and expose the bug than do the wrong thing.

23/41



DANGLING REFERENCES

Dangling reference
A pointer to an already reclaimed object

Can only happen when reclamation of objects is the responsibility of the
programmer.

Dangling references are notoriously hard to debug and a major source of
program misbehaviour and security holes.

Techniques to catch them:

• Tombstones
• Keys and locks

Idea: Better crash and expose the bug than do the wrong thing.

23/41



DANGLING REFERENCES

Dangling reference
A pointer to an already reclaimed object

Can only happen when reclamation of objects is the responsibility of the
programmer.

Dangling references are notoriously hard to debug and a major source of
program misbehaviour and security holes.

Techniques to catch them:

• Tombstones
• Keys and locks

Idea: Better crash and expose the bug than do the wrong thing.
23/41



TOMBSTONES (1)

new(p) p:

q := p p:
q:

delete(p) p:
q:

RIPnull

24/41



TOMBSTONES (2)

Issues:

• Space overhead
• Runtime overhead (two cache misses instead of one)
• Check for invalid tombstones = hardware interrupt (cheap):

• RIP = null pointer
• How to allocate the tombstones?

• From separate heap (no fragmentation)
• Need reference count or other garbage collection strategy to determine when I
can delete a tombstone.

• Need to track pointers to objects on the stack, in order to invalidate their
tombstones.

Interesting side effect:

• The extra level of indirection allows us to compact memory.

25/41



TOMBSTONES (2)

Issues:

• Space overhead
• Runtime overhead (two cache misses instead of one)
• Check for invalid tombstones = hardware interrupt (cheap):

• RIP = null pointer
• How to allocate the tombstones?

• From separate heap (no fragmentation)
• Need reference count or other garbage collection strategy to determine when I
can delete a tombstone.

• Need to track pointers to objects on the stack, in order to invalidate their
tombstones.

Interesting side effect:

• The extra level of indirection allows us to compact memory.
25/41



LOCKS AND KEYS (1)

q := p p: 2364
2364

q := p p:
q:

2364

2364

2364

q := p p:
q:

0000

2364

0000
null

26/41



LOCKS AND KEYS (2)

Comparison to tombstones:

• Can only be used for heap-allocated objects
• Provides only probabilistic protection
• Unclear which one has higher runtime overhead
• Unclear which one has higher space overhead

Languages that provide for such checks for dangling references often allow them
to be turned on/off using compile-time flags.

27/41



LOCKS AND KEYS (2)

Comparison to tombstones:

• Can only be used for heap-allocated objects
• Provides only probabilistic protection
• Unclear which one has higher runtime overhead
• Unclear which one has higher space overhead

Languages that provide for such checks for dangling references often allow them
to be turned on/off using compile-time flags.

27/41



ROAD MAP

• Type Systems
• Records
• Arrays
• Associative arrays
• Pointers
• Memory management
• Garbage collection

28/41



ROAD MAP

• Type Systems
• Records
• Arrays
• Associative arrays
• Pointers
• Memory management
• Garbage collection

28/41



GARBAGE COLLECTION

Garbage collection
Automatic reclamation of heap space

• Essential for functional languages
• Popular in modern imperative languages (Java, Python, Ada, Clu, …)
• Difficult to implement
• Slower than manual reclamation

29/41



GARBAGE COLLECTION STRATEGIES

• Reference counts

• Mark and sweep

• Mark and sweep variants:

• Stop and copy
• Generational GC

30/41



REFERENCE COUNTS (1)

a = new Obj();
b = new Obj();
b = a;
a = null;
b = null;

a:

b:

Reclaimed

Reclaimed

null

null

31/41



REFERENCE COUNTS (1)

a = new Obj();

b = new Obj();
b = a;
a = null;
b = null;

a:

b:

Reclaimed

Reclaimed

null

null

31/41



REFERENCE COUNTS (1)

a = new Obj();

b = new Obj();
b = a;
a = null;
b = null;

a:

b:

1

Reclaimed

Reclaimed

null

null

31/41



REFERENCE COUNTS (1)

a = new Obj();
b = new Obj();

b = a;
a = null;
b = null;

a:

b:

1

Reclaimed

Reclaimed

null

null

31/41



REFERENCE COUNTS (1)

a = new Obj();
b = new Obj();

b = a;
a = null;
b = null;

a:

b:

1

Reclaimed

1

Reclaimed

null

null

31/41



REFERENCE COUNTS (1)

a = new Obj();
b = new Obj();
b = a;

a = null;
b = null;

a:

b:

1

Reclaimed

1

Reclaimed

null

null

31/41



REFERENCE COUNTS (1)

a = new Obj();
b = new Obj();
b = a;

a = null;
b = null;

a:

b:

1

Reclaimed

1

Reclaimed

null

null

31/41



REFERENCE COUNTS (1)

a = new Obj();
b = new Obj();
b = a;

a = null;
b = null;

a:

b:

1

Reclaimed

0

Reclaimed

null

null

31/41



REFERENCE COUNTS (1)

a = new Obj();
b = new Obj();
b = a;

a = null;
b = null;

a:

b:

2

Reclaimed

0

Reclaimed

null

null

31/41



REFERENCE COUNTS (1)

a = new Obj();
b = new Obj();
b = a;

a = null;
b = null;

a:

b:

2

Reclaimed

0

Reclaimed

null

null

31/41



REFERENCE COUNTS (1)

a = new Obj();
b = new Obj();
b = a;
a = null;

b = null;

a:

b:

2

Reclaimed

0

Reclaimed

null

null

31/41



REFERENCE COUNTS (1)

a = new Obj();
b = new Obj();
b = a;
a = null;

b = null;

a:

b:

2

Reclaimed

0

Reclaimed

null

null

31/41



REFERENCE COUNTS (1)

a = new Obj();
b = new Obj();
b = a;
a = null;

b = null;

a:

b:

1

Reclaimed

0

Reclaimed

null

null

31/41



REFERENCE COUNTS (1)

a = new Obj();
b = new Obj();
b = a;
a = null;
b = null;

a:

b:

1

Reclaimed

0

Reclaimed

null

null

31/41



REFERENCE COUNTS (1)

a = new Obj();
b = new Obj();
b = a;
a = null;
b = null;

a:

b:

1

Reclaimed

0

Reclaimed

null

null

31/41



REFERENCE COUNTS (1)

a = new Obj();
b = new Obj();
b = a;
a = null;
b = null;

a:

b:

0

Reclaimed

0

Reclaimed

null

null

31/41



REFERENCE COUNTS (1)

a = new Obj();
b = new Obj();
b = a;
a = null;
b = null;

a:

b:

0

Reclaimed

0

Reclaimed

null

null

31/41



REFERENCE COUNTS (2)

Subroutine return:

• Decrease reference counts for all objects referenced by variables in
subroutine’s stack frame.

• Requires us to keep track of which entries in a stack frame are pointers.

Pros/cons:

+ Fairly simple to implement
+ Fairly low cost
− Does not work when there are circular references. Why?

32/41



REFERENCE COUNTS (2)

Subroutine return:

• Decrease reference counts for all objects referenced by variables in
subroutine’s stack frame.

• Requires us to keep track of which entries in a stack frame are pointers.

Pros/cons:

+ Fairly simple to implement
+ Fairly low cost
− Does not work when there are circular references. Why?

32/41



MARK AND SWEEP (1)

Mark and sweep algorithm

• Mark every allocated memory block as useless.
• For every pointer in the static address space and on the stack, mark the
block it points to as useful.

• For every block whose status changes from useless to useful, mark the
blocks referenced by pointers in this block as useful. Apply this rule
recursively.

• Reclaim all blocks marked as useless.

33/41



MARK AND SWEEP (2)

Pros/cons:

− More complicated to implement.
− Requires inspection of all allocated blocks in a sweep: costly.
− High space usage if the recursion is deep.
− Requires type descriptor at the beginning of each block to know the size of
the block and to find the pointers in the block.

+ Works with circular data structures.

34/41



MARK AND SWEEP (2)

Pros/cons:

− More complicated to implement.
− Requires inspection of all allocated blocks in a sweep: costly.
− High space usage if the recursion is deep.
− Requires type descriptor at the beginning of each block to know the size of
the block and to find the pointers in the block.

+ Works with circular data structures.

34/41



SPACE-EFFICIENT MARK AND SWEEP

null nullcurrback

back = null

null

currback currback

currback

null null

curr

null null

curr

null null

curr

W X

U V

S T

R

Space: 1+ ⌈log2 f⌉ bits per record (f = number of fields in record)

35/41



SPACE-EFFICIENT MARK AND SWEEP

null null

curr

back

back = null

null

currback currback

currback

null null

curr

null null

curr

null null

curr

W X

U V

S T

R

Space: 1+ ⌈log2 f⌉ bits per record (f = number of fields in record)

35/41



SPACE-EFFICIENT MARK AND SWEEP

null null

curr

back

back = null

null

currback currback

currback

null null

curr

null null

curr

null null

curr

W X

U V

S T

R

Space: 1+ ⌈log2 f⌉ bits per record (f = number of fields in record)

35/41



SPACE-EFFICIENT MARK AND SWEEP

null

nullcurr

back

back = null

nullcurr

back currback

currback

null null

curr

null null

curr

null null

curr

W X

U V

S T

R

Space: 1+ ⌈log2 f⌉ bits per record (f = number of fields in record)

35/41



SPACE-EFFICIENT MARK AND SWEEP

null

nullcurr

back

back = null

nullcurr

back currback

currback

null null

curr

null null

curr

null null

curr

W X

U V

S T

R

Space: 1+ ⌈log2 f⌉ bits per record (f = number of fields in record)

35/41



SPACE-EFFICIENT MARK AND SWEEP

null

nullcurrback

back = null

null

curr

back

currback

curr

back

null null

curr

null null

curr

null null

curr

W X

U V

S T

R

Space: 1+ ⌈log2 f⌉ bits per record (f = number of fields in record)

35/41



SPACE-EFFICIENT MARK AND SWEEP

null

nullcurrback

back = null

null

curr

back

currback

curr

back

null null

curr

null null

curr

null null

curr

W X

U V

S T

R

Space: 1+ ⌈log2 f⌉ bits per record (f = number of fields in record)

35/41



SPACE-EFFICIENT MARK AND SWEEP

null

nullcurrback

back = null

null

currback currback

curr

back null null

curr

null nullcurr null null

curr

W X

U V

S T

R

Space: 1+ ⌈log2 f⌉ bits per record (f = number of fields in record)

35/41



SPACE-EFFICIENT MARK AND SWEEP

null

nullcurrback

back = null

null

currback currback

curr

back null null

curr

null nullcurr null null

curr

W X

U V

S T

R

Space: 1+ ⌈log2 f⌉ bits per record (f = number of fields in record)

35/41



SPACE-EFFICIENT MARK AND SWEEP

null

nullcurrback

back = null

null

curr

back

currback

curr

back

null null

curr

null null

curr

null null

curr

W X

U V

S T

R

Space: 1+ ⌈log2 f⌉ bits per record (f = number of fields in record)

35/41



SPACE-EFFICIENT MARK AND SWEEP

null

nullcurrback

back = null

null

currback currback

curr

back null null

curr

null null

curr

null null currW X

U V

S T

R

Space: 1+ ⌈log2 f⌉ bits per record (f = number of fields in record)

35/41



SPACE-EFFICIENT MARK AND SWEEP

null

nullcurrback

back = null

null

currback currback

curr

back null null

curr

null null

curr

null null currW X

U V

S T

R

Space: 1+ ⌈log2 f⌉ bits per record (f = number of fields in record)

35/41



SPACE-EFFICIENT MARK AND SWEEP

null

nullcurrback

back = null

null

curr

back

currback

curr

back

null null

curr

null null

curr

null null

curr

W X

U V

S T

R

Space: 1+ ⌈log2 f⌉ bits per record (f = number of fields in record)

35/41



SPACE-EFFICIENT MARK AND SWEEP

null

nullcurr

back

back = null

nullcurr

back currback

currback

null null

curr

null null

curr

null null

curr

W X

U V

S T

R

Space: 1+ ⌈log2 f⌉ bits per record (f = number of fields in record)

35/41



SPACE-EFFICIENT MARK AND SWEEP

null null

curr

back

back = null

null

currback currback

currback

null null

curr

null null

curr

null null

curr

W X

U V

S T

R

Space: 1+ ⌈log2 f⌉ bits per record (f = number of fields in record)

35/41



SPACE-EFFICIENT MARK AND SWEEP

null

null

curr

back

back = null

null

currback

curr

back

currback

null null

curr

null null

curr

null null

curr

W X

U V

S T

R

Space: 1+ ⌈log2 f⌉ bits per record (f = number of fields in record)

35/41



SPACE-EFFICIENT MARK AND SWEEP

null

null

curr

back

back = null

null

currback

curr

back

currback

null null

curr

null null

curr

null null

curr

W X

U V

S T

R

Space: 1+ ⌈log2 f⌉ bits per record (f = number of fields in record)

35/41



SPACE-EFFICIENT MARK AND SWEEP

null

null

currback

back = null

null

currback curr

back

curr

back

null null

curr

null null

curr

null null

curr

W X

U V

S T

R

Space: 1+ ⌈log2 f⌉ bits per record (f = number of fields in record)

35/41



SPACE-EFFICIENT MARK AND SWEEP

null

null

curr

back

back = null

null

currback

curr

back

currback

null null

curr

null null

curr

null null

curr

W X

U V

S T

R

Space: 1+ ⌈log2 f⌉ bits per record (f = number of fields in record)

35/41



SPACE-EFFICIENT MARK AND SWEEP

null

null

currback

back = null

null

currback curr

back

currback

null null curr

null null

curr

null null

curr

W X

U V

S T

R

Space: 1+ ⌈log2 f⌉ bits per record (f = number of fields in record)

35/41



SPACE-EFFICIENT MARK AND SWEEP

null

null

currback

back = null

null

currback curr

back

currback

null null curr

null null

curr

null null

curr

W X

U V

S T

R

Space: 1+ ⌈log2 f⌉ bits per record (f = number of fields in record)

35/41



SPACE-EFFICIENT MARK AND SWEEP

null

null

curr

back

back = null

null

currback

curr

back

currback

null null

curr

null null

curr

null null

curr

W X

U V

S T

R

Space: 1+ ⌈log2 f⌉ bits per record (f = number of fields in record)

35/41



SPACE-EFFICIENT MARK AND SWEEP

null null

curr

back

back = null

null

currback currback

currback

null null

curr

null null

curr

null null

curr

W X

U V

S T

R

Space: 1+ ⌈log2 f⌉ bits per record (f = number of fields in record)

35/41



SPACE-EFFICIENT MARK AND SWEEP

null null

curr

back

back = null

null

currback currback

currback

null null

curr

null null

curr

null null

curr

W X

U V

S T

R

Space: 1+ ⌈log2 f⌉ bits per record (f = number of fields in record)

35/41



MARK AND SWEEP VARIANT: STOP AND COPY (1)

Stop and copy algorithm

• Heap is divided into two halves. Allocation happens in the first half.
• Once the first half is full, start garbage collection and compaction:

• Find useful objects as in standard mark and sweep but without first marking
objects as useless.

• Copy every useful object to the second half of the heap and replace it with a
tag pointing to the new location.

• Replace every subsequent pointer to this object with a pointer to the new
copy.

• Swap the roles of the two halves.

36/41



MARK AND SWEEP VARIANT: STOP AND COPY (2)

Pros/cons:

+ Time proportional to the number of useful objects, not total number of
objects.

+ Eliminates external fragmentation.
± Only half the heap is available for allocation. Not really an issue if we have
virtual memory.

37/41



MARK AND SWEEP VARIANT: GENERATIONAL GARBAGE COLLECTION (1)

Generational garbage collection

• Heap is divided into several (often two) regions.
• Allocation happens in the first region.
• Garbage collection:

• Apply mark and sweep to the first region.
• Promote every object that survives a small number (often one) of rounds of
garbage collection in a region to the next region in a manner similar to stop
and copy.

• Inspect (mark and sweep) subsequent regions only if collection in the regions
inspected so far did not free up enough space.

Idea: Most objects are short-lived. Collection mostly inspects only the first region
and is thus cheaper.

38/41



MARK AND SWEEP VARIANT: GENERATIONAL GARBAGE COLLECTION (1)

Generational garbage collection

• Heap is divided into several (often two) regions.
• Allocation happens in the first region.
• Garbage collection:

• Apply mark and sweep to the first region.
• Promote every object that survives a small number (often one) of rounds of
garbage collection in a region to the next region in a manner similar to stop
and copy.

• Inspect (mark and sweep) subsequent regions only if collection in the regions
inspected so far did not free up enough space.

Idea: Most objects are short-lived. Collection mostly inspects only the first region
and is thus cheaper.

38/41



MARK AND SWEEP VARIANT: GENERATIONAL GARBAGE COLLECTION (1)

Two main issues:

• How to discover useful objects in a region without searching the other
regions?

• How to update pointers from older regions to younger regions when
promoting objects?

Techniques:

• Disallow pointers from old regions to young regions by moving objects
around appropriately.

• Keep list of old-to-new pointers. (Requires instrumentation⇒ runtime
overhead.)

39/41



MARK AND SWEEP VARIANT: GENERATIONAL GARBAGE COLLECTION (1)

Two main issues:

• How to discover useful objects in a region without searching the other
regions?

• How to update pointers from older regions to younger regions when
promoting objects?

Techniques:

• Disallow pointers from old regions to young regions by moving objects
around appropriately.

• Keep list of old-to-new pointers. (Requires instrumentation⇒ runtime
overhead.)

39/41



CONSERVATIVE GARBAGE COLLECTION

Normally, garbage collectors need to know which positions in an object are
pointers. This requires a type descriptor to be stored with each object (space
overhead).

Conservative garbage collection
Assume every word is a pointer and mark every memory block referenced by
such a “pointer” as useful.

This may fail to reclaim useless objects because some integer or other value
happens to equal the address of the object when interpreted as a pointer.

Statistically, this is rare.

40/41



CONSERVATIVE GARBAGE COLLECTION

Normally, garbage collectors need to know which positions in an object are
pointers. This requires a type descriptor to be stored with each object (space
overhead).

Conservative garbage collection
Assume every word is a pointer and mark every memory block referenced by
such a “pointer” as useful.

This may fail to reclaim useless objects because some integer or other value
happens to equal the address of the object when interpreted as a pointer.

Statistically, this is rare.

40/41



CONSERVATIVE GARBAGE COLLECTION

Normally, garbage collectors need to know which positions in an object are
pointers. This requires a type descriptor to be stored with each object (space
overhead).

Conservative garbage collection
Assume every word is a pointer and mark every memory block referenced by
such a “pointer” as useful.

This may fail to reclaim useless objects because some integer or other value
happens to equal the address of the object when interpreted as a pointer.

Statistically, this is rare.

40/41



CONSERVATIVE GARBAGE COLLECTION

Normally, garbage collectors need to know which positions in an object are
pointers. This requires a type descriptor to be stored with each object (space
overhead).

Conservative garbage collection
Assume every word is a pointer and mark every memory block referenced by
such a “pointer” as useful.

This may fail to reclaim useless objects because some integer or other value
happens to equal the address of the object when interpreted as a pointer.

Statistically, this is rare.

40/41



SUMMARY

• A language’s type system determines the data abstractions we can build.

• Common types include records, arrays, lists (built from records), pointers, …

• Pointers to heap-allocated objects require us to manage these objects.

• Garbage collection relieves us of the need to explicitly manage
heap-allocated objects but has a runtime cost and is non-trivial.

41/41


