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Stable Matching: An Introductory Example

Given:

• n women w1, w2, . . . , wn

• n men m1, m2, . . . , mn

• A preference list for each
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Stable Matching: An Introductory Example

Output:

• A set of n marriages {(wi1 , mj1 ), ((wi2 , mj2 ), . . . , (win , mjn )}
• Every man is married
• Every woman is married
• The marriages are stable
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Stable Matching: An Introductory Example

A pair of marriages (m, w) and (m′, w′) is unstable if
• w prefers m′ over m (m′ ≺w m)
• m′ prefers w over w′ (w ≺m′ w′)
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Stable Matching: An Introductory Example

A pair of marriages (m, w) and (m′, w′) is unstable if
• w prefers m′ over m (m′ ≺w m)
• m′ prefers w over w′ (w ≺m′ w′)
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Stable Matching: A Solution Inspired By Real Life

StableMatching(M,W)

1 while there exists an unmarried man m
2 do m proposes to the most preferable woman w he has not proposed to yet
3 if w is unmarried or likes m be�er than her current partner m′

4 then if w is married
5 then w divorces m′

6 w marries m
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StableMatching(M,W)

1 while there exists an unmarried man m
2 do m proposes to the most preferable woman w he has not proposed to yet
3 if w is unmarried or likes m be�er than her current partner m′

4 then if w is married
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Questions we can and should ask about the algorithm:

• Is there always a stable matching?
• Does the algorithm always terminate?
• Does the algorithm always produce a stable matching?
• How e�cient is the algorithm? Can we bound its running time?



Course Outline

• Correctness proofs

• Analysis of resource consumption

• Algorithm design techniques

• Graph exploration
• Greedy algorithms
• Divide and conquer
• Dynamic programming
• Data structuring
• Randomization

• NP-completeness and intractability



General Information

Instructor: Norbert Zeh
O�ce: Mona Campbell 4246
O�ce hours: Wed 2:00–4:00

Fri: 11:00–1:00
Email: nzeh@cs.dal.ca

Textbook: Cormen, Leiserson, Rivest, Stein. Introduction to Algorithms.
3rd edition, MIT Press, 2009.

Zeh. Data Structures.
CSCI 3110 Lecture Notes, 2005.

Website: h�p://www.cs.dal.ca/~nzeh/Teaching/3110

TAs: Serikzhan Kazi
Arash Kayhani

Midterm: End of June



Grading

• 10 Assignments (A)

The best 8 count. Each carries equal weight.

• Midterm (M)

• Final (F)

Final grade = max


F

60% · F + 40% ·M
60% · F + 40% · A

40% · F + 20% ·M + 40% · A





Collaboration, Plagiarism, Late Assignments

Collaboration

• Groups of up to three people are allowed to collaborate on assignments.
• Every group hands in one set of solutions; every group member gets the same
marks.

• Collaboration between groups is not allowed!

Plagiarism

• Plagiarism will not be tolerated.
• Collaboration between groups is a form of plagiarism.

Late assignments

. . . will not be accepted without a doctor’s note.

Please see course website for a detailed discussion of these rules.



Things I Expect You To Know

• Basic rules concerning logarithms

• Basic rules concerning limits

• Basic derivatives

• Propositional logic

• Elementary combinatorics (counting permutations, combinations, . . . )

• Elementary probability theory (linearity of expectation, . . . )

• Elementary data structures (arrays, lists, stacks, queues, . . . )

• Standard sorting algorithms (insertion sort, quick sort, merge sort)

• Binary heaps


