
NAMES, BINDING & SCOPES
PRINCIPLES OF PROGRAMMING LANGUAGES

Norbert Zeh
Winter 2018

Dalhousie University

1/63

NAMES, BINDING & SCOPES

Names:

• Function names, variable names, type names refer to memory addresses at
runtime or to abstract type structures at compile time.

Binding:

• To clearly define the semantics of the program, we need to clearly identify
this association between names and the objects they refer to.

• The compiler/runtime system has to do this automatically.

Scopes:

• What are the rules that determine which names are visible in which parts of
the program?

2/63

NAMES, BINDING & SCOPES

Names:

• Function names, variable names, type names refer to memory addresses at
runtime or to abstract type structures at compile time.

Binding:

• To clearly define the semantics of the program, we need to clearly identify
this association between names and the objects they refer to.

• The compiler/runtime system has to do this automatically.

Scopes:

• What are the rules that determine which names are visible in which parts of
the program?

2/63

NAMES, BINDING & SCOPES

Names:

• Function names, variable names, type names refer to memory addresses at
runtime or to abstract type structures at compile time.

Binding:

• To clearly define the semantics of the program, we need to clearly identify
this association between names and the objects they refer to.

• The compiler/runtime system has to do this automatically.

Scopes:

• What are the rules that determine which names are visible in which parts of
the program?

2/63

ROAD MAP

Language concepts:

• Names
• Binding
• Scoping
• Modules and classes
• Aliasing and overloading

Implementation:

• Stack frames
• Heap management
• Static chains
• Closures

3/63

ROAD MAP

Language concepts:

• Names
• Binding
• Scoping
• Modules and classes
• Aliasing and overloading

Implementation:

• Stack frames
• Heap management
• Static chains
• Closures

3/63

NAMES & BINDINGS

Name
A mnemonic character string
representing something else
(an identifier from the parser’s
point of view)

• x, sin, f, prog1, null? are names.
• 1, 2, 3, "test" are not names.
• +, <=, … may be names if they are not
built-in operations.

Binding
An association between two
entities, typically between a
name and the object it refers to

• Name and memory location (for a
variable)

• Name and function
• Name and type

4/63

NAMES & BINDINGS

Name
A mnemonic character string
representing something else
(an identifier from the parser’s
point of view)

• x, sin, f, prog1, null? are names.
• 1, 2, 3, "test" are not names.
• +, <=, … may be names if they are not
built-in operations.

Binding
An association between two
entities, typically between a
name and the object it refers to

• Name and memory location (for a
variable)

• Name and function
• Name and type

4/63

REFERENCING ENVIRONMENTS & SCOPES

Referencing environment
A complete set of bindings active at a certain point in a program

Scope of a binding
The region of a program or time interval(s) in the program’s execution during
which the binding is active

Scope
A maximal region of the program where no bindings are destroyed (e.g., a
function body)

5/63

REFERENCING ENVIRONMENTS & SCOPES

Referencing environment
A complete set of bindings active at a certain point in a program

Scope of a binding
The region of a program or time interval(s) in the program’s execution during
which the binding is active

Scope
A maximal region of the program where no bindings are destroyed (e.g., a
function body)

5/63

REFERENCING ENVIRONMENTS & SCOPES

Referencing environment
A complete set of bindings active at a certain point in a program

Scope of a binding
The region of a program or time interval(s) in the program’s execution during
which the binding is active

Scope
A maximal region of the program where no bindings are destroyed (e.g., a
function body)

5/63

QUESTIONS ABOUT BINDINGS

• When is the binding established?
• How long does the binding/the bound object exist?
• Where does the bound object live?

6/63

BINDING TIMES

Compile time:

• Map high-level language constructs to machine code
• Layout static data in memory

Link time:

• Resolve references between objects in separately compiled module

Load time:

• Assign machine addresses to static data

Runtime:

• Bind values to variables
• Allocate dynamic data and assign it to variables
• Allocate local variables on the stack

7/63

BINDING TIMES

Compile time:

• Map high-level language constructs to machine code
• Layout static data in memory

Link time:

• Resolve references between objects in separately compiled module

Load time:

• Assign machine addresses to static data

Runtime:

• Bind values to variables
• Allocate dynamic data and assign it to variables
• Allocate local variables on the stack

7/63

BINDING TIMES

Compile time:

• Map high-level language constructs to machine code
• Layout static data in memory

Link time:

• Resolve references between objects in separately compiled module

Load time:

• Assign machine addresses to static data

Runtime:

• Bind values to variables
• Allocate dynamic data and assign it to variables
• Allocate local variables on the stack

7/63

BINDING TIMES

Compile time:

• Map high-level language constructs to machine code
• Layout static data in memory

Link time:

• Resolve references between objects in separately compiled module

Load time:

• Assign machine addresses to static data

Runtime:

• Bind values to variables
• Allocate dynamic data and assign it to variables
• Allocate local variables on the stack

7/63

IMPORTANCE OF BINDING TIMES

Early binding (compile time, link time, load time):

• Faster code
• Typical in compiled languages

Late binding (runtime):

• Greater flexibility
• Typical in interpreted languages

8/63

OBJECT AND BINDING LIFETIME

Object lifetime
Period between the creation
and destruction of the object

• Time between creation and destruction
of a dynamically allocated variable in
C++ using new and delete.

Binding lifetime
Period between the creation
and destruction of a binding
(name-to-object association)

• Time between invocation and return of a
function

Two common mistakes:

• Dangling reference: no object for a binding
(E.g., a pointer refers to an object that has already been deleted)

• Memory leak: No binding for an object
(Prevents the object from being deallocated)

9/63

OBJECT AND BINDING LIFETIME

Object lifetime
Period between the creation
and destruction of the object

• Time between creation and destruction
of a dynamically allocated variable in
C++ using new and delete.

Binding lifetime
Period between the creation
and destruction of a binding
(name-to-object association)

• Time between invocation and return of a
function

Two common mistakes:

• Dangling reference: no object for a binding
(E.g., a pointer refers to an object that has already been deleted)

• Memory leak: No binding for an object
(Prevents the object from being deallocated)

9/63

OBJECT AND BINDING LIFETIME

Object lifetime
Period between the creation
and destruction of the object

• Time between creation and destruction
of a dynamically allocated variable in
C++ using new and delete.

Binding lifetime
Period between the creation
and destruction of a binding
(name-to-object association)

• Time between invocation and return of a
function

Two common mistakes:

• Dangling reference: no object for a binding
(E.g., a pointer refers to an object that has already been deleted)

• Memory leak: No binding for an object
(Prevents the object from being deallocated)

9/63

OBJECT AND BINDING LIFETIME

Object lifetime
Period between the creation
and destruction of the object

• Time between creation and destruction
of a dynamically allocated variable in
C++ using new and delete.

Binding lifetime
Period between the creation
and destruction of a binding
(name-to-object association)

• Time between invocation and return of a
function

Two common mistakes:

• Dangling reference: no object for a binding
(E.g., a pointer refers to an object that has already been deleted)

• Memory leak: No binding for an object
(Prevents the object from being deallocated) 9/63

STORAGE ALLOCATION

An object’s lifetime is tied to the mechanism used to manage the space where
the object resides.

Static object

• Stored at a fixed
absolute address

• Lifetime spans the
whole execution of
the program

Object on stack

• Allocated on the
stack in connection
with a subroutine
call (bound to local
variable)

• Lifetime spans
period between
invocation and
return of the
subroutine

Object on heap

• Allocated on the heap
• Object
created/destroyed
at arbitrary times

• Explicitly by
programmer

• Implicitly by
garbage collector

10/63

EXAMPLE: OBJECT CREATION & DESTRUCTION IN C++

Object type Lifetime Allocation
Local While function or block is active Stack
Heap Arbitrary Heap
Non-static member Same as parent object Same as parent object
Array element Same as array Same as array
Local static From first function/block

execution until program exits
Static address space

Global, namespace,
class static

While program runs Static address space

Temporary During expression evaluation Register, stack

Note: User-supplied allocation function may change the lifetime of heap objects.

11/63

STATIC OBJECTS

• Global variables
• Static variables local to subroutines that retain their value between
invocations

• Constant literals
• Tables for runtime support: debugging, type checking, etc.
• Space for subroutines, including local variables, in languages that do not
support recursion
(E.g., early versions of FORTRAN)

12/63

ROAD MAP

Language concepts:

• Names
• Binding
• Scoping
• Modules and classes
• Aliasing and overloading

Implementation:

• Stack frames
• Heap management
• Static chains
• Closures

13/63

ROAD MAP

Language concepts:

• Names
• Binding
• Scoping
• Modules and classes
• Aliasing and overloading

Implementation:

• Stack frames
• Heap management
• Static chains
• Closures

13/63

STACK-BASED ALLOCATION (1)

The stack is used to allocate space for subroutines in languages that permit
recursion.

Stack frame (activation record)

• Arguments and local variables of the subroutine
• Return value(s) of the subroutine
• Return address

14/63

STACK-BASED ALLOCATION (2)

Calling sequence
Maintains the stack:

• Before call, the caller pushes arguments and return address onto the stack.
• After being called (prologue), the callee initializes local variables, etc.
• Before returning (epilogue), the callee cleans up local data.
• After the call returns, the caller retrieves return value(s) and restores the
stack to its state before the call.

15/63

STACK FRAME (ACTIVATION RECORD)

The runtime management of the stack involves two registers:

• Frame pointer: Points to a known location within the current stack frame
• Stack pointer: Points to the first unused location on the stack (as a starting
position for the next stack frame)

The compiler determines the locations of function arguments and local variables
relative to the frame pointer.

The runtime system manages

• Absolute location of the stack frame in memory (on the stack)
• The size of the stack frame (E.g., when allocating variable-size arrays on the
stack)

16/63

STACK FRAME (ACTIVATION RECORD)

The runtime management of the stack involves two registers:

• Frame pointer: Points to a known location within the current stack frame
• Stack pointer: Points to the first unused location on the stack (as a starting
position for the next stack frame)

The compiler determines the locations of function arguments and local variables
relative to the frame pointer.

The runtime system manages

• Absolute location of the stack frame in memory (on the stack)
• The size of the stack frame (E.g., when allocating variable-size arrays on the
stack)

16/63

STACK FRAME (ACTIVATION RECORD)

The runtime management of the stack involves two registers:

• Frame pointer: Points to a known location within the current stack frame
• Stack pointer: Points to the first unused location on the stack (as a starting
position for the next stack frame)

The compiler determines the locations of function arguments and local variables
relative to the frame pointer.

The runtime system manages

• Absolute location of the stack frame in memory (on the stack)
• The size of the stack frame (E.g., when allocating variable-size arrays on the
stack)

16/63

STACK FRAME BEFORE, DURING & AFTER SUBROUTINE CALL

Subroutine A
Stack frame

Subroutine B
Stack frame

Arguments and
return values

Return address

Bookkeeping
Old SP, old FP, etc.

Local variables

Temporary variables

Lo
we
ra
dd
re
ss
es

Hi
gh
er
ad
dr
es
se
s

SP

SP
SP

SP

SP

FP

SP, FP

Making the call:

Caller:

• Push arguments on the stack
• Make subroutine call

Callee:

• Push stack pointer and frame pointer
on stack

• Update frame pointer
• Allocate local variables and temporary
working space, update stack pointer

17/63

STACK FRAME BEFORE, DURING & AFTER SUBROUTINE CALL

Subroutine A
Stack frame

Subroutine B
Stack frame

Arguments and
return values

Return address

Bookkeeping
Old SP, old FP, etc.

Local variables

Temporary variables

Lo
we
ra
dd
re
ss
es

Hi
gh
er
ad
dr
es
se
s

SP

SP
SP

SP

SP

FP

SP, FP

Making the call:

Caller:

• Push arguments on the stack
• Make subroutine call

Callee:

• Push stack pointer and frame pointer
on stack

• Update frame pointer
• Allocate local variables and temporary
working space, update stack pointer

17/63

STACK FRAME BEFORE, DURING & AFTER SUBROUTINE CALL

Subroutine A
Stack frame

Subroutine B
Stack frame

Arguments and
return values

Return address

Bookkeeping
Old SP, old FP, etc.

Local variables

Temporary variables

Lo
we
ra
dd
re
ss
es

Hi
gh
er
ad
dr
es
se
s

SP

SP
SP

SP

SP

FP

SP, FP

Making the call:

Caller:

• Push arguments on the stack
• Make subroutine call

Callee:

• Push stack pointer and frame pointer
on stack

• Update frame pointer
• Allocate local variables and temporary
working space, update stack pointer

17/63

STACK FRAME BEFORE, DURING & AFTER SUBROUTINE CALL

Subroutine A
Stack frame

Subroutine B
Stack frame

Arguments and
return values

Return address

Bookkeeping
Old SP, old FP, etc.

Local variables

Temporary variables

Lo
we
ra
dd
re
ss
es

Hi
gh
er
ad
dr
es
se
s

SP

SP
SP

SP

SP

FP

SP, FP

Making the call:

Caller:
• Push arguments on the stack

• Make subroutine call
Callee:

• Push stack pointer and frame pointer
on stack

• Update frame pointer
• Allocate local variables and temporary
working space, update stack pointer

17/63

STACK FRAME BEFORE, DURING & AFTER SUBROUTINE CALL

Subroutine A
Stack frame

Subroutine B
Stack frame

Arguments and
return values

Return address

Bookkeeping
Old SP, old FP, etc.

Local variables

Temporary variables

Lo
we
ra
dd
re
ss
es

Hi
gh
er
ad
dr
es
se
s

SP

SP

SP

SP

SP

FP

SP, FP

Making the call:

Caller:
• Push arguments on the stack

• Make subroutine call
Callee:

• Push stack pointer and frame pointer
on stack

• Update frame pointer
• Allocate local variables and temporary
working space, update stack pointer

17/63

STACK FRAME BEFORE, DURING & AFTER SUBROUTINE CALL

Subroutine A
Stack frame

Subroutine B
Stack frame

Arguments and
return values

Return address

Bookkeeping
Old SP, old FP, etc.

Local variables

Temporary variables

Lo
we
ra
dd
re
ss
es

Hi
gh
er
ad
dr
es
se
s

SP

SP

SP

SP

SP

FP

SP, FP

Making the call:

Caller:
• Push arguments on the stack
• Make subroutine call

Callee:

• Push stack pointer and frame pointer
on stack

• Update frame pointer
• Allocate local variables and temporary
working space, update stack pointer

17/63

STACK FRAME BEFORE, DURING & AFTER SUBROUTINE CALL

Subroutine A
Stack frame

Subroutine B
Stack frame

Arguments and
return values

Return address

Bookkeeping
Old SP, old FP, etc.

Local variables

Temporary variables

Lo
we
ra
dd
re
ss
es

Hi
gh
er
ad
dr
es
se
s

SP

SP

SP

SP

SP

FP

SP, FP

Making the call:

Caller:
• Push arguments on the stack
• Make subroutine call

Callee:

• Push stack pointer and frame pointer
on stack

• Update frame pointer
• Allocate local variables and temporary
working space, update stack pointer

17/63

STACK FRAME BEFORE, DURING & AFTER SUBROUTINE CALL

Subroutine A
Stack frame

Subroutine B
Stack frame

Arguments and
return values

Return address

Bookkeeping
Old SP, old FP, etc.

Local variables

Temporary variables

Lo
we
ra
dd
re
ss
es

Hi
gh
er
ad
dr
es
se
s

SP

SP

SP

SP

SP

FP

SP, FP

Making the call:

Caller:
• Push arguments on the stack
• Make subroutine call

Callee:

• Push stack pointer and frame pointer
on stack

• Update frame pointer
• Allocate local variables and temporary
working space, update stack pointer

17/63

STACK FRAME BEFORE, DURING & AFTER SUBROUTINE CALL

Subroutine A
Stack frame

Subroutine B
Stack frame

Arguments and
return values

Return address

Bookkeeping
Old SP, old FP, etc.

Local variables

Temporary variables

Lo
we
ra
dd
re
ss
es

Hi
gh
er
ad
dr
es
se
s

SP

SP

SP

SP

SP

FP

SP, FP

Making the call:

Caller:
• Push arguments on the stack
• Make subroutine call

Callee:
• Push stack pointer and frame pointer
on stack

• Update frame pointer
• Allocate local variables and temporary
working space, update stack pointer

17/63

STACK FRAME BEFORE, DURING & AFTER SUBROUTINE CALL

Subroutine A
Stack frame

Subroutine B
Stack frame

Arguments and
return values

Return address

Bookkeeping
Old SP, old FP, etc.

Local variables

Temporary variables

Lo
we
ra
dd
re
ss
es

Hi
gh
er
ad
dr
es
se
s

SP

SP
SP

SP

SP

FP

SP, FP

Making the call:

Caller:
• Push arguments on the stack
• Make subroutine call

Callee:
• Push stack pointer and frame pointer
on stack

• Update frame pointer
• Allocate local variables and temporary
working space, update stack pointer

17/63

STACK FRAME BEFORE, DURING & AFTER SUBROUTINE CALL

Subroutine A
Stack frame

Subroutine B
Stack frame

Arguments and
return values

Return address

Bookkeeping
Old SP, old FP, etc.

Local variables

Temporary variables

Lo
we
ra
dd
re
ss
es

Hi
gh
er
ad
dr
es
se
s

SP

SP
SP

SP

SP

FP

SP, FP

Making the call:

Caller:
• Push arguments on the stack
• Make subroutine call

Callee:
• Push stack pointer and frame pointer
on stack

• Update frame pointer

• Allocate local variables and temporary
working space, update stack pointer

17/63

STACK FRAME BEFORE, DURING & AFTER SUBROUTINE CALL

Subroutine A
Stack frame

Subroutine B
Stack frame

Arguments and
return values

Return address

Bookkeeping
Old SP, old FP, etc.

Local variables

Temporary variables

Lo
we
ra
dd
re
ss
es

Hi
gh
er
ad
dr
es
se
s

SP

SP
SP

SP

SP

FP

SP, FP

Making the call:

Caller:
• Push arguments on the stack
• Make subroutine call

Callee:
• Push stack pointer and frame pointer
on stack

• Update frame pointer

• Allocate local variables and temporary
working space, update stack pointer

17/63

STACK FRAME BEFORE, DURING & AFTER SUBROUTINE CALL

Subroutine A
Stack frame

Subroutine B
Stack frame

Arguments and
return values

Return address

Bookkeeping
Old SP, old FP, etc.

Local variables

Temporary variables

Lo
we
ra
dd
re
ss
es

Hi
gh
er
ad
dr
es
se
s

SP

SP
SP

SP

SP

FP

SP, FP

Making the call:

Caller:
• Push arguments on the stack
• Make subroutine call

Callee:
• Push stack pointer and frame pointer
on stack

• Update frame pointer
• Allocate local variables and temporary
working space, update stack pointer

17/63

STACK FRAME BEFORE, DURING & AFTER SUBROUTINE CALL

Subroutine A
Stack frame

Subroutine B
Stack frame

Arguments and
return values

Return address

Bookkeeping
Old SP, old FP, etc.

Local variables

Temporary variables

Lo
we
ra
dd
re
ss
es

Hi
gh
er
ad
dr
es
se
s

SP

SP
SP

SP

SP

FP

FP

Making the call:

Caller:
• Push arguments on the stack
• Make subroutine call

Callee:
• Push stack pointer and frame pointer
on stack

• Update frame pointer
• Allocate local variables and temporary
working space, update stack pointer

17/63

STACK FRAME BEFORE, DURING & AFTER SUBROUTINE CALL

Subroutine A
Stack frame

Subroutine B
Stack frame

Arguments and
return values

Return address

Bookkeeping
Old SP, old FP, etc.

Local variables

Temporary variables

Lo
we
ra
dd
re
ss
es

Hi
gh
er
ad
dr
es
se
s

SP

SP
SP

SP

SP

FP

FP

Returning from the call:

Callee:

• Clean up local data as necessary
• Restore stack pointer and frame pointer
• Return

Caller:
• Retrieve return value from the stack and
restore stack pointer to top of previous
stack frame

17/63

STACK FRAME BEFORE, DURING & AFTER SUBROUTINE CALL

Subroutine A
Stack frame

Subroutine B
Stack frame

Arguments and
return values

Return address

Bookkeeping
Old SP, old FP, etc.

Local variables

Temporary variables

Lo
we
ra
dd
re
ss
es

Hi
gh
er
ad
dr
es
se
s

SP

SP
SP

SP

SP

FP

FP

Returning from the call:

Callee:

• Clean up local data as necessary
• Restore stack pointer and frame pointer
• Return

Caller:
• Retrieve return value from the stack and
restore stack pointer to top of previous
stack frame

17/63

STACK FRAME BEFORE, DURING & AFTER SUBROUTINE CALL

Subroutine A
Stack frame

Subroutine B
Stack frame

Arguments and
return values

Return address

Bookkeeping
Old SP, old FP, etc.

Local variables

Temporary variables

Lo
we
ra
dd
re
ss
es

Hi
gh
er
ad
dr
es
se
s

SP

SP
SP

SP

SP

FP

FP

Returning from the call:

Callee:
• Clean up local data as necessary

• Restore stack pointer and frame pointer
• Return

Caller:
• Retrieve return value from the stack and
restore stack pointer to top of previous
stack frame

17/63

STACK FRAME BEFORE, DURING & AFTER SUBROUTINE CALL

Subroutine A
Stack frame

Subroutine B
Stack frame

Arguments and
return values

Return address

Bookkeeping
Old SP, old FP, etc.

Local variables

Temporary variables

Lo
we
ra
dd
re
ss
es

Hi
gh
er
ad
dr
es
se
s

SP

SP
SP

SP

SP

FP

FP

Returning from the call:

Callee:
• Clean up local data as necessary
• Restore stack pointer and frame pointer

• Return
Caller:
• Retrieve return value from the stack and
restore stack pointer to top of previous
stack frame

17/63

STACK FRAME BEFORE, DURING & AFTER SUBROUTINE CALL

Subroutine A
Stack frame

Subroutine B
Stack frame

Arguments and
return values

Return address

Bookkeeping
Old SP, old FP, etc.

Local variables

Temporary variables

Lo
we
ra
dd
re
ss
es

Hi
gh
er
ad
dr
es
se
s

SP

SP

SP

SP

SP

FP

FP

Returning from the call:

Callee:
• Clean up local data as necessary
• Restore stack pointer and frame pointer

• Return
Caller:
• Retrieve return value from the stack and
restore stack pointer to top of previous
stack frame

17/63

STACK FRAME BEFORE, DURING & AFTER SUBROUTINE CALL

Subroutine A
Stack frame

Subroutine B
Stack frame

Arguments and
return values

Return address

Bookkeeping
Old SP, old FP, etc.

Local variables

Temporary variables

Lo
we
ra
dd
re
ss
es

Hi
gh
er
ad
dr
es
se
s

SP

SP

SP

SP

SP

FP

FP

Returning from the call:

Callee:
• Clean up local data as necessary
• Restore stack pointer and frame pointer
• Return

Caller:
• Retrieve return value from the stack and
restore stack pointer to top of previous
stack frame

17/63

STACK FRAME BEFORE, DURING & AFTER SUBROUTINE CALL

Subroutine A
Stack frame

Subroutine B
Stack frame

Arguments and
return values

Return address

Bookkeeping
Old SP, old FP, etc.

Local variables

Temporary variables

Lo
we
ra
dd
re
ss
es

Hi
gh
er
ad
dr
es
se
s

SP

SP

SP

SP

SP

FP

FP

Returning from the call:

Callee:
• Clean up local data as necessary
• Restore stack pointer and frame pointer
• Return

Caller:
• Retrieve return value from the stack and
restore stack pointer to top of previous
stack frame

17/63

STACK FRAME BEFORE, DURING & AFTER SUBROUTINE CALL

Subroutine A
Stack frame

Subroutine B
Stack frame

Arguments and
return values

Return address

Bookkeeping
Old SP, old FP, etc.

Local variables

Temporary variables

Lo
we
ra
dd
re
ss
es

Hi
gh
er
ad
dr
es
se
s

SP

SP

SP

SP

SP

FP

FP

Returning from the call:

Callee:
• Clean up local data as necessary
• Restore stack pointer and frame pointer
• Return

Caller:
• Retrieve return value from the stack and
restore stack pointer to top of previous
stack frame

17/63

STACK FRAME BEFORE, DURING & AFTER SUBROUTINE CALL

Subroutine A
Stack frame

Subroutine B
Stack frame

Arguments and
return values

Return address

Bookkeeping
Old SP, old FP, etc.

Local variables

Temporary variables

Lo
we
ra
dd
re
ss
es

Hi
gh
er
ad
dr
es
se
s

SP

SP
SP

SP

SP

FP

FP

Returning from the call:

Callee:
• Clean up local data as necessary
• Restore stack pointer and frame pointer
• Return

Caller:
• Retrieve return value from the stack and
restore stack pointer to top of previous
stack frame

17/63

ROAD MAP

Language concepts:

• Names
• Binding
• Scoping
• Modules and classes
• Aliasing and overloading

Implementation:

• Stack frames
• Heap management
• Static chains
• Closures

18/63

ROAD MAP

Language concepts:

• Names
• Binding
• Scoping
• Modules and classes
• Aliasing and overloading

Implementation:

• Stack frames
• Heap management
• Static chains
• Closures

18/63

HEAP ALLOCATION

Heap
A region of memory where blocks can be allocated at arbitrary times and in
arbitrary order.

Heap management
Free list: List of blocks of free memory

The allocation algorithm searches for a block of adequate size to accommodate
the allocation request.

Head

19/63

HEAP ALLOCATION

Heap
A region of memory where blocks can be allocated at arbitrary times and in
arbitrary order.

Heap management
Free list: List of blocks of free memory

The allocation algorithm searches for a block of adequate size to accommodate
the allocation request.

Head

19/63

HEAP ALLOCATION

Heap
A region of memory where blocks can be allocated at arbitrary times and in
arbitrary order.

Heap management

Free list: List of blocks of free memory

The allocation algorithm searches for a block of adequate size to accommodate
the allocation request.

Head

19/63

HEAP ALLOCATION

Heap
A region of memory where blocks can be allocated at arbitrary times and in
arbitrary order.

Heap management
Free list: List of blocks of free memory

The allocation algorithm searches for a block of adequate size to accommodate
the allocation request.

Head

19/63

HEAP ALLOCATION

Heap
A region of memory where blocks can be allocated at arbitrary times and in
arbitrary order.

Heap management
Free list: List of blocks of free memory

The allocation algorithm searches for a block of adequate size to accommodate
the allocation request.

Head

19/63

HEAP ALLOCATION

Heap
A region of memory where blocks can be allocated at arbitrary times and in
arbitrary order.

Heap management
Free list: List of blocks of free memory

The allocation algorithm searches for a block of adequate size to accommodate
the allocation request.

Head

19/63

FIRST-FIT AND BEST-FIT ALLOCATION

General allocation strategy

• Find a free block that is at least as big as the requested amount of memory.
• Mark requested number of bytes (plus padding) as allocated.
• Return rest of the free block to free list.

First fit: Find the first block large enough to accommodate the allocation request.

Best fit: Find the smallest block large enough to accommodate the request.

20/63

FIRST-FIT AND BEST-FIT ALLOCATION

General allocation strategy

• Find a free block that is at least as big as the requested amount of memory.
• Mark requested number of bytes (plus padding) as allocated.
• Return rest of the free block to free list.

First fit: Find the first block large enough to accommodate the allocation request.

Best fit: Find the smallest block large enough to accommodate the request.

20/63

FIRST-FIT AND BEST-FIT ALLOCATION

General allocation strategy

• Find a free block that is at least as big as the requested amount of memory.
• Mark requested number of bytes (plus padding) as allocated.
• Return rest of the free block to free list.

First fit: Find the first block large enough to accommodate the allocation request.

Best fit: Find the smallest block large enough to accommodate the request.

20/63

THE HEAP FRAGMENTATION PROBLEM

Internal fragmentation

• Often only blocks of certain sizes (e.g., 2k) are allocated.
• This may lead to part of an allocated block being unused.

External fragmentation

• Unused space may consist of many small blocks.
• Thus, although the total free space may exceed the allocation request, no
block may be large enough to accommodate it.

Neither best-fit nor first-fit is guaranteed to minimize external fragmentation.

The best strategy depends on the size distribution of the allocation requests.

21/63

THE HEAP FRAGMENTATION PROBLEM

Internal fragmentation

• Often only blocks of certain sizes (e.g., 2k) are allocated.
• This may lead to part of an allocated block being unused.

External fragmentation

• Unused space may consist of many small blocks.
• Thus, although the total free space may exceed the allocation request, no
block may be large enough to accommodate it.

Neither best-fit nor first-fit is guaranteed to minimize external fragmentation.

The best strategy depends on the size distribution of the allocation requests.

21/63

THE HEAP FRAGMENTATION PROBLEM

Internal fragmentation

• Often only blocks of certain sizes (e.g., 2k) are allocated.
• This may lead to part of an allocated block being unused.

External fragmentation

• Unused space may consist of many small blocks.
• Thus, although the total free space may exceed the allocation request, no
block may be large enough to accommodate it.

Neither best-fit nor first-fit is guaranteed to minimize external fragmentation.

The best strategy depends on the size distribution of the allocation requests.

21/63

THE HEAP FRAGMENTATION PROBLEM

Internal fragmentation

• Often only blocks of certain sizes (e.g., 2k) are allocated.
• This may lead to part of an allocated block being unused.

External fragmentation

• Unused space may consist of many small blocks.
• Thus, although the total free space may exceed the allocation request, no
block may be large enough to accommodate it.

Neither best-fit nor first-fit is guaranteed to minimize external fragmentation.

The best strategy depends on the size distribution of the allocation requests.

21/63

COST OF HEAP ALLOCATION

Single free list: Linear cost to find a block to accommodate each request.

Buddy system:
• Blocks of size 2n0 , 2n0+1, 2n0+2, . . .
• Separate free list for each block
size

• If block of size 2k is unavailable,
split block of size 2k+1

• If block of size 2k is deallocated
and its buddy is free, merge them

• Worst-case cost: log(memory size)

Free

Fibonacci heap:

• Block sizes are Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, …
• Less fragmentation

22/63

COST OF HEAP ALLOCATION

Single free list: Linear cost to find a block to accommodate each request.

Buddy system:
• Blocks of size 2n0 , 2n0+1, 2n0+2, . . .
• Separate free list for each block
size

• If block of size 2k is unavailable,
split block of size 2k+1

• If block of size 2k is deallocated
and its buddy is free, merge them

• Worst-case cost: log(memory size)

Free
Fibonacci heap:

• Block sizes are Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, …
• Less fragmentation

22/63

COST OF HEAP ALLOCATION

Single free list: Linear cost to find a block to accommodate each request.

Buddy system:
• Blocks of size 2n0 , 2n0+1, 2n0+2, . . .
• Separate free list for each block
size

• If block of size 2k is unavailable,
split block of size 2k+1

• If block of size 2k is deallocated
and its buddy is free, merge them

• Worst-case cost: log(memory size)

Free
Fibonacci heap:

• Block sizes are Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, …
• Less fragmentation

22/63

COST OF HEAP ALLOCATION

Single free list: Linear cost to find a block to accommodate each request.

Buddy system:
• Blocks of size 2n0 , 2n0+1, 2n0+2, . . .
• Separate free list for each block
size

• If block of size 2k is unavailable,
split block of size 2k+1

• If block of size 2k is deallocated
and its buddy is free, merge them

• Worst-case cost: log(memory size)

Free
Fibonacci heap:

• Block sizes are Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, …
• Less fragmentation

22/63

COST OF HEAP ALLOCATION

Single free list: Linear cost to find a block to accommodate each request.

Buddy system:
• Blocks of size 2n0 , 2n0+1, 2n0+2, . . .
• Separate free list for each block
size

• If block of size 2k is unavailable,
split block of size 2k+1

• If block of size 2k is deallocated
and its buddy is free, merge them

• Worst-case cost: log(memory size)

Free
Fibonacci heap:

• Block sizes are Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, …
• Less fragmentation

22/63

COST OF HEAP ALLOCATION

Single free list: Linear cost to find a block to accommodate each request.

Buddy system:
• Blocks of size 2n0 , 2n0+1, 2n0+2, . . .
• Separate free list for each block
size

• If block of size 2k is unavailable,
split block of size 2k+1

• If block of size 2k is deallocated
and its buddy is free, merge them

• Worst-case cost: log(memory size)

Free
Fibonacci heap:

• Block sizes are Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, …
• Less fragmentation

22/63

COST OF HEAP ALLOCATION

Single free list: Linear cost to find a block to accommodate each request.

Buddy system:
• Blocks of size 2n0 , 2n0+1, 2n0+2, . . .
• Separate free list for each block
size

• If block of size 2k is unavailable,
split block of size 2k+1

• If block of size 2k is deallocated
and its buddy is free, merge them

• Worst-case cost: log(memory size)

Free
Fibonacci heap:

• Block sizes are Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, …
• Less fragmentation

22/63

COST OF HEAP ALLOCATION

Single free list: Linear cost to find a block to accommodate each request.

Buddy system:
• Blocks of size 2n0 , 2n0+1, 2n0+2, . . .
• Separate free list for each block
size

• If block of size 2k is unavailable,
split block of size 2k+1

• If block of size 2k is deallocated
and its buddy is free, merge them

• Worst-case cost: log(memory size)

Free
Fibonacci heap:

• Block sizes are Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, …
• Less fragmentation

22/63

COST OF HEAP ALLOCATION

Single free list: Linear cost to find a block to accommodate each request.

Buddy system:
• Blocks of size 2n0 , 2n0+1, 2n0+2, . . .
• Separate free list for each block
size

• If block of size 2k is unavailable,
split block of size 2k+1

• If block of size 2k is deallocated
and its buddy is free, merge them

• Worst-case cost: log(memory size)

Free
Fibonacci heap:

• Block sizes are Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, …
• Less fragmentation

22/63

COST OF HEAP ALLOCATION

Single free list: Linear cost to find a block to accommodate each request.

Buddy system:
• Blocks of size 2n0 , 2n0+1, 2n0+2, . . .
• Separate free list for each block
size

• If block of size 2k is unavailable,
split block of size 2k+1

• If block of size 2k is deallocated
and its buddy is free, merge them

• Worst-case cost: log(memory size) Free

Fibonacci heap:

• Block sizes are Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, …
• Less fragmentation

22/63

COST OF HEAP ALLOCATION

Single free list: Linear cost to find a block to accommodate each request.

Buddy system:
• Blocks of size 2n0 , 2n0+1, 2n0+2, . . .
• Separate free list for each block
size

• If block of size 2k is unavailable,
split block of size 2k+1

• If block of size 2k is deallocated
and its buddy is free, merge them

• Worst-case cost: log(memory size)

Free
Fibonacci heap:

• Block sizes are Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, …
• Less fragmentation

22/63

COST OF HEAP ALLOCATION

Single free list: Linear cost to find a block to accommodate each request.

Buddy system:
• Blocks of size 2n0 , 2n0+1, 2n0+2, . . .
• Separate free list for each block
size

• If block of size 2k is unavailable,
split block of size 2k+1

• If block of size 2k is deallocated
and its buddy is free, merge them

• Worst-case cost: log(memory size)

Free
Fibonacci heap:

• Block sizes are Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, …
• Less fragmentation

22/63

COST OF HEAP ALLOCATION

Single free list: Linear cost to find a block to accommodate each request.

Buddy system:
• Blocks of size 2n0 , 2n0+1, 2n0+2, . . .
• Separate free list for each block
size

• If block of size 2k is unavailable,
split block of size 2k+1

• If block of size 2k is deallocated
and its buddy is free, merge them

• Worst-case cost: log(memory size)

Free
Fibonacci heap:

• Block sizes are Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, …
• Less fragmentation

22/63

COST OF HEAP ALLOCATION

Single free list: Linear cost to find a block to accommodate each request.

Buddy system:
• Blocks of size 2n0 , 2n0+1, 2n0+2, . . .
• Separate free list for each block
size

• If block of size 2k is unavailable,
split block of size 2k+1

• If block of size 2k is deallocated
and its buddy is free, merge them

• Worst-case cost: log(memory size)

Free
Fibonacci heap:

• Block sizes are Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, …
• Less fragmentation

22/63

COST OF HEAP ALLOCATION

Single free list: Linear cost to find a block to accommodate each request.

Buddy system:
• Blocks of size 2n0 , 2n0+1, 2n0+2, . . .
• Separate free list for each block
size

• If block of size 2k is unavailable,
split block of size 2k+1

• If block of size 2k is deallocated
and its buddy is free, merge them

• Worst-case cost: log(memory size)

Free
Fibonacci heap:

• Block sizes are Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, …
• Less fragmentation

22/63

COST OF HEAP ALLOCATION

Single free list: Linear cost to find a block to accommodate each request.

Buddy system:
• Blocks of size 2n0 , 2n0+1, 2n0+2, . . .
• Separate free list for each block
size

• If block of size 2k is unavailable,
split block of size 2k+1

• If block of size 2k is deallocated
and its buddy is free, merge them

• Worst-case cost: log(memory size)

Free
Fibonacci heap:

• Block sizes are Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, …
• Less fragmentation

22/63

COST OF HEAP ALLOCATION

Single free list: Linear cost to find a block to accommodate each request.

Buddy system:
• Blocks of size 2n0 , 2n0+1, 2n0+2, . . .
• Separate free list for each block
size

• If block of size 2k is unavailable,
split block of size 2k+1

• If block of size 2k is deallocated
and its buddy is free, merge them

• Worst-case cost: log(memory size)

Free
Fibonacci heap:

• Block sizes are Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, …
• Less fragmentation

22/63

COST OF HEAP ALLOCATION

Single free list: Linear cost to find a block to accommodate each request.

Buddy system:
• Blocks of size 2n0 , 2n0+1, 2n0+2, . . .
• Separate free list for each block
size

• If block of size 2k is unavailable,
split block of size 2k+1

• If block of size 2k is deallocated
and its buddy is free, merge them

• Worst-case cost: log(memory size)

Free
Fibonacci heap:

• Block sizes are Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, …
• Less fragmentation

22/63

COST OF HEAP ALLOCATION

Single free list: Linear cost to find a block to accommodate each request.

Buddy system:
• Blocks of size 2n0 , 2n0+1, 2n0+2, . . .
• Separate free list for each block
size

• If block of size 2k is unavailable,
split block of size 2k+1

• If block of size 2k is deallocated
and its buddy is free, merge them

• Worst-case cost: log(memory size)

Free
Fibonacci heap:

• Block sizes are Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, …
• Less fragmentation

22/63

COST OF HEAP ALLOCATION

Single free list: Linear cost to find a block to accommodate each request.

Buddy system:
• Blocks of size 2n0 , 2n0+1, 2n0+2, . . .
• Separate free list for each block
size

• If block of size 2k is unavailable,
split block of size 2k+1

• If block of size 2k is deallocated
and its buddy is free, merge them

• Worst-case cost: log(memory size)

Free
Fibonacci heap:

• Block sizes are Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, …
• Less fragmentation

22/63

COST OF HEAP ALLOCATION

Single free list: Linear cost to find a block to accommodate each request.

Buddy system:
• Blocks of size 2n0 , 2n0+1, 2n0+2, . . .
• Separate free list for each block
size

• If block of size 2k is unavailable,
split block of size 2k+1

• If block of size 2k is deallocated
and its buddy is free, merge them

• Worst-case cost: log(memory size)

Free
Fibonacci heap:

• Block sizes are Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, …
• Less fragmentation

22/63

COST OF HEAP ALLOCATION

Single free list: Linear cost to find a block to accommodate each request.

Buddy system:
• Blocks of size 2n0 , 2n0+1, 2n0+2, . . .
• Separate free list for each block
size

• If block of size 2k is unavailable,
split block of size 2k+1

• If block of size 2k is deallocated
and its buddy is free, merge them

• Worst-case cost: log(memory size)

Free
Fibonacci heap:

• Block sizes are Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, …
• Less fragmentation

22/63

COST OF HEAP ALLOCATION

Single free list: Linear cost to find a block to accommodate each request.

Buddy system:
• Blocks of size 2n0 , 2n0+1, 2n0+2, . . .
• Separate free list for each block
size

• If block of size 2k is unavailable,
split block of size 2k+1

• If block of size 2k is deallocated
and its buddy is free, merge them

• Worst-case cost: log(memory size)

Free

Fibonacci heap:

• Block sizes are Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, …
• Less fragmentation 22/63

HEAP DEALLOCATION

Explicit deallocation by programmer:

• Used in Pascal, C, C++, …
• Efficient
• May lead to bugs that are difficult to find:

• Dangling pointers/references from deallocating too soon.
• Memory leaks from not deallocating.

Automatic deallocation by garbage collector:

• Using in Java, Python, declarative programming languages, …
• Can add significant runtime overhead
• Safer

23/63

HEAP DEALLOCATION

Explicit deallocation by programmer:

• Used in Pascal, C, C++, …
• Efficient
• May lead to bugs that are difficult to find:

• Dangling pointers/references from deallocating too soon.
• Memory leaks from not deallocating.

Automatic deallocation by garbage collector:

• Using in Java, Python, declarative programming languages, …
• Can add significant runtime overhead
• Safer

23/63

HEAP DEALLOCATION

Explicit deallocation by programmer:

• Used in Pascal, C, C++, …
• Efficient
• May lead to bugs that are difficult to find:

• Dangling pointers/references from deallocating too soon.
• Memory leaks from not deallocating.

Automatic deallocation by garbage collector:

• Using in Java, Python, declarative programming languages, …
• Can add significant runtime overhead
• Safer

23/63

ROAD MAP

Language concepts:

• Names
• Binding
• Scoping
• Modules and classes
• Aliasing and overloading

Implementation:

• Stack frames
• Heap management
• Static chains
• Closures

24/63

ROAD MAP

Language concepts:

• Names
• Binding
• Scoping
• Modules and classes
• Aliasing and overloading

Implementation:

• Stack frames
• Heap management
• Static chains
• Closures

24/63

SCOPES

Scope of a binding
The region of a program or time
interval(s) in the program’s execution
during which the binding is active

Scope
Maximal region of the program where
no bindings are destroyed (e.g., a
function body)

Lexical (static) scoping

• Binding based on nesting of blocks
• Can be determined at compile time

Dynamic scoping

• Binding depends on flow of execution at runtime
• Can only be determined at runtime

25/63

SCOPES

Scope of a binding
The region of a program or time
interval(s) in the program’s execution
during which the binding is active

Scope
Maximal region of the program where
no bindings are destroyed (e.g., a
function body)

Lexical (static) scoping

• Binding based on nesting of blocks
• Can be determined at compile time

Dynamic scoping

• Binding depends on flow of execution at runtime
• Can only be determined at runtime

25/63

SCOPES

Scope of a binding
The region of a program or time
interval(s) in the program’s execution
during which the binding is active

Scope
Maximal region of the program where
no bindings are destroyed (e.g., a
function body)

Lexical (static) scoping

• Binding based on nesting of blocks
• Can be determined at compile time

Dynamic scoping

• Binding depends on flow of execution at runtime
• Can only be determined at runtime

25/63

LEXICAL SCOPING

Lexical scoping
The binding for a name at the current position is the one encountered in the
smallest enclosing lexical unit.

Lexical units

• Packages, modules, source files
• Classes
• Procedures/functions and nested subroutines
• Blocks
• Records and structures

Important variant: The current binding for a name is the one encountered in the
smallest enclosing lexical unit and preceding the current point in the progam text.

26/63

LEXICAL SCOPING

Lexical scoping
The binding for a name at the current position is the one encountered in the
smallest enclosing lexical unit.

Lexical units

• Packages, modules, source files
• Classes
• Procedures/functions and nested subroutines
• Blocks
• Records and structures

Important variant: The current binding for a name is the one encountered in the
smallest enclosing lexical unit and preceding the current point in the progam text.

26/63

LEXICAL SCOPING

Lexical scoping
The binding for a name at the current position is the one encountered in the
smallest enclosing lexical unit.

Lexical units

• Packages, modules, source files
• Classes
• Procedures/functions and nested subroutines
• Blocks
• Records and structures

Important variant: The current binding for a name is the one encountered in the
smallest enclosing lexical unit and preceding the current point in the progam text.

26/63

LEXICAL SCOPING IN SCHEME

The scope of the red variable is shaded in each example.

(... (define x ...) fun1 fun2 ... funk)

(lambda (x ...) fun1 fun2 ... funk)

(let ((x exp1) (y exp2) (z exp3)) fun1 fun2 ... funk)

(let* ((x exp1) (y exp2) (z exp3)) fun1 fun2 ... funk)

(letrec ((x exp1) (y exp2) (z exp3)) fun1 fun2 ... funk)

27/63

LEXICAL SCOPING IN SCHEME: EXAMPLE

(define (fun a b)
(let ((x 0)

(y 0)
(z 0))

(set! x (+ a b))

(let ((a 3)
(b 4))

(let ((a 5)
(b 6))

(set! y (+ a b)))

(set! z (+ a b)))

(list x y z)))

What does (fun 1 2) return?

'(3 11 7)

28/63

LEXICAL SCOPING IN SCHEME: EXAMPLE

(define (fun a b)
(let ((x 0)

(y 0)
(z 0))

(set! x (+ a b))

(let ((a 3)
(b 4))

(let ((a 5)
(b 6))

(set! y (+ a b)))

(set! z (+ a b)))

(list x y z)))

What does (fun 1 2) return?

'(3 11 7)

28/63

LEXICAL SCOPING IN SCHEME: EXAMPLE

(define (fun a b)
(let ((x 0)

(y 0)
(z 0))

(set! x (+ a b))

(let ((a 3)
(b 4))

(let ((a 5)
(b 6))

(set! y (+ a b)))

(set! z (+ a b)))

(list x y z)))

What does (fun 1 2) return?

'(3 11 7)

28/63

LEXICAL SCOPING IN PASCAL

procedure P1(A1 : T1);
var X : real;
procedure P2(A2 : T2);
procedure P3(A3 : T3);
begin

...
end;

begin
...

end;
procedure P4(A4 : T4);
function F1(A5 : T5) : T6;
var X : integer;
begin

...
end;

begin
...

end;
begin

...
end;

What’s visible inside P1’s body?

P1, A1, X1, P2, P4

What’s visible inside P2’s body?

P1, A1, X1, P2, P3, A2

What’s visible inside P3’s body?

P1, A1, X1, P2, P3, A2, A3

What’s visible inside P4’s body?

P1, A1, X1, P2, P4, A4, F1

What’s visible inside P5’s body?

P1, A1, P2, P4, A4, F1, A5, X2

29/63

LEXICAL SCOPING IN PASCAL

procedure P1(A1 : T1);
var X : real;
procedure P2(A2 : T2);
procedure P3(A3 : T3);
begin

...
end;

begin
...

end;
procedure P4(A4 : T4);
function F1(A5 : T5) : T6;
var X : integer;
begin

...
end;

begin
...

end;
begin

...
end;

What’s visible inside P1’s body?

P1, A1, X1, P2, P4

What’s visible inside P2’s body?

P1, A1, X1, P2, P3, A2

What’s visible inside P3’s body?

P1, A1, X1, P2, P3, A2, A3

What’s visible inside P4’s body?

P1, A1, X1, P2, P4, A4, F1

What’s visible inside P5’s body?

P1, A1, P2, P4, A4, F1, A5, X2

29/63

LEXICAL SCOPING IN PASCAL

procedure P1(A1 : T1);
var X : real;
procedure P2(A2 : T2);
procedure P3(A3 : T3);
begin

...
end;

begin
...

end;
procedure P4(A4 : T4);
function F1(A5 : T5) : T6;
var X : integer;
begin

...
end;

begin
...

end;
begin

...
end;

What’s visible inside P1’s body?

P1, A1, X1, P2, P4

What’s visible inside P2’s body?

P1, A1, X1, P2, P3, A2

What’s visible inside P3’s body?

P1, A1, X1, P2, P3, A2, A3

What’s visible inside P4’s body?

P1, A1, X1, P2, P4, A4, F1

What’s visible inside P5’s body?

P1, A1, P2, P4, A4, F1, A5, X2

29/63

LEXICAL SCOPING IN PASCAL

procedure P1(A1 : T1);
var X : real;
procedure P2(A2 : T2);
procedure P3(A3 : T3);
begin

...
end;

begin
...

end;
procedure P4(A4 : T4);
function F1(A5 : T5) : T6;
var X : integer;
begin

...
end;

begin
...

end;
begin

...
end;

What’s visible inside P1’s body?

P1, A1, X1, P2, P4

What’s visible inside P2’s body?

P1, A1, X1, P2, P3, A2

What’s visible inside P3’s body?

P1, A1, X1, P2, P3, A2, A3

What’s visible inside P4’s body?

P1, A1, X1, P2, P4, A4, F1

What’s visible inside P5’s body?

P1, A1, P2, P4, A4, F1, A5, X2

29/63

LEXICAL SCOPING IN PASCAL

procedure P1(A1 : T1);
var X : real;
procedure P2(A2 : T2);
procedure P3(A3 : T3);
begin

...
end;

begin
...

end;
procedure P4(A4 : T4);
function F1(A5 : T5) : T6;
var X : integer;
begin

...
end;

begin
...

end;
begin

...
end;

What’s visible inside P1’s body?

P1, A1, X1, P2, P4

What’s visible inside P2’s body?

P1, A1, X1, P2, P3, A2

What’s visible inside P3’s body?

P1, A1, X1, P2, P3, A2, A3

What’s visible inside P4’s body?

P1, A1, X1, P2, P4, A4, F1

What’s visible inside P5’s body?

P1, A1, P2, P4, A4, F1, A5, X2

29/63

LEXICAL SCOPING IN PASCAL

procedure P1(A1 : T1);
var X : real;
procedure P2(A2 : T2);
procedure P3(A3 : T3);
begin

...
end;

begin
...

end;
procedure P4(A4 : T4);
function F1(A5 : T5) : T6;
var X : integer;
begin

...
end;

begin
...

end;
begin

...
end;

What’s visible inside P1’s body?

P1, A1, X1, P2, P4

What’s visible inside P2’s body?

P1, A1, X1, P2, P3, A2

What’s visible inside P3’s body?

P1, A1, X1, P2, P3, A2, A3

What’s visible inside P4’s body?

P1, A1, X1, P2, P4, A4, F1

What’s visible inside P5’s body?

P1, A1, P2, P4, A4, F1, A5, X2

29/63

LEXICAL SCOPING IN PASCAL

procedure P1(A1 : T1);
var X : real;
procedure P2(A2 : T2);
procedure P3(A3 : T3);
begin

...
end;

begin
...

end;
procedure P4(A4 : T4);
function F1(A5 : T5) : T6;
var X : integer;
begin

...
end;

begin
...

end;
begin

...
end;

What’s visible inside P1’s body?

P1, A1, X1, P2, P4

What’s visible inside P2’s body?

P1, A1, X1, P2, P3, A2

What’s visible inside P3’s body?

P1, A1, X1, P2, P3, A2, A3

What’s visible inside P4’s body?

P1, A1, X1, P2, P4, A4, F1

What’s visible inside P5’s body?

P1, A1, P2, P4, A4, F1, A5, X2
29/63

IMPLEMENTATION OF LEXICAL SCOPING: STATIC CHAINS

The stack frame of each
invocation has a static link to
the stack frame of the most
recent invocation of the lexically
surrounding subroutine.

To reference a variable in some
outer scope, the chain of static
links is traversed, followed by
adding the offset of the variable
relative to the stack frame it is
in.

Example: Access variable x in
procedure A from within
procedure C.

Call C
D

Call D

C
B

E
Call B

Call E

A

A

E

B

D

C

x
Offset

FP

30/63

IMPLEMENTATION OF LEXICAL SCOPING: STATIC CHAINS

The stack frame of each
invocation has a static link to
the stack frame of the most
recent invocation of the lexically
surrounding subroutine.

To reference a variable in some
outer scope, the chain of static
links is traversed, followed by
adding the offset of the variable
relative to the stack frame it is
in.

Example: Access variable x in
procedure A from within
procedure C.

Call C
D

Call D

C
B

E
Call B

Call E

A

A

E

B

D

C

x
Offset

FP

30/63

IMPLEMENTATION OF LEXICAL SCOPING: STATIC CHAINS

The stack frame of each
invocation has a static link to
the stack frame of the most
recent invocation of the lexically
surrounding subroutine.

To reference a variable in some
outer scope, the chain of static
links is traversed, followed by
adding the offset of the variable
relative to the stack frame it is
in.

Example: Access variable x in
procedure A from within
procedure C.

Call C
D

Call D

C
B

E
Call B

Call E

A

A

E

B

D

C

x
Offset

FP

30/63

IMPLEMENTATION OF LEXICAL SCOPING: STATIC CHAINS

The stack frame of each
invocation has a static link to
the stack frame of the most
recent invocation of the lexically
surrounding subroutine.

To reference a variable in some
outer scope, the chain of static
links is traversed, followed by
adding the offset of the variable
relative to the stack frame it is
in.

Example: Access variable x in
procedure A from within
procedure C.

Call C
D

Call D

C
B

E
Call B

Call E

A

A

E

B

D

C

x
Offset

FP

30/63

IMPLEMENTATION OF LEXICAL SCOPING: STATIC CHAINS

The stack frame of each
invocation has a static link to
the stack frame of the most
recent invocation of the lexically
surrounding subroutine.

To reference a variable in some
outer scope, the chain of static
links is traversed, followed by
adding the offset of the variable
relative to the stack frame it is
in.

Example: Access variable x in
procedure A from within
procedure C.

Call C
D

Call D

C
B

E
Call B

Call E

A

A

E

B

D

C

x
Offset

FP

30/63

DYNAMIC SCOPING

Dynamic binding
The current binding for a given name is the one

• Encountered most recently during execution and
• Not yet destroyed by exiting its scope.

Static scoping
sub f {
my $a = 1;
print "f:$a\n";
&printa();

}

sub printa { print "p:$a\n"; }

$a = 2;
&f();

Dynamic scoping
sub f {

local $a = 1;
print "f:$a\n";
&printa();

}

sub printa { print "p:$a\n"; }

$a = 2;
&f();

31/63

LEXICAL VS DYNAMIC SCOPING: ANOTHER EXAMPLE

a : integer -- global declaration

procedure first
a := 1

end

procedure second
a : integer -- local declaration
first()

end

a := 2

second()
print(a)

What does this program print
• Under lexical scoping?

• Under dynamic scoping?

Dynamic scoping is usually a bad
idea!

32/63

LEXICAL VS DYNAMIC SCOPING: ANOTHER EXAMPLE

a : integer -- global declaration

procedure first
a := 1

end

procedure second
a : integer -- local declaration
first()

end

a := 2

second()
print(a)

What does this program print
• Under lexical scoping?

• Under dynamic scoping?

Dynamic scoping is usually a bad
idea!

32/63

LEXICAL VS DYNAMIC SCOPING: ANOTHER EXAMPLE

a : integer -- global declaration

procedure first
a := 1

end

procedure second
a : integer -- local declaration
first()

end

a := 2

second()
print(a)

What does this program print
• Under lexical scoping?
• Under dynamic scoping?

Dynamic scoping is usually a bad
idea!

32/63

LEXICAL VS DYNAMIC SCOPING: ANOTHER EXAMPLE

a : integer -- global declaration

procedure first
a := 1

end

procedure second
a : integer -- local declaration
first()

end

a := 2

second()
print(a)

What does this program print
• Under lexical scoping?
• Under dynamic scoping?

Dynamic scoping is usually a bad
idea!

32/63

ROAD MAP

Language concepts:

• Names
• Binding
• Scoping
• Modules and classes
• Aliasing and overloading

Implementation:

• Stack frames
• Heap management
• Static chains
• Closures

33/63

ROAD MAP

Language concepts:

• Names
• Binding
• Scoping
• Modules and classes
• Aliasing and overloading

Implementation:

• Stack frames
• Heap management
• Static chains
• Closures

33/63

SHALLOW AND DEEP BINDING

If a subroutine is passed as a parameter, when are the free variables bound?

Shallow binding
Free variables are bound when the subroutine is called.

Deep binding
Free variables are bound when the subroutine is first passed as a parameter.

This is important using both static and dynamic scoping and is known as the
funarg problem.

34/63

SHALLOW AND DEEP BINDING: EXAMPLE

int x = 10;

function f(int a) {
x = x + a;

}

function g(function h) {
int x = 30;
h(100);
print(x);

}

function main() {
g(f);
print(x);

}

What is the output of this program
using deep binding?

30
110

What is the output of this program
using shallow binding?

130
10

35/63

SHALLOW AND DEEP BINDING: EXAMPLE

int x = 10;

function f(int a) {
x = x + a;

}

function g(function h) {
int x = 30;
h(100);
print(x);

}

function main() {
g(f);
print(x);

}

What is the output of this program
using deep binding?

30
110

What is the output of this program
using shallow binding?

130
10

35/63

SHALLOW AND DEEP BINDING: EXAMPLE

int x = 10;

function f(int a) {
x = x + a;

}

function g(function h) {
int x = 30;
h(100);
print(x);

}

function main() {
g(f);
print(x);

}

What is the output of this program
using deep binding?

30
110

What is the output of this program
using shallow binding?

130
10

35/63

SHALLOW AND DEEP BINDING: EXAMPLE

int x = 10;

function f(int a) {
x = x + a;

}

function g(function h) {
int x = 30;
h(100);
print(x);

}

function main() {
g(f);
print(x);

}

What is the output of this program
using deep binding?

30
110

What is the output of this program
using shallow binding?

130
10

35/63

EXAMPLE OF THE FUNARG PROBLEM

type person = record procedure print_selected_records(
age : integer; db : database;

end; predicate, print_routine : procedure
)

(* age threshold *) var line_length : integer;
threshold : integer; begin
people : database; if device_type(stdout) = terminal

then line_length := 80;
function older_than(p : person) : boolean else line_length := 132;
begin for each record r in db

return p.age >= threshold if predicate(r)
end; then print_routine(r);

end;
procedure print_person(p : person)
begin threshold := 35;
(* use line_length to format data *) print_selected_records(
end; people, older_than, print_person

);

The function older_than assumes deep binding
(but not necessarily lexical scoping).

The procedure print_person assumes shallow binding (and dynamic scoping).

This is an example of terrible programming style: the behaviour of both
older_than and print_person depends on variable values not explicitly
associated with them.

The function older_than should take the age threshold as an argument.

The procedure print_person and its associated settings should be wrapped in a
class.

36/63

EXAMPLE OF THE FUNARG PROBLEM

type person = record procedure print_selected_records(
age : integer; db : database;

end; predicate, print_routine : procedure
)

(* age threshold *) var line_length : integer;
threshold : integer; begin
people : database; if device_type(stdout) = terminal

then line_length := 80;
function older_than(p : person) : boolean else line_length := 132;
begin for each record r in db

return p.age >= threshold if predicate(r)
end; then print_routine(r);

end;
procedure print_person(p : person)
begin threshold := 35;
(* use line_length to format data *) print_selected_records(
end; people, older_than, print_person

);

The function older_than assumes deep binding
(but not necessarily lexical scoping).

The procedure print_person assumes shallow binding (and dynamic scoping).

This is an example of terrible programming style: the behaviour of both
older_than and print_person depends on variable values not explicitly
associated with them.

The function older_than should take the age threshold as an argument.

The procedure print_person and its associated settings should be wrapped in a
class.

36/63

EXAMPLE OF THE FUNARG PROBLEM

type person = record procedure print_selected_records(
age : integer; db : database;

end; predicate, print_routine : procedure
)

(* age threshold *) var line_length : integer;
threshold : integer; begin
people : database; if device_type(stdout) = terminal

then line_length := 80;
function older_than(p : person) : boolean else line_length := 132;
begin for each record r in db

return p.age >= threshold if predicate(r)
end; then print_routine(r);

end;
procedure print_person(p : person)
begin threshold := 35;
(* use line_length to format data *) print_selected_records(
end; people, older_than, print_person

);

The function older_than assumes deep binding
(but not necessarily lexical scoping).

The procedure print_person assumes shallow binding (and dynamic scoping).

This is an example of terrible programming style: the behaviour of both
older_than and print_person depends on variable values not explicitly
associated with them.

The function older_than should take the age threshold as an argument.

The procedure print_person and its associated settings should be wrapped in a
class.

36/63

EXAMPLE OF THE FUNARG PROBLEM

type person = record procedure print_selected_records(
age : integer; db : database;

end; predicate, print_routine : procedure
)

(* age threshold *) var line_length : integer;
threshold : integer; begin
people : database; if device_type(stdout) = terminal

then line_length := 80;
function older_than(p : person) : boolean else line_length := 132;
begin for each record r in db

return p.age >= threshold if predicate(r)
end; then print_routine(r);

end;
procedure print_person(p : person)
begin threshold := 35;
(* use line_length to format data *) print_selected_records(
end; people, older_than, print_person

);

The function older_than assumes deep binding
(but not necessarily lexical scoping).

The procedure print_person assumes shallow binding (and dynamic scoping).

This is an example of terrible programming style: the behaviour of both
older_than and print_person depends on variable values not explicitly
associated with them.

The function older_than should take the age threshold as an argument.

The procedure print_person and its associated settings should be wrapped in a
class.

36/63

SUBROUTINE CLOSURES

Closure
A pair bundling

• A reference to a subroutine with
• A referencing environment active when the subroutine was defined.

Closures are necessary to implement deep binding in languages that allow
functions to be passed around as function arguments and return values:

• When the function is invoked, the referencing environment it refers to may
no longer exist and thus needs to be preserved explicitly in the closure.

• This can be used to implement “poor man’s objects”.

37/63

SUBROUTINE CLOSURES: EXAMPLE

(define (new-stack)
(let ((stack '()))
(lambda (op . args)
(cond ((eq? op 'push)

(set! stack (append (reverse args) stack)))
((eq? op 'pop)
(let ((top (car stack)))
(set! stack (cdr stack))
top))

((eq? op 'empty)
(null? stack))))))

> (define st1 (new-stack)) > (st1 'pop)
> (define st2 (new-stack)) 3
> (st1 'push 1 2 3) > (st2 'pop)
> (st1 'empty) 4
#f > (st1 'pop)
> (st2 'empty) 2
#t > (st1 'pop)
> (st2 'push 4) 1

38/63

SUBROUTINE CLOSURES: EXAMPLE

(define (new-stack)
(let ((stack '()))
(lambda (op . args)
(cond ((eq? op 'push)

(set! stack (append (reverse args) stack)))
((eq? op 'pop)
(let ((top (car stack)))
(set! stack (cdr stack))
top))

((eq? op 'empty)
(null? stack))))))

> (define st1 (new-stack))

> (st1 'pop)
> (define st2 (new-stack)) 3
> (st1 'push 1 2 3) > (st2 'pop)
> (st1 'empty) 4
#f > (st1 'pop)
> (st2 'empty) 2
#t > (st1 'pop)
> (st2 'push 4) 1

38/63

SUBROUTINE CLOSURES: EXAMPLE

(define (new-stack)
(let ((stack '()))
(lambda (op . args)
(cond ((eq? op 'push)

(set! stack (append (reverse args) stack)))
((eq? op 'pop)
(let ((top (car stack)))
(set! stack (cdr stack))
top))

((eq? op 'empty)
(null? stack))))))

> (define st1 (new-stack))

> (st1 'pop)

> (define st2 (new-stack))

3
> (st1 'push 1 2 3) > (st2 'pop)
> (st1 'empty) 4
#f > (st1 'pop)
> (st2 'empty) 2
#t > (st1 'pop)
> (st2 'push 4) 1

38/63

SUBROUTINE CLOSURES: EXAMPLE

(define (new-stack)
(let ((stack '()))
(lambda (op . args)
(cond ((eq? op 'push)

(set! stack (append (reverse args) stack)))
((eq? op 'pop)
(let ((top (car stack)))
(set! stack (cdr stack))
top))

((eq? op 'empty)
(null? stack))))))

> (define st1 (new-stack))

> (st1 'pop)

> (define st2 (new-stack))

3

> (st1 'push 1 2 3)

> (st2 'pop)
> (st1 'empty) 4
#f > (st1 'pop)
> (st2 'empty) 2
#t > (st1 'pop)
> (st2 'push 4) 1

38/63

SUBROUTINE CLOSURES: EXAMPLE

(define (new-stack)
(let ((stack '()))
(lambda (op . args)
(cond ((eq? op 'push)

(set! stack (append (reverse args) stack)))
((eq? op 'pop)
(let ((top (car stack)))
(set! stack (cdr stack))
top))

((eq? op 'empty)
(null? stack))))))

> (define st1 (new-stack))

> (st1 'pop)

> (define st2 (new-stack))

3

> (st1 'push 1 2 3)

> (st2 'pop)

> (st1 'empty)

4
#f > (st1 'pop)
> (st2 'empty) 2
#t > (st1 'pop)
> (st2 'push 4) 1

38/63

SUBROUTINE CLOSURES: EXAMPLE

(define (new-stack)
(let ((stack '()))
(lambda (op . args)
(cond ((eq? op 'push)

(set! stack (append (reverse args) stack)))
((eq? op 'pop)
(let ((top (car stack)))
(set! stack (cdr stack))
top))

((eq? op 'empty)
(null? stack))))))

> (define st1 (new-stack))

> (st1 'pop)

> (define st2 (new-stack))

3

> (st1 'push 1 2 3)

> (st2 'pop)

> (st1 'empty)

4

#f

> (st1 'pop)
> (st2 'empty) 2
#t > (st1 'pop)
> (st2 'push 4) 1

38/63

SUBROUTINE CLOSURES: EXAMPLE

(define (new-stack)
(let ((stack '()))
(lambda (op . args)
(cond ((eq? op 'push)

(set! stack (append (reverse args) stack)))
((eq? op 'pop)
(let ((top (car stack)))
(set! stack (cdr stack))
top))

((eq? op 'empty)
(null? stack))))))

> (define st1 (new-stack))

> (st1 'pop)

> (define st2 (new-stack))

3

> (st1 'push 1 2 3)

> (st2 'pop)

> (st1 'empty)

4

#f

> (st1 'pop)

> (st2 'empty)

2
#t > (st1 'pop)
> (st2 'push 4) 1

38/63

SUBROUTINE CLOSURES: EXAMPLE

(define (new-stack)
(let ((stack '()))
(lambda (op . args)
(cond ((eq? op 'push)

(set! stack (append (reverse args) stack)))
((eq? op 'pop)
(let ((top (car stack)))
(set! stack (cdr stack))
top))

((eq? op 'empty)
(null? stack))))))

> (define st1 (new-stack))

> (st1 'pop)

> (define st2 (new-stack))

3

> (st1 'push 1 2 3)

> (st2 'pop)

> (st1 'empty)

4

#f

> (st1 'pop)

> (st2 'empty)

2

#t

> (st1 'pop)
> (st2 'push 4) 1

38/63

SUBROUTINE CLOSURES: EXAMPLE

(define (new-stack)
(let ((stack '()))
(lambda (op . args)
(cond ((eq? op 'push)

(set! stack (append (reverse args) stack)))
((eq? op 'pop)
(let ((top (car stack)))
(set! stack (cdr stack))
top))

((eq? op 'empty)
(null? stack))))))

> (define st1 (new-stack))

> (st1 'pop)

> (define st2 (new-stack))

3

> (st1 'push 1 2 3)

> (st2 'pop)

> (st1 'empty)

4

#f

> (st1 'pop)

> (st2 'empty)

2

#t

> (st1 'pop)

> (st2 'push 4)

1

38/63

SUBROUTINE CLOSURES: EXAMPLE

(define (new-stack)
(let ((stack '()))
(lambda (op . args)
(cond ((eq? op 'push)

(set! stack (append (reverse args) stack)))
((eq? op 'pop)
(let ((top (car stack)))
(set! stack (cdr stack))
top))

((eq? op 'empty)
(null? stack))))))

> (define st1 (new-stack)) > (st1 'pop)
> (define st2 (new-stack))

3

> (st1 'push 1 2 3)

> (st2 'pop)

> (st1 'empty)

4

#f

> (st1 'pop)

> (st2 'empty)

2

#t

> (st1 'pop)

> (st2 'push 4)

1

38/63

SUBROUTINE CLOSURES: EXAMPLE

(define (new-stack)
(let ((stack '()))
(lambda (op . args)
(cond ((eq? op 'push)

(set! stack (append (reverse args) stack)))
((eq? op 'pop)
(let ((top (car stack)))
(set! stack (cdr stack))
top))

((eq? op 'empty)
(null? stack))))))

> (define st1 (new-stack)) > (st1 'pop)
> (define st2 (new-stack)) 3
> (st1 'push 1 2 3)

> (st2 'pop)

> (st1 'empty)

4

#f

> (st1 'pop)

> (st2 'empty)

2

#t

> (st1 'pop)

> (st2 'push 4)

1

38/63

SUBROUTINE CLOSURES: EXAMPLE

(define (new-stack)
(let ((stack '()))
(lambda (op . args)
(cond ((eq? op 'push)

(set! stack (append (reverse args) stack)))
((eq? op 'pop)
(let ((top (car stack)))
(set! stack (cdr stack))
top))

((eq? op 'empty)
(null? stack))))))

> (define st1 (new-stack)) > (st1 'pop)
> (define st2 (new-stack)) 3
> (st1 'push 1 2 3) > (st2 'pop)
> (st1 'empty)

4

#f

> (st1 'pop)

> (st2 'empty)

2

#t

> (st1 'pop)

> (st2 'push 4)

1

38/63

SUBROUTINE CLOSURES: EXAMPLE

(define (new-stack)
(let ((stack '()))
(lambda (op . args)
(cond ((eq? op 'push)

(set! stack (append (reverse args) stack)))
((eq? op 'pop)
(let ((top (car stack)))
(set! stack (cdr stack))
top))

((eq? op 'empty)
(null? stack))))))

> (define st1 (new-stack)) > (st1 'pop)
> (define st2 (new-stack)) 3
> (st1 'push 1 2 3) > (st2 'pop)
> (st1 'empty) 4
#f

> (st1 'pop)

> (st2 'empty)

2

#t

> (st1 'pop)

> (st2 'push 4)

1

38/63

SUBROUTINE CLOSURES: EXAMPLE

(define (new-stack)
(let ((stack '()))
(lambda (op . args)
(cond ((eq? op 'push)

(set! stack (append (reverse args) stack)))
((eq? op 'pop)
(let ((top (car stack)))
(set! stack (cdr stack))
top))

((eq? op 'empty)
(null? stack))))))

> (define st1 (new-stack)) > (st1 'pop)
> (define st2 (new-stack)) 3
> (st1 'push 1 2 3) > (st2 'pop)
> (st1 'empty) 4
#f > (st1 'pop)
> (st2 'empty)

2

#t

> (st1 'pop)

> (st2 'push 4)

1

38/63

SUBROUTINE CLOSURES: EXAMPLE

(define (new-stack)
(let ((stack '()))
(lambda (op . args)
(cond ((eq? op 'push)

(set! stack (append (reverse args) stack)))
((eq? op 'pop)
(let ((top (car stack)))
(set! stack (cdr stack))
top))

((eq? op 'empty)
(null? stack))))))

> (define st1 (new-stack)) > (st1 'pop)
> (define st2 (new-stack)) 3
> (st1 'push 1 2 3) > (st2 'pop)
> (st1 'empty) 4
#f > (st1 'pop)
> (st2 'empty) 2
#t

> (st1 'pop)

> (st2 'push 4)

1

38/63

SUBROUTINE CLOSURES: EXAMPLE

(define (new-stack)
(let ((stack '()))
(lambda (op . args)
(cond ((eq? op 'push)

(set! stack (append (reverse args) stack)))
((eq? op 'pop)
(let ((top (car stack)))
(set! stack (cdr stack))
top))

((eq? op 'empty)
(null? stack))))))

> (define st1 (new-stack)) > (st1 'pop)
> (define st2 (new-stack)) 3
> (st1 'push 1 2 3) > (st2 'pop)
> (st1 'empty) 4
#f > (st1 'pop)
> (st2 'empty) 2
#t > (st1 'pop)
> (st2 'push 4)

1

38/63

SUBROUTINE CLOSURES: EXAMPLE

(define (new-stack)
(let ((stack '()))
(lambda (op . args)
(cond ((eq? op 'push)

(set! stack (append (reverse args) stack)))
((eq? op 'pop)
(let ((top (car stack)))
(set! stack (cdr stack))
top))

((eq? op 'empty)
(null? stack))))))

> (define st1 (new-stack)) > (st1 'pop)
> (define st2 (new-stack)) 3
> (st1 'push 1 2 3) > (st2 'pop)
> (st1 'empty) 4
#f > (st1 'pop)
> (st2 'empty) 2
#t > (st1 'pop)
> (st2 'push 4) 1

38/63

REFERENCING ENVIRONMENTS AND CLOSURES IN SCHEME

Frame

• A collection of variable-object
bindings

• Can point to a “parent frame” to
construct static chains

Referencing environment
A chain of frames represented by
pointing to the first frame in the chain

Closure
The code of a function paired with a
pointer to a referencing environment

The value of a variable x is the
value bound to x in the first frame
that provides such a binding.

x : 3
y : 5

z : 6
x : 7

m : 1
y : 2

A B

What are the values of x and y in
the environments A and B,
respectively?

39/63

REFERENCING ENVIRONMENTS AND CLOSURES IN SCHEME

Frame

• A collection of variable-object
bindings

• Can point to a “parent frame” to
construct static chains

Referencing environment
A chain of frames represented by
pointing to the first frame in the chain

Closure
The code of a function paired with a
pointer to a referencing environment

The value of a variable x is the
value bound to x in the first frame
that provides such a binding.

x : 3
y : 5

z : 6
x : 7

m : 1
y : 2

A B

What are the values of x and y in
the environments A and B,
respectively?

39/63

REFERENCING ENVIRONMENTS AND CLOSURES IN SCHEME

Frame

• A collection of variable-object
bindings

• Can point to a “parent frame” to
construct static chains

Referencing environment
A chain of frames represented by
pointing to the first frame in the chain

Closure
The code of a function paired with a
pointer to a referencing environment

The value of a variable x is the
value bound to x in the first frame
that provides such a binding.

x : 3
y : 5

z : 6
x : 7

m : 1
y : 2

A B

What are the values of x and y in
the environments A and B,
respectively?

39/63

REFERENCING ENVIRONMENTS AND CLOSURES IN SCHEME

Frame

• A collection of variable-object
bindings

• Can point to a “parent frame” to
construct static chains

Referencing environment
A chain of frames represented by
pointing to the first frame in the chain

Closure
The code of a function paired with a
pointer to a referencing environment

The value of a variable x is the
value bound to x in the first frame
that provides such a binding.

x : 3
y : 5

z : 6
x : 7

m : 1
y : 2

A B

What are the values of x and y in
the environments A and B,
respectively?

39/63

REFERENCING ENVIRONMENTS AND CLOSURES IN SCHEME

Frame

• A collection of variable-object
bindings

• Can point to a “parent frame” to
construct static chains

Referencing environment
A chain of frames represented by
pointing to the first frame in the chain

Closure
The code of a function paired with a
pointer to a referencing environment

The value of a variable x is the
value bound to x in the first frame
that provides such a binding.

x : 3
y : 5

z : 6
x : 7

m : 1
y : 2

A B

What are the values of x and y in
the environments A and B,
respectively?

39/63

REPRESENTING CLOSURES

(define (square x) (* x x))

Current frame

square

Parameters: x
Body: (* x x)

40/63

CLOSURES: EXTENDED EXAMPLE (1)

(define (square x) (* x x))
(define (sum-of-squares x y) (+ (square x) (square y)))
(define (f a) (sum-of-squares (+ a 1) (* a 2)))

Parameters: x
Body: (* x x)

Parameters: x,y
Body: (+ (square x)

(square y))

Parameters: a
Body: (sum-of-squares

(+ a 1)
(* a 2))

square sum-of-squares f

41/63

CLOSURES: EXTENDED EXAMPLE (1)

(define (square x) (* x x))
(define (sum-of-squares x y) (+ (square x) (square y)))
(define (f a) (sum-of-squares (+ a 1) (* a 2)))

Parameters: x
Body: (* x x)

Parameters: x,y
Body: (+ (square x)

(square y))

Parameters: a
Body: (sum-of-squares

(+ a 1)
(* a 2))

square sum-of-squares f

41/63

CLOSURES: EXTENDED EXAMPLE (2)

Invocation: (f 5)

Parameters: x
Body: (* x x)

Parameters: x,y
Body: (+ (square x)

(square y))

Parameters: a
Body: (sum-of-squares

(+ a 1)
(* a 2))

square sum-of-squares f

x
6 10
x y

5
a

42/63

CLOSURES: EXTENDED EXAMPLE (2)

Invocation: (f 5)

Parameters: x
Body: (* x x)

Parameters: x,y
Body: (+ (square x)

(square y))

Parameters: a
Body: (sum-of-squares

(+ a 1)
(* a 2))

square sum-of-squares f

x
6 10
x y

5
a

42/63

CLOSURES: EXTENDED EXAMPLE (2)

Invocation: (f 5)

Parameters: x
Body: (* x x)

Parameters: x,y
Body: (+ (square x)

(square y))

Parameters: a
Body: (sum-of-squares

(+ a 1)
(* a 2))

square sum-of-squares f

x

6 10
x y

5
a

42/63

CLOSURES: EXTENDED EXAMPLE (2)

Invocation: (f 5)

Parameters: x
Body: (* x x)

Parameters: x,y
Body: (+ (square x)

(square y))

Parameters: a
Body: (sum-of-squares

(+ a 1)
(* a 2))

square sum-of-squares f

6
x

6 10
x y

5
a

42/63

CLOSURES: EXTENDED EXAMPLE (2)

Invocation: (f 5)

Parameters: x
Body: (* x x)

Parameters: x,y
Body: (+ (square x)

(square y))

Parameters: a
Body: (sum-of-squares

(+ a 1)
(* a 2))

square sum-of-squares f

x

6 10
x y

5
a

42/63

CLOSURES: EXTENDED EXAMPLE (2)

Invocation: (f 5)

Parameters: x
Body: (* x x)

Parameters: x,y
Body: (+ (square x)

(square y))

Parameters: a
Body: (sum-of-squares

(+ a 1)
(* a 2))

square sum-of-squares f

10
x

6 10
x y

5
a

42/63

CLOSURES: EXTENDED EXAMPLE (2)

Invocation: (f 5)

Parameters: x
Body: (* x x)

Parameters: x,y
Body: (+ (square x)

(square y))

Parameters: a
Body: (sum-of-squares

(+ a 1)
(* a 2))

square sum-of-squares f

x

6 10
x y

5
a

42/63

CLOSURES: EXTENDED EXAMPLE (2)

Invocation: (f 5)

Parameters: x
Body: (* x x)

Parameters: x,y
Body: (+ (square x)

(square y))

Parameters: a
Body: (sum-of-squares

(+ a 1)
(* a 2))

square sum-of-squares f

x
6 10
x y

5
a

42/63

CLOSURES: EXTENDED EXAMPLE (2)

Invocation: (f 5)

Parameters: x
Body: (* x x)

Parameters: x,y
Body: (+ (square x)

(square y))

Parameters: a
Body: (sum-of-squares

(+ a 1)
(* a 2))

square sum-of-squares f

x
6 10
x y

5
a

42/63

CLOSURES SIMULATE OBJECTS

(define (new-counter)
(define c 0)
(lambda ()
(set! c (+ c 1))
c))

> (define cnta
(new-counter))

> (cnta)
1
> (define cntb

(new-counter))
> (cnta)
2
> (cntb)
1

Parameters: —
Body: (define c 0)

(lambda ()
(set! c (+ c 1))
c))

Parameters: —
Body: (set! c (+ c 1))

c

cc

new-counter

cnta cntb

43/63

CLOSURES SIMULATE OBJECTS

(define (new-counter)
(define c 0)
(lambda ()
(set! c (+ c 1))
c))

> (define cnta
(new-counter))

> (cnta)
1
> (define cntb

(new-counter))
> (cnta)
2
> (cntb)
1

Parameters: —
Body: (define c 0)

(lambda ()
(set! c (+ c 1))
c))

Parameters: —
Body: (set! c (+ c 1))

c

cc

new-counter

cnta cntb

43/63

CLOSURES SIMULATE OBJECTS

(define (new-counter)
(define c 0)
(lambda ()
(set! c (+ c 1))
c))

> (define cnta
(new-counter))

> (cnta)
1
> (define cntb

(new-counter))
> (cnta)
2
> (cntb)
1

Parameters: —
Body: (define c 0)

(lambda ()
(set! c (+ c 1))
c))

Parameters: —
Body: (set! c (+ c 1))

c

cc

new-counter

cnta cntb

43/63

CLOSURES SIMULATE OBJECTS

(define (new-counter)
(define c 0)
(lambda ()
(set! c (+ c 1))
c))

> (define cnta
(new-counter))

> (cnta)
1
> (define cntb

(new-counter))
> (cnta)
2
> (cntb)
1

Parameters: —
Body: (define c 0)

(lambda ()
(set! c (+ c 1))
c))

Parameters: —
Body: (set! c (+ c 1))

c

c

c
0

new-counter

cnta cntb

43/63

CLOSURES SIMULATE OBJECTS

(define (new-counter)
(define c 0)
(lambda ()
(set! c (+ c 1))
c))

> (define cnta
(new-counter))

> (cnta)
1
> (define cntb

(new-counter))
> (cnta)
2
> (cntb)
1

Parameters: —
Body: (define c 0)

(lambda ()
(set! c (+ c 1))
c))

Parameters: —
Body: (set! c (+ c 1))

c

c

c
0

new-counter

cnta cntb

43/63

CLOSURES SIMULATE OBJECTS

(define (new-counter)
(define c 0)
(lambda ()
(set! c (+ c 1))
c))

> (define cnta
(new-counter))

> (cnta)
1
> (define cntb

(new-counter))
> (cnta)
2
> (cntb)
1

Parameters: —
Body: (define c 0)

(lambda ()
(set! c (+ c 1))
c))

Parameters: —
Body: (set! c (+ c 1))

c

c

c
0

new-counter

cnta cntb

43/63

CLOSURES SIMULATE OBJECTS

(define (new-counter)
(define c 0)
(lambda ()
(set! c (+ c 1))
c))

> (define cnta
(new-counter))

> (cnta)
1
> (define cntb

(new-counter))
> (cnta)
2
> (cntb)
1

Parameters: —
Body: (define c 0)

(lambda ()
(set! c (+ c 1))
c))

Parameters: —
Body: (set! c (+ c 1))

c

c

c
0

new-counter cnta

cntb

43/63

CLOSURES SIMULATE OBJECTS

(define (new-counter)
(define c 0)
(lambda ()
(set! c (+ c 1))
c))

> (define cnta
(new-counter))

> (cnta)

1
> (define cntb

(new-counter))
> (cnta)
2
> (cntb)
1

Parameters: —
Body: (define c 0)

(lambda ()
(set! c (+ c 1))
c))

Parameters: —
Body: (set! c (+ c 1))

c

c

c
0

new-counter cnta

cntb

43/63

CLOSURES SIMULATE OBJECTS

(define (new-counter)
(define c 0)
(lambda ()
(set! c (+ c 1))
c))

> (define cnta
(new-counter))

> (cnta)

1
> (define cntb

(new-counter))
> (cnta)
2
> (cntb)
1

Parameters: —
Body: (define c 0)

(lambda ()
(set! c (+ c 1))
c))

Parameters: —
Body: (set! c (+ c 1))

c

c

c
0

new-counter cnta

cntb

43/63

CLOSURES SIMULATE OBJECTS

(define (new-counter)
(define c 0)
(lambda ()
(set! c (+ c 1))
c))

> (define cnta
(new-counter))

> (cnta)

1
> (define cntb

(new-counter))
> (cnta)
2
> (cntb)
1

Parameters: —
Body: (define c 0)

(lambda ()
(set! c (+ c 1))
c))

Parameters: —
Body: (set! c (+ c 1))

c

c

c
1

new-counter cnta

cntb

43/63

CLOSURES SIMULATE OBJECTS

(define (new-counter)
(define c 0)
(lambda ()
(set! c (+ c 1))
c))

> (define cnta
(new-counter))

> (cnta)

1
> (define cntb

(new-counter))
> (cnta)
2
> (cntb)
1

Parameters: —
Body: (define c 0)

(lambda ()
(set! c (+ c 1))
c))

Parameters: —
Body: (set! c (+ c 1))

c

c

c
1

new-counter cnta

cntb

43/63

CLOSURES SIMULATE OBJECTS

(define (new-counter)
(define c 0)
(lambda ()
(set! c (+ c 1))
c))

> (define cnta
(new-counter))

> (cnta)
1

> (define cntb
(new-counter))

> (cnta)
2
> (cntb)
1

Parameters: —
Body: (define c 0)

(lambda ()
(set! c (+ c 1))
c))

Parameters: —
Body: (set! c (+ c 1))

c

c

c
1

new-counter cnta

cntb

43/63

CLOSURES SIMULATE OBJECTS

(define (new-counter)
(define c 0)
(lambda ()
(set! c (+ c 1))
c))

> (define cnta
(new-counter))

> (cnta)
1
> (define cntb

(new-counter))

> (cnta)
2
> (cntb)
1

Parameters: —
Body: (define c 0)

(lambda ()
(set! c (+ c 1))
c))

Parameters: —
Body: (set! c (+ c 1))

c

c

c
1

new-counter cnta

cntb

43/63

CLOSURES SIMULATE OBJECTS

(define (new-counter)
(define c 0)
(lambda ()
(set! c (+ c 1))
c))

> (define cnta
(new-counter))

> (cnta)
1
> (define cntb

(new-counter))

> (cnta)
2
> (cntb)
1

Parameters: —
Body: (define c 0)

(lambda ()
(set! c (+ c 1))
c))

Parameters: —
Body: (set! c (+ c 1))

c

c

c
1

new-counter cnta

cntb

43/63

CLOSURES SIMULATE OBJECTS

(define (new-counter)
(define c 0)
(lambda ()
(set! c (+ c 1))
c))

> (define cnta
(new-counter))

> (cnta)
1
> (define cntb

(new-counter))

> (cnta)
2
> (cntb)
1

Parameters: —
Body: (define c 0)

(lambda ()
(set! c (+ c 1))
c))

Parameters: —
Body: (set! c (+ c 1))

c

c
0

c
1

new-counter cnta

cntb

43/63

CLOSURES SIMULATE OBJECTS

(define (new-counter)
(define c 0)
(lambda ()
(set! c (+ c 1))
c))

> (define cnta
(new-counter))

> (cnta)
1
> (define cntb

(new-counter))

> (cnta)
2
> (cntb)
1

Parameters: —
Body: (define c 0)

(lambda ()
(set! c (+ c 1))
c))

Parameters: —
Body: (set! c (+ c 1))

c

c
0

c
1

new-counter cnta

cntb

43/63

CLOSURES SIMULATE OBJECTS

(define (new-counter)
(define c 0)
(lambda ()
(set! c (+ c 1))
c))

> (define cnta
(new-counter))

> (cnta)
1
> (define cntb

(new-counter))

> (cnta)
2
> (cntb)
1

Parameters: —
Body: (define c 0)

(lambda ()
(set! c (+ c 1))
c))

Parameters: —
Body: (set! c (+ c 1))

c

c
0

c
1

new-counter cnta

cntb

43/63

CLOSURES SIMULATE OBJECTS

(define (new-counter)
(define c 0)
(lambda ()
(set! c (+ c 1))
c))

> (define cnta
(new-counter))

> (cnta)
1
> (define cntb

(new-counter))

> (cnta)
2
> (cntb)
1

Parameters: —
Body: (define c 0)

(lambda ()
(set! c (+ c 1))
c))

Parameters: —
Body: (set! c (+ c 1))

c

c
0

c
1

new-counter cnta cntb

43/63

CLOSURES SIMULATE OBJECTS

(define (new-counter)
(define c 0)
(lambda ()
(set! c (+ c 1))
c))

> (define cnta
(new-counter))

> (cnta)
1
> (define cntb

(new-counter))
> (cnta)

2
> (cntb)
1

Parameters: —
Body: (define c 0)

(lambda ()
(set! c (+ c 1))
c))

Parameters: —
Body: (set! c (+ c 1))

c

c
0

c
1

new-counter cnta cntb

43/63

CLOSURES SIMULATE OBJECTS

(define (new-counter)
(define c 0)
(lambda ()
(set! c (+ c 1))
c))

> (define cnta
(new-counter))

> (cnta)
1
> (define cntb

(new-counter))
> (cnta)

2
> (cntb)
1

Parameters: —
Body: (define c 0)

(lambda ()
(set! c (+ c 1))
c))

Parameters: —
Body: (set! c (+ c 1))

c

c
0

c
1

new-counter cnta cntb

43/63

CLOSURES SIMULATE OBJECTS

(define (new-counter)
(define c 0)
(lambda ()
(set! c (+ c 1))
c))

> (define cnta
(new-counter))

> (cnta)
1
> (define cntb

(new-counter))
> (cnta)

2
> (cntb)
1

Parameters: —
Body: (define c 0)

(lambda ()
(set! c (+ c 1))
c))

Parameters: —
Body: (set! c (+ c 1))

c

c
0

c
2

new-counter cnta cntb

43/63

CLOSURES SIMULATE OBJECTS

(define (new-counter)
(define c 0)
(lambda ()
(set! c (+ c 1))
c))

> (define cnta
(new-counter))

> (cnta)
1
> (define cntb

(new-counter))
> (cnta)

2
> (cntb)
1

Parameters: —
Body: (define c 0)

(lambda ()
(set! c (+ c 1))
c))

Parameters: —
Body: (set! c (+ c 1))

c

c
0

c
2

new-counter cnta cntb

43/63

CLOSURES SIMULATE OBJECTS

(define (new-counter)
(define c 0)
(lambda ()
(set! c (+ c 1))
c))

> (define cnta
(new-counter))

> (cnta)
1
> (define cntb

(new-counter))
> (cnta)
2

> (cntb)
1

Parameters: —
Body: (define c 0)

(lambda ()
(set! c (+ c 1))
c))

Parameters: —
Body: (set! c (+ c 1))

c

c
0

c
2

new-counter cnta cntb

43/63

CLOSURES SIMULATE OBJECTS

(define (new-counter)
(define c 0)
(lambda ()
(set! c (+ c 1))
c))

> (define cnta
(new-counter))

> (cnta)
1
> (define cntb

(new-counter))
> (cnta)
2
> (cntb)

1

Parameters: —
Body: (define c 0)

(lambda ()
(set! c (+ c 1))
c))

Parameters: —
Body: (set! c (+ c 1))

c

c
0

c
2

new-counter cnta cntb

43/63

CLOSURES SIMULATE OBJECTS

(define (new-counter)
(define c 0)
(lambda ()
(set! c (+ c 1))
c))

> (define cnta
(new-counter))

> (cnta)
1
> (define cntb

(new-counter))
> (cnta)
2
> (cntb)

1

Parameters: —
Body: (define c 0)

(lambda ()
(set! c (+ c 1))
c))

Parameters: —
Body: (set! c (+ c 1))

c

c
0

c
2

new-counter cnta cntb

43/63

CLOSURES SIMULATE OBJECTS

(define (new-counter)
(define c 0)
(lambda ()
(set! c (+ c 1))
c))

> (define cnta
(new-counter))

> (cnta)
1
> (define cntb

(new-counter))
> (cnta)
2
> (cntb)

1

Parameters: —
Body: (define c 0)

(lambda ()
(set! c (+ c 1))
c))

Parameters: —
Body: (set! c (+ c 1))

c

c
1

c
2

new-counter cnta cntb

43/63

CLOSURES SIMULATE OBJECTS

(define (new-counter)
(define c 0)
(lambda ()
(set! c (+ c 1))
c))

> (define cnta
(new-counter))

> (cnta)
1
> (define cntb

(new-counter))
> (cnta)
2
> (cntb)

1

Parameters: —
Body: (define c 0)

(lambda ()
(set! c (+ c 1))
c))

Parameters: —
Body: (set! c (+ c 1))

c

c
1

c
2

new-counter cnta cntb

43/63

CLOSURES SIMULATE OBJECTS

(define (new-counter)
(define c 0)
(lambda ()
(set! c (+ c 1))
c))

> (define cnta
(new-counter))

> (cnta)
1
> (define cntb

(new-counter))
> (cnta)
2
> (cntb)
1

Parameters: —
Body: (define c 0)

(lambda ()
(set! c (+ c 1))
c))

Parameters: —
Body: (set! c (+ c 1))

c

c
1

c
2

new-counter cnta cntb

43/63

ROAD MAP

Language concepts:

• Names
• Binding
• Scoping
• Modules and classes
• Aliasing and overloading

Implementation:

• Stack frames
• Heap management
• Static chains
• Closures

44/63

ROAD MAP

Language concepts:

• Names
• Binding
• Scoping
• Modules and classes
• Aliasing and overloading

Implementation:

• Stack frames
• Heap management
• Static chains
• Closures

44/63

MODULES

Motivation
Enable programmers in a team to work independently on different parts of a
project.

Requirements

• Modules need to interact with each other through well defined interfaces.
• Internals of modules should be hidden from other modules to avoid
unwanted coupling.

45/63

MODULES

Motivation
Enable programmers in a team to work independently on different parts of a
project.

Requirements

• Modules need to interact with each other through well defined interfaces.
• Internals of modules should be hidden from other modules to avoid
unwanted coupling.

45/63

ENCAPSULATION: FROM STATIC VARIABLES TO CLASSES

• Static variables (in C) provide “private objects” to a single subroutine.

• Modules provide the same set of “private objects” to a group of subroutines.
(Essentially a single instance of a class.)

• Module types (in ML) can be instantiated, effectively acting like classes but
without inheritance.

• Classes add inheritance to module types.

46/63

ENCAPSULATION: FROM STATIC VARIABLES TO CLASSES

• Static variables (in C) provide “private objects” to a single subroutine.

• Modules provide the same set of “private objects” to a group of subroutines.
(Essentially a single instance of a class.)

• Module types (in ML) can be instantiated, effectively acting like classes but
without inheritance.

• Classes add inheritance to module types.

46/63

ENCAPSULATION: FROM STATIC VARIABLES TO CLASSES

• Static variables (in C) provide “private objects” to a single subroutine.

• Modules provide the same set of “private objects” to a group of subroutines.
(Essentially a single instance of a class.)

• Module types (in ML) can be instantiated, effectively acting like classes but
without inheritance.

• Classes add inheritance to module types.

46/63

ENCAPSULATION: FROM STATIC VARIABLES TO CLASSES

• Static variables (in C) provide “private objects” to a single subroutine.

• Modules provide the same set of “private objects” to a group of subroutines.
(Essentially a single instance of a class.)

• Module types (in ML) can be instantiated, effectively acting like classes but
without inheritance.

• Classes add inheritance to module types.

46/63

STATIC VARIABLES IN C: EXAMPLE 1

Each invocation produces a different “variable name” starting with the letter l:

void new_name(char *s, char l) {
/* This array is automatically filled with

zeroes when initialized */
static short int name_nums[52];

int index = l >= 'a' && l <= 'z'
? l - 'a'
: l - 'A' + 26;

sprintf(s, "%c%d\0", l, name_nums[index]++);
}

47/63

STATIC VARIABLES IN C: EXAMPLE 2

Save time by compiling a regular expression only the first time it is used (using
the regex library by Henry Spencer):

int match_some_dates(char *s) {
static regexp *date = NULL;
if (date == NULL) {

date = regcomp("[0-9][0-9]? (Jan|Feb) 200[4-9]");
}
return (regexec(date, s) == 0);

}

48/63

MODULES IN MODULA-2: EXAMPLE

MODULE stack; MODULE main;

IMPORT element, stack_size; TYPE element = ...;

EXPORT push, pop; CONST stack_size = ...;

TYPE stack_index = [1..stack_size]; FROM stack IMPORT push, pop;

VAR s : ARRAY stack_index OF element; VAR x, y : element;
top : stack_index;

BEGIN
PROCEDURE push(elem : element); ...
BEGIN ... END; push(x);

...
PROCEDURE pop() element; y := pop;
BEGIN ... END;

END main.
BEGIN

top := 1;
END stack.

49/63

MODULES IN MODULA-2

Visibility is specified using explicit IMPORT and EXPORT statements.

This is an example of closed scopes (as opposed to open scopes where bindings
from “outside” are freely passed into the scope).

Closed scopes force programmers to clearly document the interface.

C has no support for modules.

Java, C#, Perl, Python, Ada, and Haskell provide selectively open scopes.

50/63

CONSTRUCTS RELATED TO MODULES

Separate compilation units
Examples: C, C++

• Include files simulate EXPORT
lists.

• No protection against name
clashes between “modules”.

Namespaces
Example: C++

Help address the issue with name
clashes in different compilation units
in C++.

Packages
Examples: Java, Perl, Ada

Clusters
Example: Clu

51/63

CONSTRUCTS RELATED TO MODULES

Separate compilation units
Examples: C, C++

• Include files simulate EXPORT
lists.

• No protection against name
clashes between “modules”.

Namespaces
Example: C++

Help address the issue with name
clashes in different compilation units
in C++.

Packages
Examples: Java, Perl, Ada

Clusters
Example: Clu

51/63

CONSTRUCTS RELATED TO MODULES

Separate compilation units
Examples: C, C++

• Include files simulate EXPORT
lists.

• No protection against name
clashes between “modules”.

Namespaces
Example: C++

Help address the issue with name
clashes in different compilation units
in C++.

Packages
Examples: Java, Perl, Ada

Clusters
Example: Clu

51/63

CONSTRUCTS RELATED TO MODULES

Separate compilation units
Examples: C, C++

• Include files simulate EXPORT
lists.

• No protection against name
clashes between “modules”.

Namespaces
Example: C++

Help address the issue with name
clashes in different compilation units
in C++.

Packages
Examples: Java, Perl, Ada

Clusters
Example: Clu

51/63

A MODULE DEFICIENCY

The stack module presented earlier cannot be used to provide multiple stacks to
an application that requires them.

Possible solutions:

• Not really a solution: Duplicate the code over multiple modules with the
same name.

• A module that provides explicit means to create, manage, and destroy
multiple stacks. (Requires the stack as an argument to each stack function.)

• Module types (e.g., Simula, Euclid, ML) are modules that can be instantiated.

• Go all the way to classes.

52/63

A MODULE DEFICIENCY

The stack module presented earlier cannot be used to provide multiple stacks to
an application that requires them.

Possible solutions:

• Not really a solution: Duplicate the code over multiple modules with the
same name.

• A module that provides explicit means to create, manage, and destroy
multiple stacks. (Requires the stack as an argument to each stack function.)

• Module types (e.g., Simula, Euclid, ML) are modules that can be instantiated.

• Go all the way to classes.

52/63

A MODULE DEFICIENCY

The stack module presented earlier cannot be used to provide multiple stacks to
an application that requires them.

Possible solutions:

• Not really a solution: Duplicate the code over multiple modules with the
same name.

• A module that provides explicit means to create, manage, and destroy
multiple stacks. (Requires the stack as an argument to each stack function.)

• Module types (e.g., Simula, Euclid, ML) are modules that can be instantiated.

• Go all the way to classes.

52/63

A MODULE DEFICIENCY

The stack module presented earlier cannot be used to provide multiple stacks to
an application that requires them.

Possible solutions:

• Not really a solution: Duplicate the code over multiple modules with the
same name.

• A module that provides explicit means to create, manage, and destroy
multiple stacks. (Requires the stack as an argument to each stack function.)

• Module types (e.g., Simula, Euclid, ML) are modules that can be instantiated.

• Go all the way to classes.

52/63

A MODULE DEFICIENCY

The stack module presented earlier cannot be used to provide multiple stacks to
an application that requires them.

Possible solutions:

• Not really a solution: Duplicate the code over multiple modules with the
same name.

• A module that provides explicit means to create, manage, and destroy
multiple stacks. (Requires the stack as an argument to each stack function.)

• Module types (e.g., Simula, Euclid, ML) are modules that can be instantiated.

• Go all the way to classes.

52/63

A MODULE DEFICIENCY

The stack module presented earlier cannot be used to provide multiple stacks to
an application that requires them.

Possible solutions:

• Not really a solution: Duplicate the code over multiple modules with the
same name.

• A module that provides explicit means to create, manage, and destroy
multiple stacks. (Requires the stack as an argument to each stack function.)

• Module types (e.g., Simula, Euclid, ML) are modules that can be instantiated.

• Go all the way to classes.

52/63

CLASSES

Every instance of a module type or class has a separate copy of the module
type’s or class’s variables.

Classes
Module types + inheritance

public class Stack { ...
private int stack_size; stack A, B;
private element[] s; element x, y;
private int top = 0; ...

A.push(x);
public void push(element x) { ... } ...

y = B.pop();
public element pop() { ... } ...

}

53/63

CLASSES

Every instance of a module type or class has a separate copy of the module
type’s or class’s variables.

Classes
Module types + inheritance

public class Stack { ...
private int stack_size; stack A, B;
private element[] s; element x, y;
private int top = 0; ...

A.push(x);
public void push(element x) { ... } ...

y = B.pop();
public element pop() { ... } ...

}

53/63

CLASSES

Every instance of a module type or class has a separate copy of the module
type’s or class’s variables.

Classes
Module types + inheritance

public class Stack { ...
private int stack_size; stack A, B;
private element[] s; element x, y;
private int top = 0; ...

A.push(x);
public void push(element x) { ... } ...

y = B.pop();
public element pop() { ... } ...

}

53/63

ROAD MAP

Language concepts:

• Names
• Binding
• Scoping
• Modules and classes
• Aliasing and overloading

Implementation:

• Stack frames
• Heap management
• Static chains
• Closures

54/63

ROAD MAP

Language concepts:

• Names
• Binding
• Scoping
• Modules and classes
• Aliasing and overloading

Implementation:

• Stack frames
• Heap management
• Static chains
• Closures

54/63

ALIASING

Aliasing

• More than one name is bound to the same object (reference, pointers, …).
• Makes compiler optimization difficult.

Examples:

int a, b, *p, *q; double sum, sum_of_squares;
a = *p; *q = 3; b = *p; void accumulate(double &x) {

sum += x;
sum_of_squares += x * x;

}
accumulate(sum);

55/63

OVERLOADING

Overloading
The same name is bound to more than one object.

Example:

int operator +(const int &a, const int &b);
string operator +(const string &a, const string &b);

56/63

PROBLEMS WIH ALIASING

Aliases make code more confusing and make the resulting bugs hard to find.

Optimization of code becomes difficult if not impossible.

restrict keyword in C99:

• Used by the programmer to tell the compiler that a given pointer is the only
means used to update the memory location it references.

• Allows the compiler to perform optimizations that would be impossible in
the presence of aliasing.

• The resulting optimization may lead to even more obscure bugs if the
programmer doesn’t keep their promise and introduces aliases for this
pointer.

57/63

PROBLEMS WIH ALIASING

Aliases make code more confusing and make the resulting bugs hard to find.

Optimization of code becomes difficult if not impossible.

restrict keyword in C99:

• Used by the programmer to tell the compiler that a given pointer is the only
means used to update the memory location it references.

• Allows the compiler to perform optimizations that would be impossible in
the presence of aliasing.

• The resulting optimization may lead to even more obscure bugs if the
programmer doesn’t keep their promise and introduces aliases for this
pointer.

57/63

BUILT-IN OVERLOADING

Most languages have some form of overloading (e.g., arithmetic operators).

We normally do not think about this type of overloading, as we simply think
about “doing math with numbers” and the right thing happens.

The amount of overloading is fixed because the programmer cannot add new
“versions” of the same function or operator.

58/63

USER-DEFINED OVERLOADING

Allows the programmer to define new functions with the same name as an
existing built-in or previously user-defined function.

Supported in many modern object-oriented languages:

• C++, C#: A.operator +(B)
• Ada: "+"(A, B)
• FORTRAN90: Interface construct to associate e.g., “+” with some binary
function

Requires a dispatch mechanism that allows the compiler to choose the correct
implementation of the function based on the arguments that are provided:

Should I use the int, float or string version of “+”?

59/63

USER-DEFINED OVERLOADING

Allows the programmer to define new functions with the same name as an
existing built-in or previously user-defined function.

Supported in many modern object-oriented languages:

• C++, C#: A.operator +(B)
• Ada: "+"(A, B)
• FORTRAN90: Interface construct to associate e.g., “+” with some binary
function

Requires a dispatch mechanism that allows the compiler to choose the correct
implementation of the function based on the arguments that are provided:

Should I use the int, float or string version of “+”?

59/63

USER-DEFINED OVERLOADING

Allows the programmer to define new functions with the same name as an
existing built-in or previously user-defined function.

Supported in many modern object-oriented languages:

• C++, C#: A.operator +(B)
• Ada: "+"(A, B)
• FORTRAN90: Interface construct to associate e.g., “+” with some binary
function

Requires a dispatch mechanism that allows the compiler to choose the correct
implementation of the function based on the arguments that are provided:

Should I use the int, float or string version of “+”?

59/63

PROS AND CONS OF USER-DEFINED OVERLOADING

Pro:

User-defined overloading makes a language more powerful and expressive with a
potential to increase clarity (e.g., arithmetic operators for complex numbers).

Con:

It has the potential for tremendous confusion if the behaviour associated with an
overloaded function or operator does not match what one would intuitively
expect based on its name.

60/63

PROS AND CONS OF USER-DEFINED OVERLOADING

Pro:

User-defined overloading makes a language more powerful and expressive with a
potential to increase clarity (e.g., arithmetic operators for complex numbers).

Con:

It has the potential for tremendous confusion if the behaviour associated with an
overloaded function or operator does not match what one would intuitively
expect based on its name.

60/63

MECHANISMS RELATED TO OVERLOADING (1)

Coercion
The compiler automatically converts an object into an object of another type
when required.

Examples:

• Coercion from int to float when one operand of an arithmetic expression
is a float.

• In Java, "" + o automatically calls o.toString().

• In C++, Foo o = 5; implicitly calls the constructor Foo::Foo(int) unless it
is marked as explicit.

61/63

MECHANISMS RELATED TO OVERLOADING (1)

Coercion
The compiler automatically converts an object into an object of another type
when required.

Examples:

• Coercion from int to float when one operand of an arithmetic expression
is a float.

• In Java, "" + o automatically calls o.toString().

• In C++, Foo o = 5; implicitly calls the constructor Foo::Foo(int) unless it
is marked as explicit.

61/63

MECHANISMS RELATED TO OVERLOADING (1)

Coercion
The compiler automatically converts an object into an object of another type
when required.

Examples:

• Coercion from int to float when one operand of an arithmetic expression
is a float.

• In Java, "" + o automatically calls o.toString().

• In C++, Foo o = 5; implicitly calls the constructor Foo::Foo(int) unless it
is marked as explicit.

61/63

MECHANISMS RELATED TO OVERLOADING (1)

Coercion
The compiler automatically converts an object into an object of another type
when required.

Examples:

• Coercion from int to float when one operand of an arithmetic expression
is a float.

• In Java, "" + o automatically calls o.toString().

• In C++, Foo o = 5; implicitly calls the constructor Foo::Foo(int) unless it
is marked as explicit.

61/63

MECHANISMS RELATED TO OVERLOADING (2)

Generics and polymorphism

• Single body of code
• Behaviour is customized

sum :: Num a => [a] -> a
sum [] = 0
sum (x:xs) = x + sum xs

Templates (C++)
Separate copies of the code generated by compiler for each type

std::vector<int> int_vec;
std::vector<char> char_vec;

62/63

MECHANISMS RELATED TO OVERLOADING (2)

Generics and polymorphism

• Single body of code
• Behaviour is customized

sum :: Num a => [a] -> a
sum [] = 0
sum (x:xs) = x + sum xs

Templates (C++)
Separate copies of the code generated by compiler for each type

std::vector<int> int_vec;
std::vector<char> char_vec;

62/63

SUMMARY

• Bindings associate names with the objects they refer to.

• Scoping rules (lexical, dynamic) determine what different names in different
places in a program or at different times during the program execution.

• Object life time is linked to where objects are stored.

• Stack frames and closures are used to manage space for local variables.

• The heap stores explicitly allocated objects.

• Static chains are used to manage lexical scoping when using stack frames to
manage local variables.

• Modules and classes help break large projects into parts that interact via
well-defined interfaces.

63/63

