
CSCI 3110
Fun with Algorithms

Norbert Zeh
nzeh@cs.dal.ca

Faculty of Computer Science

Dalhousie University

Summer 2018



Stable Matching: An Introductory Example

Given:

• n women w1, w2, . . . , wn

• n men m1, m2, . . . , mn

• A preference list for each

m1m2 m3 m4m5

m1 m2 m3 m4m5

m1m2 m3m4 m5

m1m2m3m4m5

m1 m2m3 m4 m5

w1w2 w3 w4w5

w1w2w3 w4 w5

w1w2w3w4 w5

w1 w2w3w4 w5

w1 w2w3w4 w5m1

m2

m3

m4

m5

w1

w2

w3

w4

w5



Stable Matching: An Introductory Example

Output:

• A set of n marriages {(wi1 , mj1 ), ((wi2 , mj2 ), . . . , (win , mjn )}
• Every man is married
• Every woman is married
• The marriages are stable

m1m2 m3 m4m5

m1 m2 m3 m4m5

m1m2 m3m4 m5

m1m2m3m4m5

m1 m2m3 m4 m5

w1w2 w3 w4w5

w1w2w3 w4 w5

w1w2w3w4 w5

w1 w2w3w4 w5

w1 w2w3w4 w5m1

m2

m3

m4

m5

w1

w2

w3

w4

w5



Stable Matching: An Introductory Example

A pair of marriages (m, w) and (m′, w′) is unstable if
• w prefers m′ over m (m′ ≺w m)
• m′ prefers w over w′ (w ≺m′ w′)

m1m2 m3 m4m5

m1 m2 m3 m4m5

m1m2 m3m4 m5

m1 m2m3 m4 m5

w1w2 w3 w4w5

w1w2w3 w4 w5

w1 w2w3w4 w5

w1 w2w3w4 w5m1

m2

m3

m4

m5

w1

w2

w3

w4

w5

m1m2m3m4m5 w1w2w3w4 w5



Stable Matching: An Introductory Example

A pair of marriages (m, w) and (m′, w′) is unstable if
• w prefers m′ over m (m′ ≺w m)
• m′ prefers w over w′ (w ≺m′ w′)

m1 m2 m3 m4m5

m1m2 m3m4 m5

m1 m2m3 m4 m5

w1w2w3 w4 w5

w1 w2w3w4 w5

w1 w2w3w4 w5m1

m2

m3

m4

m5

w1

w2

w3

w4

w5

m1m2m3m4m5 w1w2w3w4 w5

m1m2 m3 m4m5

w1w2 w3 w4w5



Stable Matching: A Solution Inspired By Real Life

StableMatching(M,W)

1 while there exists an unmarried man m
2 do m proposes to the most preferable woman w he has not proposed to yet
3 if w is unmarried or likes m be�er than her current partner m′

4 then if w is married
5 then w divorces m′

6 w marries m



Stable Matching: A Solution Inspired By Real Life

StableMatching(M,W)

1 while there exists an unmarried man m
2 do m proposes to the most preferable woman w he has not proposed to yet
3 if w is unmarried or likes m be�er than her current partner m′

4 then if w is married
5 then w divorces m′

6 w marries m

Questions we can and should ask about the algorithm:

• Is there always a stable matching?
• Does the algorithm always terminate?
• Does the algorithm always produce a stable matching?
• How e�cient is the algorithm? Can we bound its running time?



Course Outline

• Correctness proofs

• Analysis of resource consumption

• Algorithm design techniques

• Graph exploration
• Greedy algorithms
• Divide and conquer
• Dynamic programming
• Data structuring
• Randomization

• NP-completeness and intractability



General Information

Instructor: Norbert Zeh
O�ce: Mona Campbell 4246
O�ce hours: Wed 2:00–4:00

Fri: 11:00–1:00
Email: nzeh@cs.dal.ca

Textbook: Cormen, Leiserson, Rivest, Stein. Introduction to Algorithms.
3rd edition, MIT Press, 2009.

Zeh. Data Structures.
CSCI 3110 Lecture Notes, 2005.

Website: h�p://www.cs.dal.ca/~nzeh/Teaching/3110

TAs: Serikzhan Kazi
Arash Kayhani

Midterm: End of June



Grading

• 10 Assignments (A)

The best 8 count. Each carries equal weight.

• Midterm (M)

• Final (F)

Final grade = max


F

60% · F + 40% ·M
60% · F + 40% · A

40% · F + 20% ·M + 40% · A





Collaboration, Plagiarism, Late Assignments

Collaboration

• Groups of up to three people are allowed to collaborate on assignments.
• Every group hands in one set of solutions; every group member gets the same
marks.

• Collaboration between groups is not allowed!

Plagiarism

• Plagiarism will not be tolerated.
• Collaboration between groups is a form of plagiarism.

Late assignments

. . . will not be accepted without a doctor’s note.

Please see course website for a detailed discussion of these rules.



Things I Expect You To Know

• Basic rules concerning logarithms

• Basic rules concerning limits

• Basic derivatives

• Propositional logic

• Elementary combinatorics (counting permutations, combinations, . . . )

• Elementary probability theory (linearity of expectation, . . . )

• Elementary data structures (arrays, lists, stacks, queues, . . . )

• Standard sorting algorithms (insertion sort, quick sort, merge sort)

• Binary heaps


