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LANGUAGE MECHANISMS FOR CONTROL FLOW

The successful programmer thinks in terms of basic principles of control flow,
not in terms of syntax!

The principal categories of control flow mechanisms are:

• Sequencing
• Selection or alternation
• Iteration
• Procedural abstraction (next topic)
• Recursion
• Concurrency
• Exception handling and speculation (next topic)
• Non-determinism
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EXPRESSION EVALUATION

Order of evaluation may influence result of computation.

Purely functional languages:

• Computation is expression evaluation.
• The only effect of evaluation is the returned value—no side effects.
• Order of evaluation of subexpressions is irrelevant.

Imperative languages:

• Computation is a series of changes to the values of variables in memory.
• This is “computation by side effect”.
• The order in which these side effects happen may determine the outcome of
the computation.

• There is usually a distinction between an expression and a statement.
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ASSIGNMENT

Assignment is the simplest (and most fundamental) type of side effect a
computation can have.

• Very important in imperative programming languages
• Much less important in declarative programming languages

Syntactic differences (Important to know, semantically irrelevant):
A = 3 FORTRAN, PL/1, SNOBOL4, C, C++, Java
A :- 3 Pascal, Ada, Icon, ML, Modula-3, ALGOL 68
A <- 3 Smalltalk, Mesa, APL
A =. 3 J
3 -> A BETA
MOVE 3 TO A COBOL
(SETQ A 3) LISP
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REFERENCES AND VALUES

Expressions that denote values are referred to as r-values.

Expressions that denote memory locations are referred to as l-values.

In most languages, the meaning of a variable name differs depending on the side
of an assignment statement it appears on:

• On the right-hand side, it refers to the variable’s value—it is used as an
r-value.

• On the left-hand side, it refers to the variable’s location in memory—it is
used as an l-value.

d =

a’s value

a ;

a’s memory location

a = b + c;
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EXPLICIT DEREFERENCING

Some languages explicitly distinguish between l-values and r-values:

• BLISS: X := .X + 1
• ML: X := !X + 1

In some languages, a function can return an l-value (e.g., ML or C++):

int a[10];

int &f(int i) {
return a[i % 10];

}

void main() {
for (int i = 0; i < 100; ++i)

f(i) = i;
}
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VARIABLE MODELS

Value model
Assignment copies the value.

Reference model

• A variable is always a reference.
• Assignment makes both variables refer to the same memory location.

Distinguish between:

• Variables referring to the same object and
• Variables referring to different but identical objects.

An example: Java

• Value model for built-in types
• Reference model for classes
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VALUE MODEL VS REFERENCE MODEL

b = 2; c = b; a = b + c;

a

b
c

4
2
2

Value model

a

b
c

4
2

Reference model
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JAVA EXAMPLES

int a = 5;
int b = a;
b += 10;
System.out.println("a = " + a);
System.out.println("b = " + b);

Output:

a = 5
b = 15

Obj a = new Obj();
Obj b = a;
b.change();
System.out.println(a == b);

Output:
true

String a = "hi ";
String b = a;
b += "world";
System.out.println("a = " + a);
System.out.println("b = " + b);

Output:
a = hi
b = hi world

StringBuffer a = new StringBuffer();
StringBuffer b = a;
b.append("This is b's value.");
System.out.println("a = " + a);
System.out.println("b = " + b);

Output:
a = This is b's value
b = This is b's value
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EVALUATION ORDER WITHIN EXPRESSIONS

It is usually unwise to write expressions where a side effect of evaluating an
operand is to change another operand used in the same expression.

Some languages explicitly forbid side effects in expression operands.

Possible problems:

• Evaluation order is often left to the compiler
(i.e., undefined in the language specification).
Thus, such side effects may lead to unexpected results.

• Evaluation order impacts register allocation, instruction scheduling, etc.
By fixing a particular evaluation ordering, some code improvements may not
be possible. This impacts performance.
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AN EXAMPLE WITH SIDE EFFECTS IN C

for(i = m = M = 1; N - ++i; M = m + (m = M));

What does this code compute?

The answer depends on the evaluation order of the two subexpressions of
M = m + (m = M).

Probably intented

N m M

2 1 1
3 1 2
4 2 3
5 3 5
6 5 8

M = FN (Nth Fibonacci number)

Actual

N m M

2 1 1
3 1 2
4 2 4
5 4 8
6 8 16

M = 2N−2
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SHORT-CIRCUIT EVALUATION OF BOOLEAN EXPRESSIONS

(and a b): If a is false, b has no effect on the value of the whole expression.
(or a b): If a is true, b has no effect on the value of the whole expression.

Short-circuit evaluation
If the value of the expression does not depend on b, the evaluation of b is
skipped.

This is useful, both in terms of optimization and semantically.

Some languages provide both regular and short-circuit versions of Boolean
operators.

Ada:

• and vs and then
• or vs or else
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COMMON IDIOMS ENABLED BY SHORT-CIRCUIT EVALUATION

Checking for NULL pointers in C:

while (p != NULL && p->e != val) {
p = p->next;

}

Exit on failure in Perl:

open(F, "file") or die;

Short-circuit and as if-statement in Perl or shell scripts:

if (x > max) then max = x;

becomes

(x > max) && max = x;
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SEQUENCING

In imperative programming languages, sequencing comes naturally, without a
need for special syntax to support it.

Mixed imperative/function languages (LISP, Scheme, …) often provide special
constructs for sequencing.

Issue: What’s the value of a sequence of expressions/statements?

• The value of the last subexpression (most common)
C: a = 4, b = 5; =⇒ 5
LISP: (progn (setq a 4) (setq b 5)) =⇒ 5

• The value of the first subexpression
LISP: (prog1 (setq a 4) (setq b 5)) =⇒ 4

• The value of the second subexpression
LISP: (prog2 (setq a 4) (setq b 5) (setq c 6) =⇒ 5

14/40



SEQUENCING

In imperative programming languages, sequencing comes naturally, without a
need for special syntax to support it.

Mixed imperative/function languages (LISP, Scheme, …) often provide special
constructs for sequencing.

Issue: What’s the value of a sequence of expressions/statements?

• The value of the last subexpression (most common)
C: a = 4, b = 5; =⇒ 5

LISP: (progn (setq a 4) (setq b 5)) =⇒ 5

• The value of the first subexpression
LISP: (prog1 (setq a 4) (setq b 5)) =⇒ 4

• The value of the second subexpression
LISP: (prog2 (setq a 4) (setq b 5) (setq c 6) =⇒ 5

14/40



SEQUENCING

In imperative programming languages, sequencing comes naturally, without a
need for special syntax to support it.

Mixed imperative/function languages (LISP, Scheme, …) often provide special
constructs for sequencing.

Issue: What’s the value of a sequence of expressions/statements?

• The value of the last subexpression (most common)
C: a = 4, b = 5; =⇒ 5

LISP: (progn (setq a 4) (setq b 5)) =⇒ 5

• The value of the first subexpression
LISP: (prog1 (setq a 4) (setq b 5)) =⇒ 4

• The value of the second subexpression
LISP: (prog2 (setq a 4) (setq b 5) (setq c 6) =⇒ 5

14/40



SEQUENCING

In imperative programming languages, sequencing comes naturally, without a
need for special syntax to support it.

Mixed imperative/function languages (LISP, Scheme, …) often provide special
constructs for sequencing.

Issue: What’s the value of a sequence of expressions/statements?

• The value of the last subexpression (most common)
C: a = 4, b = 5; =⇒ 5
LISP: (progn (setq a 4) (setq b 5)) =⇒ 5

• The value of the first subexpression
LISP: (prog1 (setq a 4) (setq b 5)) =⇒ 4

• The value of the second subexpression
LISP: (prog2 (setq a 4) (setq b 5) (setq c 6) =⇒ 5

14/40



SEQUENCING

In imperative programming languages, sequencing comes naturally, without a
need for special syntax to support it.

Mixed imperative/function languages (LISP, Scheme, …) often provide special
constructs for sequencing.

Issue: What’s the value of a sequence of expressions/statements?

• The value of the last subexpression (most common)
C: a = 4, b = 5; =⇒ 5
LISP: (progn (setq a 4) (setq b 5)) =⇒ 5

• The value of the first subexpression
LISP: (prog1 (setq a 4) (setq b 5)) =⇒ 4

• The value of the second subexpression
LISP: (prog2 (setq a 4) (setq b 5) (setq c 6) =⇒ 5

14/40



SEQUENCING

In imperative programming languages, sequencing comes naturally, without a
need for special syntax to support it.

Mixed imperative/function languages (LISP, Scheme, …) often provide special
constructs for sequencing.

Issue: What’s the value of a sequence of expressions/statements?

• The value of the last subexpression (most common)
C: a = 4, b = 5; =⇒ 5
LISP: (progn (setq a 4) (setq b 5)) =⇒ 5

• The value of the first subexpression
LISP: (prog1 (setq a 4) (setq b 5)) =⇒ 4

• The value of the second subexpression
LISP: (prog2 (setq a 4) (setq b 5) (setq c 6) =⇒ 5

14/40



GOTO AND ALTERNATIVES

Use of goto is bad programming practice if the same effect can be achieved
using different constructs.

Sometimes, it is unavoidable:

• Break out of a loop
• Break out of a subroutine
• Break out of a deeply nested context

Many languages provide alternatives:

• One-and-a-half loop
• return statement
• Structured exception handling
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SELECTION (ALTERNATION)

Standard if-then-else statement:

if cond then this
else that

Multi-way if-then-else statement:

if cond1 then option1
elsif cond2 then option2
elsif cond3 then option3
...

else default action

Switch statement:

switch value of
case pattern1: option1
case pattern2: option2
...
default: default action
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SWITCH STATEMENTS

Switch statements are a special case of if/then/elsif/else statements.

Principal motivation: Generate more efficient code!

Compiler can use different methods to generate efficient code:

• Sequential testing
• Binary search
• Hash table
• Jump table
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IMPLEMENTATION OF IF STATEMENTS

if i == 1:
option1()

elsif i in [2, 7]:
option2()

elsif i in [3, 4, 5]:
option3()

elsif i == 10:
option4()

else:
default_action()

Assume i is stored in register R1.

if R1 != 1 goto L1
call option1
goto L6

L1: if R1 == 2 goto L2
if R1 != 7 goto L3

L2: call option2
goto L6

L3: if R1 < 3 goto L4
if R1 > 5 goto L4
call option3
goto L6

L4: if R1 != 10 goto L5
call option4
goto L6

L5: call default_action
L6: ...
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IMPLEMENTATION OF SWITCH STATEMENTS: JUMP TABLE

case i:
1: option1()
2, 7: option2()
3, 4, 5: option3()
10: option4()
otherwise: default_action()

Assume i is stored in register R1.

T: &L1 L1: call option1
&L2 goto L7
&L3 L2: call option2
&L3 goto L7
&L3 L3: call option3
&L5 goto L7
&L2 L4: call option4
&L5 goto L7
&L5 L5: call default_action
&L4 goto L7

L6: if R1 < 1 goto L5
if R1 > 10 goto L5
R1 := R1 - 1
R2 := T[R1]
goto *R2

L7: ...
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IMPLEMENTATION OF SWITCH STATEMENTS

Jump table:
+ Fast: one table lookup to find the
right branch

− Potentially large table: one entry
per possible value

Hash table:
+ Fast: one hash table access to find
the right branch

− More complicated
− Elements in a range need to be
stored individually; again, possibly
a large table

Linear search:
− Potentially slow
+ No storage overhead

Binary search:
± Fast, but slower than table lookup
+ No storage overhead

No single implementation is best in all circumstances.
Compilers often use different strategies based on the specific code.
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ITERATION

Enumeration-controlled loops:

• Example: for-loop
• One iteration per element in finite set
• The number of iterations is known in advance.

Logically controlled loops:

• Example: while-loop
• Executed until a Boolean condition changes
• The number of iterations is not known in advance.

Some languages do not have loop constructs (Scheme, Haskell, …).
They use tail recursion instead.
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LOGICALLY CONTROLLED LOOPS

Pre-loop test:

while (cond) {
...

}

Post-loop test:

do {
...

} while (cond);

Mid-loop test or “one-and-a-half loop”:

loop {
...
if (cond1) exit;
...
if (cond2) exit;
...

}
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TRADE-OFFS IN ITERATION CONSTRUCTS (1)

Logically controlled loops:
+ Flexible

− Expensive

The for-loop in C/C++ is merely
syntactic sugar for the init-test-step
idiom in implementing enumeration
using logically controlled loops!

while (cond) {
statements;

}

L1: R1 := evaluate cond
if not R1 goto L2
statements
goto L1

L2: ...

for (init; cond; step) {
statements;

}

init
L1: R1 := evaluate cond

if not R1 goto L2
statements
step
goto L1

L2: ...
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TRADE-OFFS IN ITERATION CONSTRUCTS (2)

Potentially much more efficient:

FOR i = start TO end BY step DO
statements

END

If modifying the loop variable inside
the loop is allowed:

R1 := start
R2 := end
R3 := step

L1: if R1 > R2 goto L2
statements
R1 = R1 + R3
goto L1

L2: ...

If modifying the loop variable inside
the loop is not allowed:

R1 := floor((end - start) /
step) + 1

L1: if not R1 goto L2
statements
decrement R1
goto L1

L2: ...
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LABELLED BREAK AND CONTINUE

“Break” statement (“last“ in Perl):

Exit the nearest enclosing for-, do-, while- or switch-statement.

“Continue” statement (“next” in Perl):

Skip the rest of the current iteration.

Both statements may be followed by a label that specifies

• An enclosing loop (continue) or
• Any enclosing statement (break).

A loop may have a finally part, which is always executed no matter whether the
iteration executes normally or is terminated using a continue or break
statement.
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ITERATORS AND GENERATORS

Often, for-loops are used to iterate over sequences of elements (stored in a data
structure, generated by a procedure, …).

Iterators/generators provide a clean idiom for iterating over a sequence without
a need to know how the sequence is generated.

Generators in Python:

def lexy(length):
yield ''
if length > 0:

for ch in ['a', 'b', 'c', 'd']:
for w in lexy(length - 1):

yield ch + w

for w in lexy(3):
print(w)
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ITERATOR OBJECTS

C++ and Java provide iterator classes that can be used to enumerate the
elements of a collection (or programmatically generate a sequence of elements
to be traversed).

C++:

for (cont::iterator i = cont.begin(); i != cont.end(); ++i) {
// Use i

}

Java 1.4 is similar in its use of the Enumeration interface:

Enumeration e = cont.elements();
while (e.hasMoreElements()) {
MyObj o = (MyObj) e.nextElement();
// Use o

}
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TYING ITERATOR OBJECTS TO FOR-LOOPS

Many modern languages provide convenient syntax for iterating over sequences
generated using iterators. Behind the scenes, this is translated into code that
explicitly uses iterator objects.

Modern Java (post Java 5):

for (MyObj obj : cont) {
// Use obj

}

Modern C++ (post C++11):

for (auto &obj : cont) {
// Use obj

}
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ITERATION WITHOUT ITERATORS

In languages without iterators/generators (e.g., C), we can simulate iterators using
function calls:

for (it = begin(coll); it != end(coll); it = next(it)) {
/* Do something with *it */

}
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ITERATION IN FUNCTIONAL LANGUAGES

Functions being first-class objects allows passing a function to be applied to
every element to an “iterator” that traverses the collection.

Haskell:

doubles = map (* 2) [1 ..]
pairs = zip [1 ..] doubles
doubles2 = filter even [1 ..]
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RECURSION

Every iterative procedure can be turned into a recursive one:

while (condition) { S1; S2; ... }

becomes

procedure P() {
if (condition) {

S1; S2; ...; P();
}

}

The converse is not true (e.g., Quicksort, Merge Sort, fast matrix multiplication, …)

The type of recursive procedure above can be translated back into a loop by the
compiler (tail recursion).
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APPLICATIVE AND NORMAL-ORDER EVALUATION

Applicative-order evaluation
Arguments are evaluated before a
subroutine call

• Default in most programming
languages

Normal-order evaluation

• Arguments are passed to the
subroutine unevaluated.

• The subroutine evaluates them as
needed.

• Useful for infinite or lazy data
structures that are computed as
needed.

• Example: macros in C/C++

Normal-order evaluation is fine in functional languages but problematic if there
are side effects. Why?

Normal-order evalutaion is potentially inefficient. Why? How can we avoid this?
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LAZY EVALUATION

Lazy evaluation

• Evaluate expressions when their values are needed.
• Cache results to avoid recomputation.

Haskell:

naturals :: [Int]
naturals = next 1

where next i = i : rest
where rest = next (i+1)

take 10 naturals -- [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Strict evaluation may be more efficient. Haskell provides means for us to force
the strict evaluation of arguments (bang patterns).
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LAZY EVALUATION IN SCHEME (1)

By default, Scheme uses strict applicative-order evaluation.

This code runs forever:

(define naturals
(letrec ((next (lambda (n)

(cons n (next (+ n 1))))))
(next 1)))
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LAZY EVALUATION IN SCHEME (2)

A lazy version of the same code:

(define naturals
(letrec ((next (lambda (n)

(cons n (delay (next (+ n 1)))))))
(next 1)))

(define head car)

(define (tail stream) (force (cdr stream)))

(head naturals) ; 1
(head (tail naturals)) ; 2
(head (tail (tail naturals))) ; 3
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IMPLEMENTATION OF DELAY AND FORCE (1)

delay is a special form or macro that wraps the expression in a function:

(define-syntax delay
(syntax-rules ()

((delay exp) (lambda () exp))))

force simply evaluates the given function:

(define (force delayed-exp)
(delayed-exp))

What’s the problem with this implementation of delay?

It evaluates exp every time. This is inefficient (essentially normal-order
evaluation).

36/40



IMPLEMENTATION OF DELAY AND FORCE (1)

delay is a special form or macro that wraps the expression in a function:

(define-syntax delay
(syntax-rules ()

((delay exp) (lambda () exp))))

force simply evaluates the given function:

(define (force delayed-exp)
(delayed-exp))

What’s the problem with this implementation of delay?

It evaluates exp every time. This is inefficient (essentially normal-order
evaluation).

36/40



IMPLEMENTATION OF DELAY AND FORCE (1)

delay is a special form or macro that wraps the expression in a function:

(define-syntax delay
(syntax-rules ()

((delay exp) (lambda () exp))))

force simply evaluates the given function:

(define (force delayed-exp)
(delayed-exp))

What’s the problem with this implementation of delay?

It evaluates exp every time. This is inefficient (essentially normal-order
evaluation).

36/40



IMPLEMENTATION OF DELAY AND FORCE (1)

delay is a special form or macro that wraps the expression in a function:

(define-syntax delay
(syntax-rules ()

((delay exp) (lambda () exp))))

force simply evaluates the given function:

(define (force delayed-exp)
(delayed-exp))

What’s the problem with this implementation of delay?

It evaluates exp every time. This is inefficient (essentially normal-order
evaluation).

36/40



IMPLEMENTATION OF DELAY AND FORCE (1)

A better implementation of delay:

(define-syntax delay
(syntax-rules ()

((delay exp) (memoize (lambda () exp)))))

(define (memoize f)
(let ((first? #t)

(val #f))
(lambda ()

(if first?
(begin (set! first? #f)

(set! val (f))))
val)))

This is pretty much what Haskell does.
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NORMAL ORDER EVALUATION: C/C++ MACROS (1)

Example:

#define DIVIDES(n, a) (!((n) % (a)))

Problems:

• Cannot be used recursively.

• Textual expansion may not mean what’s intended: Evaluate
DIVIDES(x, y+2) using the above definition and using

#define DIVIDES(n, a) (!(n % a))
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NORMAL ORDER EVALUATION: C/C++ MACROS (2)

• Side effects: Evaluate MAX(x++, y++) using

#define MAX(a, b) ((a) > (b) ? (a) : (b))

• Name clashes with variables: Evaluate SWAP(x, t) using

#define SWAP(a, b) { int t = a; a = b; b = t; }

In C++, inline functions are usually a better alternative.
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SUMMARY

• Think in terms of control abstractions rather than syntax!

• Expression evaluation order is left to the compiler; avoid side effects.

• Understand what a variable use means (l-value/r-value; value/reference).

• Short-circuiting helps efficiency and allows some elegant idioms.

• Avoid goto.

• switch is often more efficient than multi-way if.

• for-loops can be more efficient than while-loops (not in C, Java, Python, …).

• Iterators/generators provide an abstraction for enumerating the elements of
a sequence useful for iteration constructs.

• Recursion is more general/powerful than iteration.

• Applicative-order evaluation is fast, normal-order evaluation is flexible, lazy
evaluation offers a trade-off.
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