
Assignment 5
CSCI 3136: Principles of Programming Languages

Due Mar 25, 2019

Assignments are due on the due date before 23:59. All assignments must be submitted electronically via the course SVN
server. Plagiarism in assignment answers will not be tolerated. By submitting your answers to this assignment, you declare
that your answers are your original work and that you did not use any sources for its preparation other than the class notes,
the textbook, and ones explicitly acknowledged in the answers. Any suspected act of plagiarism will be reported to the
Faculty’s Academic Integrity Officer and possibly to the Senate Discipline Committee. The penalty for academic dishonesty
may range from failing the course to expulsion from the university, in accordance with Dalhousie University’s regulations
regarding academic integrity.

This is the second in a sequence of three programming assignments that culminate in an interpreter for
Scheme--, a small subset of Scheme. This assignment focuses on implementing a recursive-descent
parser (syntactic analyzer) for Scheme--.

Here is the grammar for a syntactically correct Scheme-- program. Typewriter font denotes literal
text (which the scanner has transformed into a corresponding token). Lowercase italic font is a token
name. Both are terminals. CamelCase italic font is a non-terminal. Review Assignment 3 for a list of
tokens the scanner produces. Each of the following rules involving parentheses represents a whole
group of rules where each matching pair of parentheses is replaced with matching pairs of round,
square or curly parentheses. This is a result of allowing arbitrary parentheses to be used to delimit
compound forms as in Scheme.

Program→ ε | TopLevelForm Program
TopLevelForm→ Definition | FunCall

Definition→ (define identifier Expression)

| (define (identifier ArgList) Statements)
ArgList→ ε | identifier ArgList

Statements→ Expression | Statement Statements
Statement→ Definition | Expression

Expressions→ ε | Expression Expressions
Expression→ identifier | number | char | bool | string

| FunCall | Lambda
| QuotedExpression | BeginExpression | LetExpression | IfExpression | CondExpression

FunCall→ (identifier Expressions)
Lambda→ (lambda (ArgList) Statements)

QuotedExpression→ (quote Expression) | ’ Expression
BeginExpression→ (begin Statements)

LetExpression→ (let (VarDefs) Statements)
| (let identifier (VarDefs) Statements)

VarDefs→ VarDef | VarDef VarDefs
VarDef→ (identifier Expression)

IfExpression→ (if Expression Expression Expression)

| (if Expression Expression)

CondExpression→ (cond CondBranches)
CondBranches→ CondBranch | CondBranch CondBranches

CondBranch→ (Expression Statements)

Your task is to implement a recursive-descent parser that takes a Scheme-- program and prints its parse
tree to stdout if the input is in fact a syntactically correct Scheme-- program. If the input is lexically
incorrect, the parser should output the scanner’s error message as in Assignment 3. If the input is
lexically correct but syntactically incorrect, the parser should output a syntax error for the first invalid
token. Here are two examples:

1

Correct input: On the following input

(define (fibonacci n)
(let fib ([prev 0]

[cur 1]
[i 0])

(if (= i n)
cur
(fib cur (+ prev cur) (+ i 1)))))

and using the above grammar (see “A Note on the Grammar” below), the parse tree your parser should
print is shown on the next page. (The empty lines are not mistakes; they represent εs in the above
grammar.)

Incorrect input: An example input of a lexically incorrect input was shown in Assignment 3. Such
assignments should be treated exactly as in Assignment 3.

The following is an input that is lexically correct (all its components are valid tokens), but it is
syntactically incorrect because the last statement in the let-block is not an expression:

(define (fibonacci n)
(let fib ([prev 0]

[cur 1]
[i 0])

(if (= i n)
cur
(fib cur (+ prev cur) (+ i 1)))

(define junk n)))

The parser recognizes that the last statement in the let-block is not an expression as soon as it sees
the closing parenthesis of the let-block (the second-last parenthesis). It should declare this closing
parenthesis as unexpected (because it did expect an expression, which never starts with a closing
parenthesis):

SYNAX ERROR [8:20]: Unexpected token ')'

A Note on the Grammar

The grammar given here correctly describes the syntax of a Scheme-- program but is far from being
LL(1). A first step in constructing your recursive-descent parser is to convert it into an LL(1) grammar.
As part of your assignment, you must submit the grammar you constructed in a file grammar.txt. An
example grammar.txt file showing the above grammer is provided at the end of this assignment for
reference. The parse tree your parser outputs must match the rules of the grammar you constructed
and will thus be different from the output shown in this assignment.

2

Program
TopLevelForm

Definition
OPENRD
DEFINE
OPENRD
IDENTIFIER (fibonacci)
ArgList

IDENTIFIER (n)
ArgList

CLOSERD
Statements

Expression
LetExpression

OPENRD
LET
IDENTIFIER (fib)
OPENRD
VarDefs

VarDef
OPENSQ
IDENTIFIER (prev)
Expression

NUMBER (0)
CLOSESQ

VarDefs
VarDef

OPENSQ
IDENTIFIER (cur)
Expression

NUMBER (1)
CLOSESQ

VarDefs
VarDef

OPENSQ
IDENTIFIER (i)
Expression

NUMBER (0)
CLOSESQ

CLOSERD
Statements

Expression
IfExpression

OPENRD
IF
Expression

FunCall
OPENRD
IDENTIFIER (=)
Expressions

Expression
IDENTIFIER (i)

Expressions
Expression

IDENTIFIER (n)
Expressions

CLOSERD
Expression

IDENTIFIER (cur)
Expression

FunCall
OPENRD
IDENTIFIER (fib)
Expressions

Expression
IDENTIFIER (cur)

Expressions
Expression

FunCall
OPENRD
IDENTIFIER (+)
Expressions

Expression
IDENTIFIER (prev)

Expressions
Expression

IDENTIFIER (cur)
Expressions

CLOSERD
Expressions

Expression
FunCall

OPENRD
IDENTIFIER (+)
Expressions

Expression
IDENTIFIER (i)

Expressions
Expression

NUMBER (1)
Expressions

CLOSERD
Expressions

CLOSERD
CLOSERD

CLOSERD
CLOSERD

Program

3

Submission Instructions

Place your code in a folder a5 of your SVN repository and submit using the appropriate combination of
svn add and svn commit.

Grammar in Plain Text Format

Program --> | TopLevelForm Program
TopLevelForm --> Definition | FunCall
Definition --> (define identifier Expression)

| (define (identifier ArgList) Statements)
ArgList --> | identifier ArgList
Statements --> Expression | Statement Statements
Statement --> Definition | Expression
Expressions --> | Expression Expressions
Expression --> identifier | number | char | bool | string

| FunCall | Lambda
| QuotedExpression | BeginExpression | LetExpression
| IfExpression | CondExpression

FunCall --> (identifier Expression)
Lambda --> (lambda (ArgList) Statements)
QuotedExpression --> (quote Expression) | ' Expression
BeginExpression --> (begin Statements)
LetExpression --> (let (VarDefs) Statements)

| (left identifier (VarDefs) Statements)
VarDefs --> VarDef | VarDef VarDefs
VarDef --> (identifier Expression)
IfExpression --> (if Expression Expression Expression)

| (if Expression Expression)
CondExpression --> (cond CondBranches)
CondBranches --> CondBranch | CondBranch CondBranches
CondBranch --> (Expression Statements)

grammar.txt

4

