
Greedy Algorithms

Textbook Reading

Chapters 16, 17, 21, 23 & 24

Overview

Design principle:

Make progress towards a globally optimal solution by making locally optimal choices,
hence the name.

Problems:

• Interval scheduling
• Minimum spanning tree
• Shortest paths
• Minimum-length codes

Proof techniques:

• Induction
• The greedy algorithm “stays ahead”
• Exchange argument

Data structures:

• Priority queue
• Union-find data structure

Interval Scheduling

Given:

A set of activities competing for time intervals on a certain resource
(E.g., classes to be scheduled competing for a classroom)

Goal:

Schedule as many non-conflicting activities as possible

Interval Scheduling

Given:

A set of activities competing for time intervals on a certain resource
(E.g., classes to be scheduled competing for a classroom)

Goal:

Schedule as many non-conflicting activities as possible

Interval Scheduling

Given:

A set of activities competing for time intervals on a certain resource
(E.g., classes to be scheduled competing for a classroom)

Goal:

Schedule as many non-conflicting activities as possible

A Greedy Framework for Interval Scheduling

FindSchedule(S)

1 S′ = ∅
2 while S is not empty
3 do pick an interval I in S
4 add I to S′

5 remove all intervals from S that conflict with I
6 return S′

A Greedy Framework for Interval Scheduling

FindSchedule(S)

1 S′ = ∅
2 while S is not empty
3 do pick an interval I in S
4 add I to S′

5 remove all intervals from S that conflict with I
6 return S′

Main questions:

• Can we choose an arbitrary interval I in each iteration?
• How do we choose interval I in each iteration?

Greedy Strategies for Interval Scheduling

Greedy Strategies for Interval Scheduling

Choose the interval that starts first.

Greedy Strategies for Interval Scheduling

Choose the interval that starts first.

Greedy Strategies for Interval Scheduling

Choose the interval that starts first.

Choose the shortest interval.

Greedy Strategies for Interval Scheduling

Choose the interval that starts first.

Choose the shortest interval.

Greedy Strategies for Interval Scheduling

Choose the interval that starts first.

Choose the shortest interval.

Choose the interval with the fewest conflicts.

Greedy Strategies for Interval Scheduling

Choose the interval that starts first.

Choose the shortest interval.

Choose the interval with the fewest conflicts.

The Strategy That Works

FindSchedule(S)

1 S′ = ∅
2 while S is not empty
3 do let I be the interval in S that ends first
4 add I to S′

5 remove all intervals from S that conflict with I
6 return S′

The Strategy That Works

FindSchedule(S)

1 S′ = ∅
2 while S is not empty
3 do let I be the interval in S that ends first
4 add I to S′

5 remove all intervals from S that conflict with I
6 return S′

The Strategy That Works

FindSchedule(S)

1 S′ = ∅
2 while S is not empty
3 do let I be the interval in S that ends first
4 add I to S′

5 remove all intervals from S that conflict with I
6 return S′

The Strategy That Works

FindSchedule(S)

1 S′ = ∅
2 while S is not empty
3 do let I be the interval in S that ends first
4 add I to S′

5 remove all intervals from S that conflict with I
6 return S′

The Strategy That Works

FindSchedule(S)

1 S′ = ∅
2 while S is not empty
3 do let I be the interval in S that ends first
4 add I to S′

5 remove all intervals from S that conflict with I
6 return S′

The Strategy That Works

FindSchedule(S)

1 S′ = ∅
2 while S is not empty
3 do let I be the interval in S that ends first
4 add I to S′

5 remove all intervals from S that conflict with I
6 return S′

The Strategy That Works

FindSchedule(S)

1 S′ = ∅
2 while S is not empty
3 do let I be the interval in S that ends first
4 add I to S′

5 remove all intervals from S that conflict with I
6 return S′

The Strategy That Works

FindSchedule(S)

1 S′ = ∅
2 while S is not empty
3 do let I be the interval in S that ends first
4 add I to S′

5 remove all intervals from S that conflict with I
6 return S′

The Greedy Algorithm Stays Ahead

Lemma: FindSchedule finds a maximum-cardinality set of conflict-free intervals.

The Greedy Algorithm Stays Ahead

Lemma: FindSchedule finds a maximum-cardinality set of conflict-free intervals.

Let I1 ≺ I2 ≺ · · · ≺ Ik be the schedule we compute.

Let O1 ≺ O2 ≺ · · · ≺ Om be an optimal schedule.

Prove by induction on j that Ij ends no later than Oj.

The Greedy Algorithm Stays Ahead

Lemma: FindSchedule finds a maximum-cardinality set of conflict-free intervals.

⇒ Since Oj+1 starts after Oj ends, it also starts after Ij ends.

Let I1 ≺ I2 ≺ · · · ≺ Ik be the schedule we compute.

Let O1 ≺ O2 ≺ · · · ≺ Om be an optimal schedule.

Prove by induction on j that Ij ends no later than Oj.

The Greedy Algorithm Stays Ahead

Lemma: FindSchedule finds a maximum-cardinality set of conflict-free intervals.

⇒ Since Oj+1 starts after Oj ends, it also starts after Ij ends.

⇒ If k < m, FindSchedule inspects Ok+1 after Ik and thus would have added it to its
output, a contradiction.

Let I1 ≺ I2 ≺ · · · ≺ Ik be the schedule we compute.

Let O1 ≺ O2 ≺ · · · ≺ Om be an optimal schedule.

Prove by induction on j that Ij ends no later than Oj.

The Greedy Algorithm Stays Ahead

Proof by induction:

Base case(s): Verify that the claim holds for a set of initial instances.

Inductive step: Prove that, if the claim holds for the first k instances, it holds for the
(k + 1)st instance.

Lemma: FindSchedule finds a maximum-cardinality set of conflict-free intervals.

The Greedy Algorithm Stays Ahead

Lemma: FindSchedule finds a maximum-cardinality set of conflict-free intervals.

Base case: I1 ends no later than O1 because both I1 and O1 are chosen from S and I1
is the interval in S that ends first.

The Greedy Algorithm Stays Ahead

Lemma: FindSchedule finds a maximum-cardinality set of conflict-free intervals.

Base case: I1 ends no later than O1 because both I1 and O1 are chosen from S and I1
is the interval in S that ends first.

Inductive step:

Since Ik ends before Ok+1, so do I1, I2, . . . , Ik–1.

The Greedy Algorithm Stays Ahead

Lemma: FindSchedule finds a maximum-cardinality set of conflict-free intervals.

Base case: I1 ends no later than O1 because both I1 and O1 are chosen from S and I1
is the interval in S that ends first.

Inductive step:

Since Ik ends before Ok+1, so do I1, I2, . . . , Ik–1.

⇒ Ok+1 does not conflict with I1, I2, . . . , Ik.

The Greedy Algorithm Stays Ahead

Lemma: FindSchedule finds a maximum-cardinality set of conflict-free intervals.

Base case: I1 ends no later than O1 because both I1 and O1 are chosen from S and I1
is the interval in S that ends first.

Inductive step:

Since Ik ends before Ok+1, so do I1, I2, . . . , Ik–1.

⇒ Ok+1 does not conflict with I1, I2, . . . , Ik.

⇒ Ik+1 ends no later than Ok+1 because it is the interval that ends first among all
intervals that do not conflict with I1, I2, . . . , Ik.

Implementing The Algorithm

FindSchedule(S)

1 S′ = []
2 sort the intervals in S by increasing finish times
3 S′.append(S[1])
4 f = S[1].f
5 for i = 2 to |S|
6 do if S[i].s > f
7 then S′.append(S[i])
8 f = S[i].f
9 return S′

Implementing The Algorithm

FindSchedule(S)

1 S′ = []
2 sort the intervals in S by increasing finish times
3 S′.append(S[1])
4 f = S[1].f
5 for i = 2 to |S|
6 do if S[i].s > f
7 then S′.append(S[i])
8 f = S[i].f
9 return S′

Lemma: A maximum-cardinality set of non-conflicting intervals can be found in
O(n lg n) time.

Minimum Spanning Tree

⇒ We want the cheapest possible network.

Given: n computers

Goal: Connect them so that every computer can communicate with every other
computer.

We don’t care whether the
connection between any pair
of computers is short.

We don’t care about fault
tolerance.

Every foot of cable costs us $1.

Minimum Spanning Tree

Given a graph G = (V, E) and an assignment of weights (costs) to the edges of G, a
minimum spanning tree (MST) T of G is a spanning tree with minimum total weight

w(T) =
∑
e∈T

w(e).

6

1

3

5

4

7

8

3

1

2

9
7

6

3

Kruskal’s Algorithm

Greedy choice: Pick the shortest edge

6

1

3

5

4

7

8

3

1

2

9
7

6

3

Kruskal’s Algorithm

6

1

3

5

4

7

8

3

1

2

9
7

6

3

Greedy choice: Pick the shortest edge that
connects two previously disconnected vertices.

Kruskal’s Algorithm

Kruskal(G)

1 T = (V, ∅)
2 while T has more than one connected component
3 do let e be the cheapest edge of G whose endpoints belong to di�erent

connected components of T
4 add e to T
5 return T

6

1

3

5

4

7

8

3

1

2

9
7

6

3

Greedy choice: Pick the shortest edge that
connects two previously disconnected vertices.

A Cut Theorem

A cut is a partition (U,W) of V into two non-empty subsets: ∅ ⊂ U ⊂ V and
W = V \ U.

U W

A Cut Theorem

A cut is a partition (U,W) of V into two non-empty subsets: ∅ ⊂ U ⊂ V and
W = V \ U.

An edge crosses the cut (U,W) if it has one endpoint in U and one in W.

U W

A Cut Theorem

Theorem: Let T be a minimum spanning tree, let (U,W) be an arbitrary cut, and let e
be the cheapest edge crossing the cut. Then there exists a minimum spanning tree
that contains e and all edges of T that do not cross the cut.

A cut is a partition (U,W) of V into two non-empty subsets: ∅ ⊂ U ⊂ V and
W = V \ U.

An edge crosses the cut (U,W) if it has one endpoint in U and one in W.

U W

A Cut Theorem

Theorem: Let T be a minimum spanning tree, let (U,W) be an arbitrary cut, and let e
be the cheapest edge crossing the cut. Then there exists a minimum spanning tree
that contains e and all edges of T that do not cross the cut.

A cut is a partition (U,W) of V into two non-empty subsets: ∅ ⊂ U ⊂ V and
W = V \ U.

An edge crosses the cut (U,W) if it has one endpoint in U and one in W.

U W

e

A Cut Theorem

Theorem: Let T be a minimum spanning tree, let (U,W) be an arbitrary cut, and let e
be the cheapest edge crossing the cut. Then there exists a minimum spanning tree
that contains e and all edges of T that do not cross the cut.

A cut is a partition (U,W) of V into two non-empty subsets: ∅ ⊂ U ⊂ V and
W = V \ U.

An edge crosses the cut (U,W) if it has one endpoint in U and one in W.

U W

e

A Cut Theorem

Theorem: Let T be a minimum spanning tree, let (U,W) be an arbitrary cut, and let e
be the cheapest edge crossing the cut. Then there exists a minimum spanning tree
that contains e and all edges of T that do not cross the cut.

An exchange argument:

A cut is a partition (U,W) of V into two non-empty subsets: ∅ ⊂ U ⊂ V and
W = V \ U.

An edge crosses the cut (U,W) if it has one endpoint in U and one in W.

U W

e

A Cut Theorem

Theorem: Let T be a minimum spanning tree, let (U,W) be an arbitrary cut, and let e
be the cheapest edge crossing the cut. Then there exists a minimum spanning tree
that contains e and all edges of T that do not cross the cut.

An exchange argument:

A cut is a partition (U,W) of V into two non-empty subsets: ∅ ⊂ U ⊂ V and
W = V \ U.

An edge crosses the cut (U,W) if it has one endpoint in U and one in W.

U W

e

f

A Cut Theorem

Theorem: Let T be a minimum spanning tree, let (U,W) be an arbitrary cut, and let e
be the cheapest edge crossing the cut. Then there exists a minimum spanning tree
that contains e and all edges of T that do not cross the cut.

An exchange argument:

A cut is a partition (U,W) of V into two non-empty subsets: ∅ ⊂ U ⊂ V and
W = V \ U.

An edge crosses the cut (U,W) if it has one endpoint in U and one in W.

U W

e

f

Correctness Of Kruskal’s Algorithm

Lemma: Kruskal’s algorithm computes a minimum spanning tree.

Correctness Of Kruskal’s Algorithm

Lemma: Kruskal’s algorithm computes a minimum spanning tree.

Let (V, ∅) = F0 ⊂ F1 ⊂ · · · ⊂ Fn–1 = T be the sequence of forests computed by
Kruskal’s algorithm.

Correctness Of Kruskal’s Algorithm

Lemma: Kruskal’s algorithm computes a minimum spanning tree.

Let (V, ∅) = F0 ⊂ F1 ⊂ · · · ⊂ Fn–1 = T be the sequence of forests computed by
Kruskal’s algorithm.

Need to prove that, for all i, there exists an MST Ti ⊇ Fi.

Correctness Of Kruskal’s Algorithm

Lemma: Kruskal’s algorithm computes a minimum spanning tree.

Let (V, ∅) = F0 ⊂ F1 ⊂ · · · ⊂ Fn–1 = T be the sequence of forests computed by
Kruskal’s algorithm.

Need to prove that, for all i, there exists an MST Ti ⊇ Fi.

Correctness Of Kruskal’s Algorithm

Lemma: Kruskal’s algorithm computes a minimum spanning tree.

Let (V, ∅) = F0 ⊂ F1 ⊂ · · · ⊂ Fn–1 = T be the sequence of forests computed by
Kruskal’s algorithm.

Need to prove that, for all i, there exists an MST Ti ⊇ Fi.

e

Correctness Of Kruskal’s Algorithm

Lemma: Kruskal’s algorithm computes a minimum spanning tree.

Let (V, ∅) = F0 ⊂ F1 ⊂ · · · ⊂ Fn–1 = T be the sequence of forests computed by
Kruskal’s algorithm.

Need to prove that, for all i, there exists an MST Ti ⊇ Fi.

e

Implementing Kruskal’s Algorithm

Kruskal(G)

1 T = (V, ∅)
2 sort the edges in G by increasing weight
3 for every edge (v, w) of G, in sorted order
4 do if v and w belong to di�erent connected components of T
5 then add (v, w) to T
6 return T

Kruskal(G)

1 T = (V, ∅)
2 while T has more than one connected component
3 do let e be the cheapest edge of G whose endpoints belong to di�erent

connected components of T
4 add e to T
5 return T

⇓

A Union-Find Data Structure

2

8

6

5

7

10

Given a set S of elements, maintain a
partition of S into subsets S1, S2, . . . , Sk.

1
3

9

4

A Union-Find Data Structure

2

8

6

5

7

10

Given a set S of elements, maintain a
partition of S into subsets S1, S2, . . . , Sk.

Support the following operations:

Union(x, y): Replace sets Si and Sj in the
partition with Si ∪ Sj, where x ∈ Si and
y ∈ Sj.

1
3

9

4

A Union-Find Data Structure

1
3

2

8

6

5

7

10

Given a set S of elements, maintain a
partition of S into subsets S1, S2, . . . , Sk.

Support the following operations:

Union(x, y): Replace sets Si and Sj in the
partition with Si ∪ Sj, where x ∈ Si and
y ∈ Sj.

9

4

A Union-Find Data Structure

8
5

7

Given a set S of elements, maintain a
partition of S into subsets S1, S2, . . . , Sk.

Support the following operations:

Union(x, y): Replace sets Si and Sj in the
partition with Si ∪ Sj, where x ∈ Si and
y ∈ Sj.

Find(x): Return a representative r(Si) ∈ Si
of the set Si that contains x.

1
3

2 6

10

9

4

A Union-Find Data Structure

1
3

8
5

7

Given a set S of elements, maintain a
partition of S into subsets S1, S2, . . . , Sk.

Support the following operations:

Union(x, y): Replace sets Si and Sj in the
partition with Si ∪ Sj, where x ∈ Si and
y ∈ Sj.

Find(x): Return a representative r(Si) ∈ Si
of the set Si that contains x.

2 6

10

9

4

A Union-Find Data Structure

1
3

8
5

7

Given a set S of elements, maintain a
partition of S into subsets S1, S2, . . . , Sk.

In particular, Find(x) = Find(y) if and only if
x and y belong to the same set.

Support the following operations:

Union(x, y): Replace sets Si and Sj in the
partition with Si ∪ Sj, where x ∈ Si and
y ∈ Sj.

Find(x): Return a representative r(Si) ∈ Si
of the set Si that contains x.

2 6

10

9

4

Kruskal’s Algorithm Using Union-Find

Kruskal(G)

1 T = (V, ∅)
2 initialize a union-find structure D for V with every vertex v ∈ V in its own set
3 sort the edges in G by increasing weight
4 for every edge (v, w) of G, in sorted order
5 do if D.find(v) 6= D.find(w)
6 then add (v, w) to T
7 D.union(v, w)
8 return T

Idea: Maintain a partition of V into the vertex sets of the connected components of T.

Kruskal’s Algorithm Using Union-Find

Kruskal(G)

1 T = (V, ∅)
2 initialize a union-find structure D for V with every vertex v ∈ V in its own set
3 sort the edges in G by increasing weight
4 for every edge (v, w) of G, in sorted order
5 do if D.find(v) 6= D.find(w)
6 then add (v, w) to T
7 D.union(v, w)
8 return T

Lemma: Kruskal’s algorithm takes O(m lgm) time plus the cost of 2m Find and n – 1
Union operations.

Idea: Maintain a partition of V into the vertex sets of the connected components of T.

A Simple Union-Find Structure

List node:

• A set element
• Pointers to predecessor and successor
• Pointer to head of the list
• Pointer to tail of the list (only valid for head node)
• Size of the list (only valid for head node)

a b c d e f

A Simple Union-Find Structure

List node:

• A set element
• Pointers to predecessor and successor
• Pointer to head of the list
• Pointer to tail of the list (only valid for head node)
• Size of the list (only valid for head node)

a b c d e f

A Simple Union-Find Structure

List node:

• A set element
• Pointers to predecessor and successor
• Pointer to head of the list
• Pointer to tail of the list (only valid for head node)
• Size of the list (only valid for head node)

a b c d e f
? ? ?

A Simple Union-Find Structure

List node:

• A set element
• Pointers to predecessor and successor
• Pointer to head of the list
• Pointer to tail of the list (only valid for head node)
• Size of the list (only valid for head node)

3

a b c d e f
? ? ? ? ? ?21

Find

D.find(x)

1 return x.head.key

3

a b c d e f
21

Find

D.find(x)

1 return x.head.key

3

a d e f
21

D.find(c) = b

b c

Find

D.find(x)

1 return x.head.key

3

a c e f
21

D.find(c) = b

D.find(d) = b

b d

Find

D.find(x)

1 return x.head.key

3

a b c d
21

D.find(c) = b

D.find(d) = b

D.find(e) = e

e f

Union

D.union(x, y)

1 if x.head.listSize < y.head.listSize
2 then swap x and y
3 y.head.pred = x.head.tail
4 x.head.tail.succ = y.head
5 x.head.listSize = x.head.listSize + y.head.listSize
6 x.head.tail = y.head.tail
7 z = y.head
8 while z 6= null
9 do z.head = x.head
10 z = z.succ

Union

D.union(x, y)

1 if x.head.listSize < y.head.listSize
2 then swap x and y
3 y.head.pred = x.head.tail
4 x.head.tail.succ = y.head
5 x.head.listSize = x.head.listSize + y.head.listSize
6 x.head.tail = y.head.tail
7 z = y.head
8 while z 6= null
9 do z.head = x.head
10 z = z.succ

D.union(c, e):

3
b c d e f

2

Union

D.union(c, e):

D.union(x, y)

1 if x.head.listSize < y.head.listSize
2 then swap x and y
3 y.head.pred = x.head.tail
4 x.head.tail.succ = y.head
5 x.head.listSize = x.head.listSize + y.head.listSize
6 x.head.tail = y.head.tail
7 z = y.head
8 while z 6= null
9 do z.head = x.head
10 z = z.succ

3
b c d e f

2

Union

D.union(c, e):

D.union(x, y)

1 if x.head.listSize < y.head.listSize
2 then swap x and y
3 y.head.pred = x.head.tail
4 x.head.tail.succ = y.head
5 x.head.listSize = x.head.listSize + y.head.listSize
6 x.head.tail = y.head.tail
7 z = y.head
8 while z 6= null
9 do z.head = x.head
10 z = z.succ

3
b c d e f

2

Union

D.union(c, e):

D.union(x, y)

1 if x.head.listSize < y.head.listSize
2 then swap x and y
3 y.head.pred = x.head.tail
4 x.head.tail.succ = y.head
5 x.head.listSize = x.head.listSize + y.head.listSize
6 x.head.tail = y.head.tail
7 z = y.head
8 while z 6= null
9 do z.head = x.head
10 z = z.succ

3
b c d e f

2

Union

D.union(c, e):

D.union(x, y)

1 if x.head.listSize < y.head.listSize
2 then swap x and y
3 y.head.pred = x.head.tail
4 x.head.tail.succ = y.head
5 x.head.listSize = x.head.listSize + y.head.listSize
6 x.head.tail = y.head.tail
7 z = y.head
8 while z 6= null
9 do z.head = x.head
10 z = z.succ

3
b c d e f

2

Union

D.union(c, e):

D.union(x, y)

1 if x.head.listSize < y.head.listSize
2 then swap x and y
3 y.head.pred = x.head.tail
4 x.head.tail.succ = y.head
5 x.head.listSize = x.head.listSize + y.head.listSize
6 x.head.tail = y.head.tail
7 z = y.head
8 while z 6= null
9 do z.head = x.head
10 z = z.succ

5
b c d e f

?

Union

D.union(c, e):

D.union(x, y)

1 if x.head.listSize < y.head.listSize
2 then swap x and y
3 y.head.pred = x.head.tail
4 x.head.tail.succ = y.head
5 x.head.listSize = x.head.listSize + y.head.listSize
6 x.head.tail = y.head.tail
7 z = y.head
8 while z 6= null
9 do z.head = x.head
10 z = z.succ

5
b c d e f

Union

D.union(c, e):

D.union(x, y)

1 if x.head.listSize < y.head.listSize
2 then swap x and y
3 y.head.pred = x.head.tail
4 x.head.tail.succ = y.head
5 x.head.listSize = x.head.listSize + y.head.listSize
6 x.head.tail = y.head.tail
7 z = y.head
8 while z 6= null
9 do z.head = x.head
10 z = z.succ

5
b c d e f

?

Union

D.union(c, e):

D.union(x, y)

1 if x.head.listSize < y.head.listSize
2 then swap x and y
3 y.head.pred = x.head.tail
4 x.head.tail.succ = y.head
5 x.head.listSize = x.head.listSize + y.head.listSize
6 x.head.tail = y.head.tail
7 z = y.head
8 while z 6= null
9 do z.head = x.head
10 z = z.succ

5
b c d e f

Union

D.union(c, e):

D.union(x, y)

1 if x.head.listSize < y.head.listSize
2 then swap x and y
3 y.head.pred = x.head.tail
4 x.head.tail.succ = y.head
5 x.head.listSize = x.head.listSize + y.head.listSize
6 x.head.tail = y.head.tail
7 z = y.head
8 while z 6= null
9 do z.head = x.head
10 z = z.succ

5
b c d e f

Analysis

Observation: A Find operation takes constant time.

Analysis

Observation: A Find operation takes constant time.

Observation: A Union operation takes O(1 + s) time, where s is the size of the smaller
list.

Analysis

Observation: A Find operation takes constant time.

Observation: A Union operation takes O(1 + s) time, where s is the size of the smaller
list.

Corollary: The total cost of m operations over a base set S is O
(
m +

∑
x∈S c(x)

)
,

where c(x) is the number of times x is in the smaller list of a Union operation.

Analysis

Observation: A Find operation takes constant time.

Observation: A Union operation takes O(1 + s) time, where s is the size of the smaller
list.

Corollary: The total cost of m operations over a base set S is O
(
m +

∑
x∈S c(x)

)
,

where c(x) is the number of times x is in the smaller list of a Union operation.

Lemma: Let s(x, i) be the size of the list containing x after x was in the smaller list of i
Union operations. Then s(x, i) ≥ 2i.

Analysis

Observation: A Find operation takes constant time.

Observation: A Union operation takes O(1 + s) time, where s is the size of the smaller
list.

Corollary: The total cost of m operations over a base set S is O
(
m +

∑
x∈S c(x)

)
,

where c(x) is the number of times x is in the smaller list of a Union operation.

Lemma: Let s(x, i) be the size of the list containing x after x was in the smaller list of i
Union operations. Then s(x, i) ≥ 2i.

Base case: i = 0. The list containing x has size at least 1 = 20.

Analysis

Observation: A Find operation takes constant time.

Observation: A Union operation takes O(1 + s) time, where s is the size of the smaller
list.

Corollary: The total cost of m operations over a base set S is O
(
m +

∑
x∈S c(x)

)
,

where c(x) is the number of times x is in the smaller list of a Union operation.

Lemma: Let s(x, i) be the size of the list containing x after x was in the smaller list of i
Union operations. Then s(x, i) ≥ 2i.

Base case: i = 0. The list containing x has size at least 1 = 20.

Inductive step: i > 0.

• Consider the ith Union operation where x is in the smaller list.
• Let S1 and S2 be the two unioned lists and assume x ∈ S2.
• Then |S1| ≥ |S2| ≥ 2i–1.
• Thus, |S1 ∪ S2| ≥ 2i.

Analysis

Observation: A Find operation takes constant time.

Observation: A Union operation takes O(1 + s) time, where s is the size of the smaller
list.

Corollary: The total cost of m operations over a base set S is O
(
m +

∑
x∈S c(x)

)
,

where c(x) is the number of times x is in the smaller list of a Union operation.

Lemma: Let s(x, i) be the size of the list containing x after x was in the smaller list of i
Union operations. Then s(x, i) ≥ 2i.

Corollary: c(x) ≤ lg n for all x ∈ S.

Base case: i = 0. The list containing x has size at least 1 = 20.

Inductive step: i > 0.

• Consider the ith Union operation where x is in the smaller list.
• Let S1 and S2 be the two unioned lists and assume x ∈ S2.
• Then |S1| ≥ |S2| ≥ 2i–1.
• Thus, |S1 ∪ S2| ≥ 2i.

Analysis

Corollary: A sequence of m Union and Find operations over a base set of size n
takes O(n lg n + m) time.

Analysis

Corollary: A sequence of m Union and Find operations over a base set of size n
takes O(n lg n + m) time.

Corollary: Kruskal’s algorithm takes O(n lg n + m lgm) time.

Analysis

Corollary: A sequence of m Union and Find operations over a base set of size n
takes O(n lg n + m) time.

Corollary: Kruskal’s algorithm takes O(n lg n + m lgm) time.

If the graph is connected, then m ≥ n – 1, so the running time simplifies to O(m lgm).

The Cut Theorem And Graph Traversal

Explored

“Explorable”

Unexplored

Source

The Cut Theorem And Graph Traversal

If there exists an MST containing all green edges, then there exists an MST containing
all green edges and the cheapest red edge.

Explored

“Explorable”

Unexplored

Source

The Cut Theorem And Graph Traversal

If there exists an MST containing all green edges, then there exists an MST containing
all green edges and the cheapest red edge.

Cut: U = explored vertices, W = V \ U

Explored

“Explorable”

Unexplored

Source

Prim’s Algorithm

Prim(G)

1 T = (V, ∅)
2 mark all vertices of G as unexplored
3 mark an arbitrary vertex s as explored
4 while not all vertices are explored
5 do pick the cheapest edge e with exactly one unexplored endpoint v
6 mark v as explored
7 add e to T
8 return T

Prim’s Algorithm

Prim(G)

1 T = (V, ∅)
2 mark all vertices of G as unexplored
3 mark an arbitrary vertex s as explored
4 while not all vertices are explored
5 do pick the cheapest edge e with exactly one unexplored endpoint v
6 mark v as explored
7 add e to T
8 return T

Lemma: Prim’s algorithm computes a minimum spanning tree.

Prim’s Algorithm

Prim(G)

1 T = (V, ∅)
2 mark all vertices of G as unexplored
3 mark an arbitrary vertex s as explored
4 while not all vertices are explored
5 do pick the cheapest edge e with exactly one unexplored endpoint v
6 mark v as explored
7 add e to T
8 return T

Lemma: Prim’s algorithm computes a minimum spanning tree.

By induction on the number of edges in T, there exists an MST T∗ ⊇ T.

Prim’s Algorithm

Prim(G)

1 T = (V, ∅)
2 mark all vertices of G as unexplored
3 mark an arbitrary vertex s as explored
4 while not all vertices are explored
5 do pick the cheapest edge e with exactly one unexplored endpoint v
6 mark v as explored
7 add e to T
8 return T

Lemma: Prim’s algorithm computes a minimum spanning tree.

By induction on the number of edges in T, there exists an MST T∗ ⊇ T.

Once T is connected, we have T∗ = T.

The Abstract Data Type Priority Queue

Operations:
Q.insert(x, p): Insert element x with priority p

Q.delete(x): Delete element x

Q.findMin(): Find and return the element with minimum priority

Q.deleteMin(): Delete the element with minimum priority and return it

Q.decreaseKey(x, p): Change the priority px of x to min(p, px)

Delete and DecreaseKey assume they’re given a pointer to the place in Q where x is
stored.

The Abstract Data Type Priority Queue

Example: A binary heap is a priority queue supporting all operations in O(lg |Q|) time.

Operations:
Q.insert(x, p): Insert element x with priority p

Q.delete(x): Delete element x

Q.findMin(): Find and return the element with minimum priority

Q.deleteMin(): Delete the element with minimum priority and return it

Q.decreaseKey(x, p): Change the priority px of x to min(p, px)

Delete and DecreaseKey assume they’re given a pointer to the place in Q where x is
stored.

Prim’s Algorithm Using A Priority Queue

Prim(G)

1 T = (V, ∅)
2 mark every vertex of G as unexplored
3 mark an arbitrary vertex s as explored
4 Q = an empty priority queue
5 for every edge (s, v) incident to s
6 do Q.insert((s, v), w(s, v))
7 while not Q.isEmpty()
8 do (u, v) = Q.deleteMin()
9 if v is unexplored
10 then mark v as explored
11 add edge (u, v) to T
12 for every edge (v, w) incident to v
13 do Q.insert((v, w), w(v, w))
14 return T

Prim’s Algorithm Using A Priority Queue

Prim(G)

1 T = (V, ∅)
2 mark every vertex of G as unexplored
3 mark an arbitrary vertex s as explored
4 Q = an empty priority queue
5 for every edge (s, v) incident to s
6 do Q.insert((s, v), w(s, v))
7 while not Q.isEmpty()
8 do (u, v) = Q.deleteMin()
9 if v is unexplored
10 then mark v as explored
11 add edge (u, v) to T
12 for every edge (v, w) incident to v
13 do Q.insert((v, w), w(v, w))
14 return T

Invariant: Q contains all
edges with exactly one
unexplored endpoint.

Prim’s Algorithm Using A Priority Queue

Prim(G)

1 T = (V, ∅)
2 mark every vertex of G as unexplored
3 mark an arbitrary vertex s as explored
4 Q = an empty priority queue
5 for every edge (s, v) incident to s
6 do Q.insert((s, v), w(s, v))
7 while not Q.isEmpty()
8 do (u, v) = Q.deleteMin()
9 if v is unexplored
10 then mark v as explored
11 add edge (u, v) to T
12 for every edge (v, w) incident to v
13 do Q.insert((v, w), w(v, w))
14 return T

Invariant: Q contains all
edges with exactly one
unexplored endpoint.

⇒ This version of Prim’s
algorithm computes an
MST.

Prim’s Algorithm Using A Priority Queue

Prim(G)

1 T = (V, ∅)
2 mark every vertex of G as unexplored
3 mark an arbitrary vertex s as explored
4 Q = an empty priority queue
5 for every edge (s, v) incident to s
6 do Q.insert((s, v), w(s, v))
7 while not Q.isEmpty()
8 do (u, v) = Q.deleteMin()
9 if v is unexplored
10 then mark v as explored
11 add edge (u, v) to T
12 for every edge (v, w) incident to v
13 do Q.insert((v, w), w(v, w))
14 return T

This version of Prim’s
algorithm takes O(m lgm)
time:

Invariant: Q contains all
edges with exactly one
unexplored endpoint.

⇒ This version of Prim’s
algorithm computes an
MST.

Prim’s Algorithm Using A Priority Queue

Prim(G)

1 T = (V, ∅)
2 mark every vertex of G as unexplored
3 mark an arbitrary vertex s as explored
4 Q = an empty priority queue
5 for every edge (s, v) incident to s
6 do Q.insert((s, v), w(s, v))
7 while not Q.isEmpty()
8 do (u, v) = Q.deleteMin()
9 if v is unexplored
10 then mark v as explored
11 add edge (u, v) to T
12 for every edge (v, w) incident to v
13 do Q.insert((v, w), w(v, w))
14 return T

This version of Prim’s
algorithm takes O(m lgm)
time:

Every edge is inserted into Q
once.

Invariant: Q contains all
edges with exactly one
unexplored endpoint.

⇒ This version of Prim’s
algorithm computes an
MST.

Prim’s Algorithm Using A Priority Queue

Prim(G)

1 T = (V, ∅)
2 mark every vertex of G as unexplored
3 mark an arbitrary vertex s as explored
4 Q = an empty priority queue
5 for every edge (s, v) incident to s
6 do Q.insert((s, v), w(s, v))
7 while not Q.isEmpty()
8 do (u, v) = Q.deleteMin()
9 if v is unexplored
10 then mark v as explored
11 add edge (u, v) to T
12 for every edge (v, w) incident to v
13 do Q.insert((v, w), w(v, w))
14 return T

This version of Prim’s
algorithm takes O(m lgm)
time:

Every edge is inserted into Q
once.

⇒ Every edge is removed
from Q once.

Invariant: Q contains all
edges with exactly one
unexplored endpoint.

⇒ This version of Prim’s
algorithm computes an
MST.

Prim’s Algorithm Using A Priority Queue

Prim(G)

1 T = (V, ∅)
2 mark every vertex of G as unexplored
3 mark an arbitrary vertex s as explored
4 Q = an empty priority queue
5 for every edge (s, v) incident to s
6 do Q.insert((s, v), w(s, v))
7 while not Q.isEmpty()
8 do (u, v) = Q.deleteMin()
9 if v is unexplored
10 then mark v as explored
11 add edge (u, v) to T
12 for every edge (v, w) incident to v
13 do Q.insert((v, w), w(v, w))
14 return T

This version of Prim’s
algorithm takes O(m lgm)
time:

Every edge is inserted into Q
once.

⇒ Every edge is removed
from Q once.

⇒ 2m priority queue
operations.

Invariant: Q contains all
edges with exactly one
unexplored endpoint.

⇒ This version of Prim’s
algorithm computes an
MST.

Most Edges In Q Are Useless

Observation: Of all the edges connecting an unexplored vertex to explored vertices
only the cheapest has a chance of being added to the MST.

w(e) < w(f)Explored
e

f
v

Most Edges In Q Are Useless

Observation: Of all the edges connecting an unexplored vertex to explored vertices
only the cheapest has a chance of being added to the MST.

While v is unexplored, all red and orange edges are in Q, so none of the red edges
can be the first edge to be removed from Q.

w(e) < w(f)Explored
e

f
v

Most Edges In Q Are Useless

e

Observation: Of all the edges connecting an unexplored vertex to explored vertices
only the cheapest has a chance of being added to the MST.

While v is unexplored, all red and orange edges are in Q, so none of the red edges
can be the first edge to be removed from Q.

After marking v as explored, both endpoints of red edges are explored, so they cannot
be added to T either.

w(e) < w(f)Explored

f
v

A Faster Version Of Prim’s Algorithm
Prim(G)

1 T = (V, ∅)
2 mark every vertex of G as unexplored
3 set e(v) = nil for every vertex v ∈ G
4 mark an arbitrary vertex s as explored
5 Q = an empty priority queue
6 for every edge (s, v) incident to s
7 do Q.insert(v, w(s, v))
8 e(v) = (s, v)
9 while not Q.isEmpty()
10 do u = Q.deleteMin()
11 mark u as explored
12 add e(u) to T
13 for every edge (u, v) incident to u
14 do if v is unexplored and (v 6∈ Q or w(u, v) < w(e(v)))
15 then if v 6∈ Q
16 then Q.insert(v, w(u, v))
17 else Q.decreaseKey(v, w(u, v))
18 e(v) = (u, v)
19 return T

A Faster Version Of Prim’s Algorithm
Prim(G)

1 T = (V, ∅)
2 mark every vertex of G as unexplored
3 set e(v) = nil for every vertex v ∈ G
4 mark an arbitrary vertex s as explored
5 Q = an empty priority queue
6 for every edge (s, v) incident to s
7 do Q.insert(v, w(s, v))
8 e(v) = (s, v)
9 while not Q.isEmpty()
10 do u = Q.deleteMin()
11 mark u as explored
12 add e(u) to T
13 for every edge (u, v) incident to u
14 do if v is unexplored and (v 6∈ Q or w(u, v) < w(e(v)))
15 then if v 6∈ Q
16 then Q.insert(v, w(u, v))
17 else Q.decreaseKey(v, w(u, v))
18 e(v) = (u, v)
19 return T

This version of Prim’s algorithm
also takes O(m lgm) time:

A Faster Version Of Prim’s Algorithm
Prim(G)

1 T = (V, ∅)
2 mark every vertex of G as unexplored
3 set e(v) = nil for every vertex v ∈ G
4 mark an arbitrary vertex s as explored
5 Q = an empty priority queue
6 for every edge (s, v) incident to s
7 do Q.insert(v, w(s, v))
8 e(v) = (s, v)
9 while not Q.isEmpty()
10 do u = Q.deleteMin()
11 mark u as explored
12 add e(u) to T
13 for every edge (u, v) incident to u
14 do if v is unexplored and (v 6∈ Q or w(u, v) < w(e(v)))
15 then if v 6∈ Q
16 then Q.insert(v, w(u, v))
17 else Q.decreaseKey(v, w(u, v))
18 e(v) = (u, v)
19 return T

This version of Prim’s algorithm
also takes O(m lgm) time:

• n Insert operations

A Faster Version Of Prim’s Algorithm
Prim(G)

1 T = (V, ∅)
2 mark every vertex of G as unexplored
3 set e(v) = nil for every vertex v ∈ G
4 mark an arbitrary vertex s as explored
5 Q = an empty priority queue
6 for every edge (s, v) incident to s
7 do Q.insert(v, w(s, v))
8 e(v) = (s, v)
9 while not Q.isEmpty()
10 do u = Q.deleteMin()
11 mark u as explored
12 add e(u) to T
13 for every edge (u, v) incident to u
14 do if v is unexplored and (v 6∈ Q or w(u, v) < w(e(v)))
15 then if v 6∈ Q
16 then Q.insert(v, w(u, v))
17 else Q.decreaseKey(v, w(u, v))
18 e(v) = (u, v)
19 return T

This version of Prim’s algorithm
also takes O(m lgm) time:

• n Insert operations

• m – n DecreaseKey
operations

A Faster Version Of Prim’s Algorithm
Prim(G)

1 T = (V, ∅)
2 mark every vertex of G as unexplored
3 set e(v) = nil for every vertex v ∈ G
4 mark an arbitrary vertex s as explored
5 Q = an empty priority queue
6 for every edge (s, v) incident to s
7 do Q.insert(v, w(s, v))
8 e(v) = (s, v)
9 while not Q.isEmpty()
10 do u = Q.deleteMin()
11 mark u as explored
12 add e(u) to T
13 for every edge (u, v) incident to u
14 do if v is unexplored and (v 6∈ Q or w(u, v) < w(e(v)))
15 then if v 6∈ Q
16 then Q.insert(v, w(u, v))
17 else Q.decreaseKey(v, w(u, v))
18 e(v) = (u, v)
19 return T

This version of Prim’s algorithm
also takes O(m lgm) time:

• n Insert operations

• m – n DecreaseKey
operations

• n DeleteMin operations

A Faster Version Of Prim’s Algorithm
Prim(G)

1 T = (V, ∅)
2 mark every vertex of G as unexplored
3 set e(v) = nil for every vertex v ∈ G
4 mark an arbitrary vertex s as explored
5 Q = an empty priority queue
6 for every edge (s, v) incident to s
7 do Q.insert(v, w(s, v))
8 e(v) = (s, v)
9 while not Q.isEmpty()
10 do u = Q.deleteMin()
11 mark u as explored
12 add e(u) to T
13 for every edge (u, v) incident to u
14 do if v is unexplored and (v 6∈ Q or w(u, v) < w(e(v)))
15 then if v 6∈ Q
16 then Q.insert(v, w(u, v))
17 else Q.decreaseKey(v, w(u, v))
18 e(v) = (u, v)
19 return T

This version of Prim’s algorithm
also takes O(m lgm) time:

• n Insert operations

• m – n DecreaseKey
operations

⇒ n + m priority queue
operations.

• n DeleteMin operations

A Faster Version Of Prim’s Algorithm
Prim(G)

1 T = (V, ∅)
2 mark every vertex of G as unexplored
3 set e(v) = nil for every vertex v ∈ G
4 mark an arbitrary vertex s as explored
5 Q = an empty priority queue
6 for every edge (s, v) incident to s
7 do Q.insert(v, w(s, v))
8 e(v) = (s, v)
9 while not Q.isEmpty()
10 do u = Q.deleteMin()
11 mark u as explored
12 add e(u) to T
13 for every edge (u, v) incident to u
14 do if v is unexplored and (v 6∈ Q or w(u, v) < w(e(v)))
15 then if v 6∈ Q
16 then Q.insert(v, w(u, v))
17 else Q.decreaseKey(v, w(u, v))
18 e(v) = (u, v)
19 return T

This version of Prim’s algorithm
also takes O(m lgm) time:

• n Insert operations

• m – n DecreaseKey
operations

⇒ n + m priority queue
operations.

• n DeleteMin operations

Did we gain anything?

A Faster Version Of Prim’s Algorithm
Prim(G)

1 T = (V, ∅)
2 mark every vertex of G as unexplored
3 set e(v) = nil for every vertex v ∈ G
4 mark an arbitrary vertex s as explored
5 Q = an empty priority queue
6 for every edge (s, v) incident to s
7 do Q.insert(v, w(s, v))
8 e(v) = (s, v)
9 while not Q.isEmpty()
10 do u = Q.deleteMin()
11 mark u as explored
12 add e(u) to T
13 for every edge (u, v) incident to u
14 do if v is unexplored and (v 6∈ Q or w(u, v) < w(e(v)))
15 then if v 6∈ Q
16 then Q.insert(v, w(u, v))
17 else Q.decreaseKey(v, w(u, v))
18 e(v) = (u, v)
19 return T

This version of Prim’s algorithm
also takes O(m lgm) time:

• n Insert operations

• m – n DecreaseKey
operations

⇒ n + m priority queue
operations.

• n DeleteMin operations

Did we gain anything?

Thin Heap

The Thin Heap is a priority queue which supports

• Insert, DecreaseKey, and FindMin in O(1) time and
• DeleteMin and Delete in O(lg n) time.

Thin Heap

The Thin Heap is a priority queue which supports

• Insert, DecreaseKey, and FindMin in O(1) time and
• DeleteMin and Delete in O(lg n) time.

These bounds are amortized:

• Individual operations can take much longer.
• A sequence of m operations, d of them DeleteMin or Delete operations, takes
O(m + d lg n) time in the worst case.

Thin Heap

The Thin Heap is a priority queue which supports

• Insert, DecreaseKey, and FindMin in O(1) time and
• DeleteMin and Delete in O(lg n) time.

These bounds are amortized:

• Individual operations can take much longer.
• A sequence of m operations, d of them DeleteMin or Delete operations, takes
O(m + d lg n) time in the worst case.

Prim’s algorithm performs n + m priority queue operations, n of which are DeleteMin
operations.

Lemma: Prim’s algorithm takes O(n lg n + m) time.

Thin Tree

A Thin Heap is built from Thin Trees. Thin Trees are defined inductively.

Thin Tree

A Thin Heap is built from Thin Trees. Thin Trees are defined inductively.

Every Thin Tree is a rooted tree whose nodes have ranks.

Thin Tree

A Thin Heap is built from Thin Trees. Thin Trees are defined inductively.

Every Thin Tree is a rooted tree whose nodes have ranks.

A node of rank 0 is a leaf.

Rank 0

0

Thin Tree

A Thin Heap is built from Thin Trees. Thin Trees are defined inductively.

Every Thin Tree is a rooted tree whose nodes have ranks.

A node of rank 0 is a leaf.

A node of rank k > 0 has

Thick node: k children of ranks k – 1, k – 2, . . . , 0 or
Thin node: k – 1 children of ranks k – 2, k – 3, . . . , 0.

Rank 0

0

Rank 4, thick

3 2 1 0

4

Thin Tree

A Thin Heap is built from Thin Trees. Thin Trees are defined inductively.

Every Thin Tree is a rooted tree whose nodes have ranks.

A node of rank 0 is a leaf.

A node of rank k > 0 has

Thick node: k children of ranks k – 1, k – 2, . . . , 0 or
Thin node: k – 1 children of ranks k – 2, k – 3, . . . , 0.

Rank 0

0

Rank 4, thick

3 2 1 0

4

Rank 5, thin

3 2 1 0

5

Thin Heap

A Thin Heap is a circular list of heap-ordered Thin Trees.

Thin Heap

All roots are thick.

A Thin Heap is a circular list of heap-ordered Thin Trees.

Thin Heap

All roots are thick.

A Thin Heap is a circular list of heap-ordered Thin Trees.

Heap-ordered: Every node stores an element no less than the element stored at its
parent.

Thin Heap

All roots are thick.

The minimum element is stored at one of the roots.

A Thin Heap is a circular list of heap-ordered Thin Trees.

Heap-ordered: Every node stores an element no less than the element stored at its
parent.

Thin Heap

min

All roots are thick.

The minimum element is stored at one of the roots.

We store a pointer to this root.

A Thin Heap is a circular list of heap-ordered Thin Trees.

Heap-ordered: Every node stores an element no less than the element stored at its
parent.

Node Representation

• Element stored at the node
• Rank
• Pointer to leftmost child
• Pointer to right sibling
• Pointer to left sibling or parent

x 5
or

parent

left sibling
right sibling

leftmost child

Node Representation

• Element stored at the node
• Rank
• Pointer to leftmost child
• Pointer to right sibling
• Pointer to left sibling or parent

x 5
or

parent

left sibling
right sibling

leftmost child

root

FindMin

... is easy:

min

Delete

... can be implemented using DecreaseKey and DeleteMin:

Q.delete(x)

1 Q.decreaseKey(x, –∞)
2 Q.deleteMin()

Insert

Insert

If Q is empty:

Insert

If Q is empty:

min

Insert

If Q is empty:

If Q is not empty:

min

min

Insert

If Q is empty:

If Q is not empty:

• Insert new element between min and its successor.

min

min

Insert

If Q is empty:

If Q is not empty:

• Insert new element between min and its successor.
• Update min if the new element is the new smallest element.

min

min

DeleteMin

min

DeleteMin

min

DeleteMin

DeleteMin

What do we do with the children?

How do we find the new minimum?

DeleteMin

How do we find the new minimum?
• Could be one of the children.
• Could be one of the other roots.

What do we do with the children?

DeleteMin

• Ensure all former children of min are thick. How?

DeleteMin

• Ensure all former children of min are thick. How?

• Collect all roots and former children of min.

DeleteMin

• Ensure all former children of min are thick. How?

• Collect all roots and former children of min.

• Link trees of the same rank until at most one tree of each rank remains.

DeleteMin

• Ensure all former children of min are thick. How?

• Collect all roots and former children of min.

• Link trees of the same rank until at most one tree of each rank remains.

DeleteMin

• Ensure all former children of min are thick. How?

• Collect all roots and former children of min.

• Link trees of the same rank until at most one tree of each rank remains.

DeleteMin

• Ensure all former children of min are thick. How?

• Collect all roots and former children of min.

• Link trees of the same rank until at most one tree of each rank remains.

DeleteMin

• Ensure all former children of min are thick. How?

• Collect all roots and former children of min.

• Link trees of the same rank until at most one tree of each rank remains.

DeleteMin

• Ensure all former children of min are thick. How?

• Collect all roots and former children of min.

• Link trees of the same rank until at most one tree of each rank remains.

DeleteMin

• Ensure all former children of min are thick. How?

• Collect all roots and former children of min.

• Link trees of the same rank until at most one tree of each rank remains.

min

• Relink roots into circular list and make min point to the minimum root.

Linking

Rank r Rank r + 1
yx

x

y

This produces a valid thin tree:

y had r children of ranks r – 1, r – 2, . . . , 0 before.
⇒ y has r + 1 children of ranks r, r – 1, . . . , 0 after.

Important: Both nodes need to be thick and of the same rank.

Assume y < x (swap the two trees otherwise).

Bounding the Maximum Rank

Lemma: A tree whose root has rank r has at least Fr nodes, where Fr is the rth
Fibonacci number.

Bounding the Maximum Rank

Lemma: A tree whose root has rank r has at least Fr nodes, where Fr is the rth
Fibonacci number.

Fibonacci numbers:

Fk =

{
1 k = 0 or k = 1
Fk–1 + Fk–2 otherwise

Bounding the Maximum Rank

Lemma: A tree whose root has rank r has at least Fr nodes, where Fr is the rth
Fibonacci number.

Fibonacci numbers:

Fk =

{
1 k = 0 or k = 1
Fk–1 + Fk–2 otherwise

Base case: r ∈ {0, 1}⇒ at least 1 = F0 = F1 node.

Bounding the Maximum Rank

Lemma: A tree whose root has rank r has at least Fr nodes, where Fr is the rth
Fibonacci number.

Fibonacci numbers:

Fk =

{
1 k = 0 or k = 1
Fk–1 + Fk–2 otherwise

Base case: r ∈ {0, 1}⇒ at least 1 = F0 = F1 node.

Inductive step: r > 1. We can assume the root is thin.

r

r – 2 r – 3 0

Bounding the Maximum Rank

Lemma: A tree whose root has rank r has at least Fr nodes, where Fr is the rth
Fibonacci number.

Fibonacci numbers:

Fk =

{
1 k = 0 or k = 1
Fk–1 + Fk–2 otherwise

Base case: r ∈ {0, 1}⇒ at least 1 = F0 = F1 node.

Inductive step: r > 1. We can assume the root is thin.

r – 1

r – 2 r – 3 0

Bounding the Maximum Rank

Lemma: A tree whose root has rank r has at least Fr nodes, where Fr is the rth
Fibonacci number.

Fibonacci numbers:

Fk =

{
1 k = 0 or k = 1
Fk–1 + Fk–2 otherwise

Base case: r ∈ {0, 1}⇒ at least 1 = F0 = F1 node.

Inductive step: r > 1. We can assume the root is thin.

Fr–1 + Fr–2 = Fr

r – 1

r – 2 r – 3 0

≥ Fr–2 ≥ Fr–1

Bounding the Maximum Rank

Lemma: Fr ≥ φr–1, where φ = 1+
√
5

2 ≈ 1.62 is the Golden Ratio.

Bounding the Maximum Rank

Lemma: Fr ≥ φr–1, where φ = 1+
√
5

2 ≈ 1.62 is the Golden Ratio.

Base case: F0 = 1 > φ–1

F1 = 1 = φ0

Bounding the Maximum Rank

Lemma: Fr ≥ φr–1, where φ = 1+
√
5

2 ≈ 1.62 is the Golden Ratio.

Base case: F0 = 1 > φ–1

F1 = 1 = φ0

Inductive step: r > 1.

Fr = Fr–1 + Fr–2 ≥ φr–2 + φr–3

=

(
1 +
√
5

2
+ 1

)
φr–3 =

3 +
√
5

2
φr–3

=

(
1 +
√
5

2

)2

φr–3 = φr–1.

Bounding the Maximum Rank

Lemma: Fr ≥ φr–1, where φ = 1+
√
5

2 ≈ 1.62 is the Golden Ratio.

Base case: F0 = 1 > φ–1

F1 = 1 = φ0

Inductive step: r > 1.

Fr = Fr–1 + Fr–2 ≥ φr–2 + φr–3

=

(
1 +
√
5

2
+ 1

)
φr–3 =

3 +
√
5

2
φr–3

=

(
1 +
√
5

2

)2

φr–3 = φr–1.

Corollary: The maximum rank in a Thin Heap storing n elements is logφ n < 2 lg n.

Implementation of DeleteMin

Q.deleteMin()

1 x = Q.min
2 R = array of size 2 lg n with all its entries initially null.
3 for every root r other than Q.min
4 do LinkTrees(R, r)
5 for every child c of Q.min
6 do decrease c’s rank if necessary to make it thick
7 LinkTrees(R, c)
8 Q.min = null
9 for i = 0 to 2 lg n
10 do if R[i] 6= null
11 then R[i].leftSibOrParent = null
12 if Q.min = null
13 then Q.min = R[i]
14 Q.min.rightSib = Q.min
15 else R[i].rightSib = Q.min.rightSib
16 Q.min.rightSib = R[i].
17 if R[i].val < Q.min.val
18 then Q.min = R[i]
19 return x.val

Implementation of DeleteMin

Q.deleteMin()

1 x = Q.min
2 R = array of size 2 lg n with all its entries initially null.
3 for every root r other than Q.min
4 do LinkTrees(R, r)
5 for every child c of Q.min
6 do decrease c’s rank if necessary to make it thick
7 LinkTrees(R, c)
8 Q.min = null
9 for i = 0 to 2 lg n
10 do if R[i] 6= null
11 then R[i].leftSibOrParent = null
12 if Q.min = null
13 then Q.min = R[i]
14 Q.min.rightSib = Q.min
15 else R[i].rightSib = Q.min.rightSib
16 Q.min.rightSib = R[i].
17 if R[i].val < Q.min.val
18 then Q.min = R[i]
19 return x.val

Collect pairs of trees while ensuring
no two have the same rank.

Implementation of DeleteMin

Q.deleteMin()

1 x = Q.min
2 R = array of size 2 lg n with all its entries initially null.
3 for every root r other than Q.min
4 do LinkTrees(R, r)
5 for every child c of Q.min
6 do decrease c’s rank if necessary to make it thick
7 LinkTrees(R, c)
8 Q.min = null
9 for i = 0 to 2 lg n
10 do if R[i] 6= null
11 then R[i].leftSibOrParent = null
12 if Q.min = null
13 then Q.min = R[i]
14 Q.min.rightSib = Q.min
15 else R[i].rightSib = Q.min.rightSib
16 Q.min.rightSib = R[i].
17 if R[i].val < Q.min.val
18 then Q.min = R[i]
19 return x.val

Collect pairs of trees while ensuring
no two have the same rank.

LinkTrees(R, x)

1 r = x.rank
2 while R[r] 6= null
3 do x = Link(x, R[r])
4 R[r] = null
5 r = r + 1
6 R[r] = x

Implementation of DeleteMin

Q.deleteMin()

1 x = Q.min
2 R = array of size 2 lg n with all its entries initially null.
3 for every root r other than Q.min
4 do LinkTrees(R, r)
5 for every child c of Q.min
6 do decrease c’s rank if necessary to make it thick
7 LinkTrees(R, c)
8 Q.min = null
9 for i = 0 to 2 lg n
10 do if R[i] 6= null
11 then R[i].leftSibOrParent = null
12 if Q.min = null
13 then Q.min = R[i]
14 Q.min.rightSib = Q.min
15 else R[i].rightSib = Q.min.rightSib
16 Q.min.rightSib = R[i].
17 if R[i].val < Q.min.val
18 then Q.min = R[i]
19 return x.val

Collect remaining trees and form
circular list.

DecreaseKey

min

x

DecreaseKey

• Update x’s priority

min

x

DecreaseKey

• Make x a root
• Update x’s priority

min
x

DecreaseKey

• Make x a root
• Update x’s priority

x
min

DecreaseKey

• Make x a root
• Update x’s priority

x
min

Sibling violation at y:

y.rank > 0 and y has no right sibling or
y.rightSib.rank < y.rank – 1.

DecreaseKey

• Make x a root
• Update x’s priority

x
min

Sibling violation at y:

y.rank > 0 and y has no right sibling or
y.rightSib.rank < y.rank – 1.

Parent violation at y:

y.rank > 1 and y has no children or
y.child.rank < y.rank – 2.

DecreaseKey

• Fix parent/sibling violations
• Make x a root
• Update x’s priority

x
min

Sibling violation at y:

y.rank > 0 and y has no right sibling or
y.rightSib.rank < y.rank – 1.

Parent violation at y:

y.rank > 1 and y has no children or
y.child.rank < y.rank – 2.

Sibling Violation

r + 1 r r – 2y

Sibling Violation

If y is thin, thenr + 1 r r – 2y

Sibling Violation

If y is thin, then
• decrease its rank by one and

r + 1 r – 2yr – 1

Sibling Violation

If y is thin, then
• decrease its rank by one and
• fix violation at y.leftSibOrParent.

r + 1 r – 2yr – 1

Sibling Violation

If y is thick, then

If y is thin, then
• decrease its rank by one and
• fix violation at y.leftSibOrParent.

r + 1 r – 2yr – 1

r – 1 r – 2

r r – 2
y

Sibling Violation

r – 1

If y is thin, then
• decrease its rank by one and
• fix violation at y.leftSibOrParent.

If y is thick, then make y.child
y’s right sibling.

r + 1 r – 2yr – 1

r – 2

r r – 1 r – 2
y

Parent Violation

y

< r – 2

r

Parent Violation

If y is a root, then set y.rank = y.child.rank + 1.y

< r – 2

r

Parent Violation

If y is a root, then set y.rank = y.child.rank + 1.

If y is not a root, then

y

< r – 2

r

Parent Violation

If y is a root, then set y.rank = y.child.rank + 1.

• make y a root,

If y is not a root, then

y

< r – 2

r

Parent Violation

If y is a root, then set y.rank = y.child.rank + 1.

• set y.rank = y.child.rank + 1, and
• make y a root,

If y is not a root, then

y

< r – 2

r

Parent Violation

If y is a root, then set y.rank = y.child.rank + 1.

• fix violation at y.leftSibOrParent.
• set y.rank = y.child.rank + 1, and
• make y a root,

If y is not a root, then

y

< r – 2

r

Amortized Analysis

For a sequence of operations on a data structure, the total worst-case cost of these
operations is bounded by the sum of the worst-case costs of these operations.

Amortized Analysis

For a sequence of operations on a data structure, the total worst-case cost of these
operations is bounded by the sum of the worst-case costs of these operations.

We’ve already seen an example where this bound isn’t tight:

• A single Union operation on a union-find data structure can take linear time, but
• The total cost of n Union operations is in O(n lg n).

Amortized Analysis

For a sequence of operations on a data structure, the total worst-case cost of these
operations is bounded by the sum of the worst-case costs of these operations.

We’ve already seen an example where this bound isn’t tight:

• A single Union operation on a union-find data structure can take linear time, but
• The total cost of n Union operations is in O(n lg n).

This means: If there’s an expensive operation, there must have been many cheap
operations that can “pay” for this high cost.

Amortized Analysis

For a sequence of operations on a data structure, the total worst-case cost of these
operations is bounded by the sum of the worst-case costs of these operations.

We’ve already seen an example where this bound isn’t tight:

• A single Union operation on a union-find data structure can take linear time, but
• The total cost of n Union operations is in O(n lg n).

This means: If there’s an expensive operation, there must have been many cheap
operations that can “pay” for this high cost.

Amortized analysis formalizes this idea:

Let o1, o2, . . . , om be a sequence of operations.

Let c1, c2, . . . , cm be their costs.

Amortized Analysis

For a sequence of operations on a data structure, the total worst-case cost of these
operations is bounded by the sum of the worst-case costs of these operations.

We’ve already seen an example where this bound isn’t tight:

• A single Union operation on a union-find data structure can take linear time, but
• The total cost of n Union operations is in O(n lg n).

This means: If there’s an expensive operation, there must have been many cheap
operations that can “pay” for this high cost.

Amortized analysis formalizes this idea:

Let o1, o2, . . . , om be a sequence of operations.

Let c1, c2, . . . , cm be their costs.

Now define amortized costs ĉ1, ĉ2, . . . , ĉm.

Amortized Analysis

For a sequence of operations on a data structure, the total worst-case cost of these
operations is bounded by the sum of the worst-case costs of these operations.

We’ve already seen an example where this bound isn’t tight:

• A single Union operation on a union-find data structure can take linear time, but
• The total cost of n Union operations is in O(n lg n).

This means: If there’s an expensive operation, there must have been many cheap
operations that can “pay” for this high cost.

Amortized analysis formalizes this idea:

Let o1, o2, . . . , om be a sequence of operations.

Let c1, c2, . . . , cm be their costs.

Now define amortized costs ĉ1, ĉ2, . . . , ĉm.

These costs are completely fictitious but must satisfy an important condition to be
useful:

m∑
i=1

ci ≤
m∑
i=1

ĉi

Techniques for Proving Amortized Bounds

The most important ones are the Accounting Method and Potential Functions.

Techniques for Proving Amortized Bounds

The most important ones are the Accounting Method and Potential Functions.

A potential function Φ calculates a number, the potential of the data structure, from its
current structure.

Techniques for Proving Amortized Bounds

The most important ones are the Accounting Method and Potential Functions.

A potential function Φ calculates a number, the potential of the data structure, from its
current structure.

Conditions:

• The empty data structure has potential 0.
• The potential of the data structure is always non-negative.

Techniques for Proving Amortized Bounds

The most important ones are the Accounting Method and Potential Functions.

A potential function Φ calculates a number, the potential of the data structure, from its
current structure.

Conditions:

• The empty data structure has potential 0.
• The potential of the data structure is always non-negative.

D0 D1 D2 Dmo1 o2 om
Dm–1

Techniques for Proving Amortized Bounds

The most important ones are the Accounting Method and Potential Functions.

A potential function Φ calculates a number, the potential of the data structure, from its
current structure.

Conditions:

• The empty data structure has potential 0.
• The potential of the data structure is always non-negative.

D0 D1 D2 Dmo1 o2 om
Dm–1

c1 c2 cm

Techniques for Proving Amortized Bounds

The most important ones are the Accounting Method and Potential Functions.

A potential function Φ calculates a number, the potential of the data structure, from its
current structure.

Conditions:

• The empty data structure has potential 0.
• The potential of the data structure is always non-negative.

D0 D1 D2 Dmo1 o2 om
Dm–1

Φ0 Φ1 Φ2 Φm–1 Φmc1 c2 cm

Techniques for Proving Amortized Bounds

The most important ones are the Accounting Method and Potential Functions.

A potential function Φ calculates a number, the potential of the data structure, from its
current structure.

Conditions:

• The empty data structure has potential 0.
• The potential of the data structure is always non-negative.

ĉi := ci +Φi –Φi–1

D0 D1 D2 Dmo1 o2 om
Dm–1

Φ0 Φ1 Φ2 Φm–1 Φmc1 c2 cm

Techniques for Proving Amortized Bounds

The most important ones are the Accounting Method and Potential Functions.

A potential function Φ calculates a number, the potential of the data structure, from its
current structure.

Conditions:

• The empty data structure has potential 0.
• The potential of the data structure is always non-negative.

ĉi := ci +Φi –Φi–1

m∑
i=1

ĉi =
m∑
i=1

(ci +Φi –Φi–1) =
m∑
i=1

ci +Φm –Φ0 ≥
m∑
i=1

ci

D0 D1 D2 Dmo1 o2 om
Dm–1

Φ0 Φ1 Φ2 Φm–1 Φmc1 c2 cm

Techniques for Proving Amortized Bounds

The most important ones are the Accounting Method and Potential Functions.

A potential function Φ calculates a number, the potential of the data structure, from its
current structure.

Conditions:

• The empty data structure has potential 0.
• The potential of the data structure is always non-negative.

Intuition:

• The potential captures parts of the data structure that can make operations
expensive.
• If operations that take long eliminate these “expensive” parts of the data structure,
then there can’t be many expensive operations without lots of operations that
create these expensive parts.
• These operations can “pay” for the cost of the expensive operations.

Amortized Analysis: Stack with MultiPop Operation

Operations:

S.push(x) Push element x on the stack
S.pop() Pop the topmost element from the stack
S.multiPop(k) Pop min(k, |S|) elements from the stack

Amortized Analysis: Stack with MultiPop Operation

Operations:

S.push(x) Push element x on the stack
S.pop() Pop the topmost element from the stack
S.multiPop(k) Pop min(k, |S|) elements from the stack

Our goal is to prove that the amortized cost per operation is constant.

Amortized Analysis: Stack with MultiPop Operation

Operations:

S.push(x) Push element x on the stack
S.pop() Pop the topmost element from the stack
S.multiPop(k) Pop min(k, |S|) elements from the stack

Our goal is to prove that the amortized cost per operation is constant.

What can make operations expensive?

Amortized Analysis: Stack with MultiPop Operation

Operations:

S.push(x) Push element x on the stack
S.pop() Pop the topmost element from the stack
S.multiPop(k) Pop min(k, |S|) elements from the stack

Our goal is to prove that the amortized cost per operation is constant.

What can make operations expensive?

MultiPop becomes expensive if k is large and there are lots of elements on the stack.

Amortized Analysis: Stack with MultiPop Operation

Operations:

S.push(x) Push element x on the stack
S.pop() Pop the topmost element from the stack
S.multiPop(k) Pop min(k, |S|) elements from the stack

Our goal is to prove that the amortized cost per operation is constant.

What can make operations expensive?

MultiPop becomes expensive if k is large and there are lots of elements on the stack.

Afterwards, fewer elements are on the stack.

Amortized Analysis: Stack with MultiPop Operation

Operations:

S.push(x) Push element x on the stack
S.pop() Pop the topmost element from the stack
S.multiPop(k) Pop min(k, |S|) elements from the stack

Our goal is to prove that the amortized cost per operation is constant.

What can make operations expensive?

MultiPop becomes expensive if k is large and there are lots of elements on the stack.

Afterwards, fewer elements are on the stack.

⇒ When we remove lots of elements from the stack, we want the potential to drop
proportionally to pay for the cost of removing these elements.

Amortized Analysis: Stack with MultiPop Operation

Operations:

S.push(x) Push element x on the stack
S.pop() Pop the topmost element from the stack
S.multiPop(k) Pop min(k, |S|) elements from the stack

Our goal is to prove that the amortized cost per operation is constant.

Φ = |S|

What can make operations expensive?

MultiPop becomes expensive if k is large and there are lots of elements on the stack.

Afterwards, fewer elements are on the stack.

⇒ When we remove lots of elements from the stack, we want the potential to drop
proportionally to pay for the cost of removing these elements.

Amortized Analysis: Stack with MultiPop Operation
Initially, the stack is empty.
⇒ Φ0 = 0

Amortized Analysis: Stack with MultiPop Operation
Initially, the stack is empty.
⇒ Φ0 = 0

Push operation:

Amortized Analysis: Stack with MultiPop Operation
Initially, the stack is empty.
⇒ Φ0 = 0

Push operation:

• c ∈ O(1)

Amortized Analysis: Stack with MultiPop Operation
Initially, the stack is empty.
⇒ Φ0 = 0

Push operation:

• c ∈ O(1)
• ∆Φ = +1

Amortized Analysis: Stack with MultiPop Operation
Initially, the stack is empty.
⇒ Φ0 = 0

Push operation:

• c ∈ O(1)
• ∆Φ = +1
⇒ ĉ = c + ∆Φ = O(1) + 1 = O(1)

Amortized Analysis: Stack with MultiPop Operation
Initially, the stack is empty.
⇒ Φ0 = 0

Pop operation:

Push operation:

• c ∈ O(1)
• ∆Φ = +1
⇒ ĉ = c + ∆Φ = O(1) + 1 = O(1)

Amortized Analysis: Stack with MultiPop Operation
Initially, the stack is empty.
⇒ Φ0 = 0

Pop operation:

• c ∈ O(1)

Push operation:

• c ∈ O(1)
• ∆Φ = +1
⇒ ĉ = c + ∆Φ = O(1) + 1 = O(1)

Amortized Analysis: Stack with MultiPop Operation
Initially, the stack is empty.
⇒ Φ0 = 0

Pop operation:

• c ∈ O(1)
• ∆Φ = –1

Push operation:

• c ∈ O(1)
• ∆Φ = +1
⇒ ĉ = c + ∆Φ = O(1) + 1 = O(1)

Amortized Analysis: Stack with MultiPop Operation
Initially, the stack is empty.
⇒ Φ0 = 0

Pop operation:

• c ∈ O(1)
• ∆Φ = –1
⇒ ĉ = c + ∆Φ = O(1) – 1 = 0!

Push operation:

• c ∈ O(1)
• ∆Φ = +1
⇒ ĉ = c + ∆Φ = O(1) + 1 = O(1)

Amortized Analysis: Stack with MultiPop Operation
Initially, the stack is empty.
⇒ Φ0 = 0

MultiPop operation:

Pop operation:

• c ∈ O(1)
• ∆Φ = –1
⇒ ĉ = c + ∆Φ = O(1) – 1 = 0!

Push operation:

• c ∈ O(1)
• ∆Φ = +1
⇒ ĉ = c + ∆Φ = O(1) + 1 = O(1)

Amortized Analysis: Stack with MultiPop Operation
Initially, the stack is empty.
⇒ Φ0 = 0

MultiPop operation:

• c ∈ O(1 + min(k, |S|))

Pop operation:

• c ∈ O(1)
• ∆Φ = –1
⇒ ĉ = c + ∆Φ = O(1) – 1 = 0!

Push operation:

• c ∈ O(1)
• ∆Φ = +1
⇒ ĉ = c + ∆Φ = O(1) + 1 = O(1)

Amortized Analysis: Stack with MultiPop Operation
Initially, the stack is empty.
⇒ Φ0 = 0

MultiPop operation:

• c ∈ O(1 + min(k, |S|))
• ∆Φ = –min(k, |S|)

Pop operation:

• c ∈ O(1)
• ∆Φ = –1
⇒ ĉ = c + ∆Φ = O(1) – 1 = 0!

Push operation:

• c ∈ O(1)
• ∆Φ = +1
⇒ ĉ = c + ∆Φ = O(1) + 1 = O(1)

Amortized Analysis: Stack with MultiPop Operation
Initially, the stack is empty.
⇒ Φ0 = 0

MultiPop operation:

• c ∈ O(1 + min(k, |S|))
• ∆Φ = –min(k, |S|)
⇒ ĉ = c + ∆Φ = O(1 + min(k, |S|)) – min(k, |S|) = O(1)

Pop operation:

• c ∈ O(1)
• ∆Φ = –1
⇒ ĉ = c + ∆Φ = O(1) – 1 = 0!

Push operation:

• c ∈ O(1)
• ∆Φ = +1
⇒ ĉ = c + ∆Φ = O(1) + 1 = O(1)

Amortized Analysis: Binary Counter

Consider a binary counter initially set to 0.

The only operation we want to support is Increment.

0 101 1 0 1 1 1

0 00 011 0 01

Amortized Analysis: Binary Counter

Consider a binary counter initially set to 0.

The only operation we want to support is Increment.

0 101 1 0 1 1 1

Amortized Analysis: Binary Counter

Consider a binary counter initially set to 0.

The only operation we want to support is Increment.

0 101 1 0 1 1 1

0

Amortized Analysis: Binary Counter

Consider a binary counter initially set to 0.

The only operation we want to support is Increment.

0 101 1 0 1 1 1

0 0

Amortized Analysis: Binary Counter

Consider a binary counter initially set to 0.

The only operation we want to support is Increment.

0 101 1 0 1 1 1

00 0

Amortized Analysis: Binary Counter

Consider a binary counter initially set to 0.

The only operation we want to support is Increment.

0 101 1 0 1 1 1

00 0 0

Amortized Analysis: Binary Counter

Consider a binary counter initially set to 0.

The only operation we want to support is Increment.

0 101 1 0 1 1 1

00 01 0

Amortized Analysis: Binary Counter

Consider a binary counter initially set to 0.

The only operation we want to support is Increment.

0 101 1 0 1 1 1

0 00 011 0 01

Amortized Analysis: Binary Counter

Consider a binary counter initially set to 0.

The only operation we want to support is Increment.

Again, we want to prove that the amortized cost per Increment operation is constant.

0 101 1 0 1 1 1

0 00 011 0 01

Amortized Analysis: Binary Counter

Consider a binary counter initially set to 0.

The only operation we want to support is Increment.

Again, we want to prove that the amortized cost per Increment operation is constant.

What makes increment operations expensive?

0 101 1 0 1 1 1

0 00 011 0 01

Amortized Analysis: Binary Counter

Consider a binary counter initially set to 0.

The only operation we want to support is Increment.

Again, we want to prove that the amortized cost per Increment operation is constant.

What makes increment operations expensive?

Lots of 1s that need to be flipped into 0s.

0 101 1 0 1 1 1

0 00 011 0 01

Amortized Analysis: Binary Counter

Consider a binary counter initially set to 0.

The only operation we want to support is Increment.

Again, we want to prove that the amortized cost per Increment operation is constant.

Φ = #1s in the current counter value

What makes increment operations expensive?

Lots of 1s that need to be flipped into 0s.

0 101 1 0 1 1 1

0 00 011 0 01

Amortized Analysis: Binary Counter

Initially, all digits are 0.

⇒ Φ0 = 0

Amortized Analysis: Binary Counter

If the rightmost 0 is the kth digit from the right, then an Increment operation takes
O(k) time.

Initially, all digits are 0.

⇒ Φ0 = 0

Amortized Analysis: Binary Counter

If the rightmost 0 is the kth digit from the right, then an Increment operation takes
O(k) time.

The operation turns the kth digit into a 1 and turns the k – 1 1s to its right into 0s.

Initially, all digits are 0.

⇒ Φ0 = 0

Amortized Analysis: Binary Counter

If the rightmost 0 is the kth digit from the right, then an Increment operation takes
O(k) time.

The operation turns the kth digit into a 1 and turns the k – 1 1s to its right into 0s.

⇒ ∆Φ = +1 – (k – 1) = 2 – k

Initially, all digits are 0.

⇒ Φ0 = 0

Amortized Analysis: Binary Counter

If the rightmost 0 is the kth digit from the right, then an Increment operation takes
O(k) time.

The operation turns the kth digit into a 1 and turns the k – 1 1s to its right into 0s.

⇒ ∆Φ = +1 – (k – 1) = 2 – k

⇒ ĉ = c + ∆Φ = O(k) + 2 – k = O(1)

Initially, all digits are 0.

⇒ Φ0 = 0

A Potential Function for Thin Heap

What makes Thin Heap operations expensive?

A Potential Function for Thin Heap

What makes Thin Heap operations expensive?

• DeleteMin: Many roots.

A Potential Function for Thin Heap

What makes Thin Heap operations expensive?

• DeleteMin: Many roots.
• DecreaseKey: Many thin nodes.

A Potential Function for Thin Heap

What makes Thin Heap operations expensive?

• DeleteMin: Many roots.
• DecreaseKey: Many thin nodes.

⇒ The potential function should count roots and thin nodes.

A Potential Function for Thin Heap

What makes Thin Heap operations expensive?

• DeleteMin: Many roots.
• DecreaseKey: Many thin nodes.

⇒ The potential function should count roots and thin nodes.

A DecreaseKey operation may turn many thin nodes into roots. If we want an
amortized cost of O(1) for DecreaseKey, this needs to be paid for by a drop in potential.

A Potential Function for Thin Heap

What makes Thin Heap operations expensive?

• DeleteMin: Many roots.
• DecreaseKey: Many thin nodes.

⇒ The potential function should count roots and thin nodes.

A DecreaseKey operation may turn many thin nodes into roots. If we want an
amortized cost of O(1) for DecreaseKey, this needs to be paid for by a drop in potential.

⇒ Thin nodes should be “more expensive” than roots.

A Potential Function for Thin Heap

What makes Thin Heap operations expensive?

• DeleteMin: Many roots.
• DecreaseKey: Many thin nodes.

⇒ The potential function should count roots and thin nodes.

A DecreaseKey operation may turn many thin nodes into roots. If we want an
amortized cost of O(1) for DecreaseKey, this needs to be paid for by a drop in potential.

⇒ Thin nodes should be “more expensive” than roots.

Φ = 2 · number of thin nodes + number of roots

Amortized Cost of Insert, FindMin, and Delete

Insert:

• c ∈ O(1)
• ∆Φ = +1:
• ∆(number of roots) = +1
• ∆(number of thin nodes) = 0

⇒ ĉ ∈ O(1)

Amortized Cost of Insert, FindMin, and Delete

Insert:

• c ∈ O(1)
• ∆Φ = +1:
• ∆(number of roots) = +1
• ∆(number of thin nodes) = 0

⇒ ĉ ∈ O(1)

FindMin:

• c ∈ O(1)
• ∆Φ = 0:
• The heap structure doesn’t change.

⇒ ĉ ∈ O(1)

Amortized Cost of Insert, FindMin, and Delete

Insert:

• c ∈ O(1)
• ∆Φ = +1:
• ∆(number of roots) = +1
• ∆(number of thin nodes) = 0

⇒ ĉ ∈ O(1)

FindMin:

• c ∈ O(1)
• ∆Φ = 0:
• The heap structure doesn’t change.

⇒ ĉ ∈ O(1)

Delete:

• We show that ĉ(DecreaseKey) ∈ O(1).
• We show that ĉ(DeleteMin) ∈ O(lg n).

⇒ ĉ ∈ O(lg n)

Amortized Cost of DeleteMin

Actual cost: O(lg n + number of roots + number of children of Q.min)

• O(lg n) for initializing R
• O(1) per addition to R
• O(1) per link operation
• O(lg n) to collect final list of roots from R
• Number of additions to R = number of roots and children of Q.min
• Number of link operations ≤ number of roots and children of Q.min

Amortized Cost of DeleteMin

Actual cost: O(lg n + number of roots + number of children of Q.min)

• O(lg n) for initializing R
• O(1) per addition to R
• O(1) per link operation
• O(lg n) to collect final list of roots from R
• Number of additions to R = number of roots and children of Q.min
• Number of link operations ≤ number of roots and children of Q.min

• Number of children of Q.min = Q.min.rank ∈ O(lg n)
⇒ c ∈ O(lg n + number of roots)

Amortized Cost of DeleteMin

Actual cost: O(lg n + number of roots + number of children of Q.min)

• O(lg n) for initializing R
• O(1) per addition to R
• O(1) per link operation
• O(lg n) to collect final list of roots from R
• Number of additions to R = number of roots and children of Q.min
• Number of link operations ≤ number of roots and children of Q.min

• Number of children of Q.min = Q.min.rank ∈ O(lg n)
⇒ c ∈ O(lg n + number of roots)

• ∆(number of thin nodes) ≤ 0
• ∆(number of roots) ≤ 2 lg n – number of roots
⇒ ∆Φ ≤ 2 lg n – number of roots

Amortized Cost of DeleteMin

Actual cost: O(lg n + number of roots + number of children of Q.min)

• O(lg n) for initializing R
• O(1) per addition to R
• O(1) per link operation
• O(lg n) to collect final list of roots from R
• Number of additions to R = number of roots and children of Q.min
• Number of link operations ≤ number of roots and children of Q.min

• Number of children of Q.min = Q.min.rank ∈ O(lg n)
⇒ c ∈ O(lg n + number of roots)

• ∆(number of thin nodes) ≤ 0
• ∆(number of roots) ≤ 2 lg n – number of roots
⇒ ∆Φ ≤ 2 lg n – number of roots

Amortized cost:
ĉ = c + ∆Φ = O(lg n + number of roots) + 2 lg n – number of roots ∈ O(lg n).

Amortized Cost of DecreaseKey

Make a�ected element x a root (if it isn’t already a root):

• c ∈ O(1)
• ∆(number of roots) ≤ 1
• ∆(number of thin nodes) ≤ 1:
• x’s parent becomes thin if it was thick and x is the leftmost child.

⇒ ∆Φ ≤ 3

⇒ ĉ ∈ O(1)

Amortized Cost of DecreaseKey

Make a�ected element x a root (if it isn’t already a root):

• c ∈ O(1)
• ∆(number of roots) ≤ 1
• ∆(number of thin nodes) ≤ 1:
• x’s parent becomes thin if it was thick and x is the leftmost child.

⇒ ∆Φ ≤ 3

⇒ ĉ ∈ O(1)

The remaining cost is the result of fixing violations.

Amortized Cost of DecreaseKey

Make a�ected element x a root (if it isn’t already a root):

• c ∈ O(1)
• ∆(number of roots) ≤ 1
• ∆(number of thin nodes) ≤ 1:
• x’s parent becomes thin if it was thick and x is the leftmost child.

⇒ ∆Φ ≤ 3

⇒ ĉ ∈ O(1)

The remaining cost is the result of fixing violations.

We prove that

• Fixing the last violation has constant amortized cost,
• Fixing all other violations has amortized cost 0!

⇒ The amortized cost of fixing all violations is in O(1).

Amortized Cost of DecreaseKey

Make a�ected element x a root (if it isn’t already a root):

• c ∈ O(1)
• ∆(number of roots) ≤ 1
• ∆(number of thin nodes) ≤ 1:
• x’s parent becomes thin if it was thick and x is the leftmost child.

⇒ ∆Φ ≤ 3

⇒ ĉ ∈ O(1)

The remaining cost is the result of fixing violations.

We prove that

• Fixing the last violation has constant amortized cost,
• Fixing all other violations has amortized cost 0!

⇒ The amortized cost of fixing all violations is in O(1).

⇒ ĉ(DecreaseKey) ∈ O(1).

Amortized Cost of Fixing Sibling Violations

r + 1 r – 2yr

If y is thin,

• c ∈ O(1)
• ∆(number of thin nodes) = –1
• ∆(number of roots) = 0

⇒ ∆Φ = –2

⇒ ĉ = 0

Amortized Cost of Fixing Sibling Violations

r – 1 r – 2

r r – 1 r – 2
y

r + 1 r – 2yr

If y is thin,

• c ∈ O(1)
• ∆(number of thin nodes) = –1
• ∆(number of roots) = 0

⇒ ∆Φ = –2

⇒ ĉ = 0

If y is thick,

• c ∈ O(1)
• ∆(number of thin nodes) = +1
• ∆(number of roots) = 0

⇒ ∆Φ = +2

⇒ ĉ ∈ O(1)

After this, we’re done!

Amortized Cost of Fixing Parent Violations

y

< r – 2

r

If y is a root, then

• c ∈ O(1)
• ∆(number of roots) = 0
• ∆(number of thin nodes) = –1

⇒ ∆Φ = –2

⇒ ĉ = 0

Amortized Cost of Fixing Parent Violations

y

< r – 2

r

If y is a root, then

• c ∈ O(1)
• ∆(number of roots) = 0
• ∆(number of thin nodes) = –1

⇒ ∆Φ = –2

⇒ ĉ = 0

If y is not a root and is not the leftmost child of its
parent, then

• c ∈ O(1)
• ∆(number of roots) = +1
• ∆(number of thin nodes) = –1

⇒ ∆Φ = –1

⇒ ĉ = 0

Amortized Cost of Fixing Parent Violations

y

< r – 2

r

If y is not a root and is the leftmost child of its
parent, and its parent is thin, then

• c ∈ O(1)
• ∆(number of roots) = +1
• ∆(number of thin nodes) = –1

⇒ ∆Φ = –1

⇒ ĉ = 0

Amortized Cost of Fixing Parent Violations

y

< r – 2

r

If y is not a root and is the leftmost child of its
parent, and its parent is thin, then

• c ∈ O(1)
• ∆(number of roots) = +1
• ∆(number of thin nodes) = –1

⇒ ∆Φ = –1

⇒ ĉ = 0

If y is not a root and is the leftmost child of its
parent, and its parent is thick, then

• c ∈ O(1)
• ∆(number of roots) = +1
• ∆(number of thin nodes) = 0

⇒ ∆Φ = +1

⇒ ĉ ∈ O(1)

After this, we’re done!

Shortest Path

Given a graph G = (V, E) and an assignment of weights (costs) to the edges of G, a
shortest path from u to v is a path from u to v with minimum total edge weight among
all paths from u to v.

6

1

3

5

4

7

8

3

1

2

9
7

6

3

Shortest Path

Given a graph G = (V, E) and an assignment of weights (costs) to the edges of G, a
shortest path from u to v is a path from u to v with minimum total edge weight among
all paths from u to v.

6

1

3

5

4

7

8

3

1

2

9
7

6

3

Let the distance dist(s, w) from s to v be the length of a shortest path from s to v.

Shortest Path

Given a graph G = (V, E) and an assignment of weights (costs) to the edges of G, a
shortest path from u to v is a path from u to v with minimum total edge weight among
all paths from u to v.

This is well-defined only if there is no negative cycle (cycle with negative total edge
weight) that has a vertex on a path from u to v.

6

1

3

5

4

7

8

3

1

2

9
7

6

3

Let the distance dist(s, w) from s to v be the length of a shortest path from s to v.

Optimal Substructure of Shortest Paths

For a path P and two vertices u and w in P, let P[u, w] be the subpath of P from u to w.

P

P[u, w]

Optimal Substructure of Shortest Paths

For a path P and two vertices u and w in P, let P[u, w] be the subpath of P from u to w.

Lemma: If Pv is a shortest path from s to v and w is a vertex in Pv, then Pv[s, w] is a
shortest path from s to w.

P

P[u, w]

s

w

v

Pv[s, w]
P[w, v]

Optimal Substructure of Shortest Paths

For a path P and two vertices u and w in P, let P[u, w] be the subpath of P from u to w.

Lemma: If Pv is a shortest path from s to v and w is a vertex in Pv, then Pv[s, w] is a
shortest path from s to w.

Assume there exists a path Pw from s to w with w(Pw) < w(Pv[s, w]).

P

P[u, w]

s

w

v
Pw

Pv[s, w]
P[w, v]

Optimal Substructure of Shortest Paths

For a path P and two vertices u and w in P, let P[u, w] be the subpath of P from u to w.

Lemma: If Pv is a shortest path from s to v and w is a vertex in Pv, then Pv[s, w] is a
shortest path from s to w.

Assume there exists a path Pw from s to w with w(Pw) < w(Pv[s, w]).

Then w(Pw ◦ Pv[w, v]) < w(Pv[s, w] ◦ Pv[w, v]) = w(Pv), a contradiction because Pv is a
shortest path from s to v.

P

P[u, w]

s

w

v
Pw

Pv[s, w]
P[w, v]

Shortest Path Tree

Lemma: For every node s ∈ G, there exists a collection of paths S = {Pv | v ∈ R(s)}
such that Pv is a shortest path from s to v and

⋃
v∈R(s) Pv is a tree.

For a vertex s ∈ G, let R(s) be the set of vertices reachable from s: for every vertex
v ∈ R(s), there exists a path from s to v.

6

1

3

5

4

7

8

3

1

2

9
7

6

3

s

Shortest Path Tree

Lemma: For every node s ∈ G, there exists a collection of paths S = {Pv | v ∈ R(s)}
such that Pv is a shortest path from s to v and

⋃
v∈R(s) Pv is a tree.

For a vertex s ∈ G, let R(s) be the set of vertices reachable from s: for every vertex
v ∈ R(s), there exists a path from s to v.

Let R(s) = {v1, v2, . . . , vt} and let {P′v1 , P
′
v2 , . . . , P

′
vt } be a

collection of shortest paths from s to these vertices.

We define a sequence of trees 〈T1, T2, . . . , Tt〉
and shortest paths 〈Pv1 , Pv2 , . . . , Pvt〉 as follows:

v2

v4

s

v1

v3

Shortest Path Tree

Lemma: For every node s ∈ G, there exists a collection of paths S = {Pv | v ∈ R(s)}
such that Pv is a shortest path from s to v and

⋃
v∈R(s) Pv is a tree.

For a vertex s ∈ G, let R(s) be the set of vertices reachable from s: for every vertex
v ∈ R(s), there exists a path from s to v.

Let R(s) = {v1, v2, . . . , vt} and let {P′v1 , P
′
v2 , . . . , P

′
vt } be a

collection of shortest paths from s to these vertices.

We define a sequence of trees 〈T1, T2, . . . , Tt〉
and shortest paths 〈Pv1 , Pv2 , . . . , Pvt〉 as follows:

• T1 = Pv1 = P′v1 .

v2

v4

s

v1

v3

Shortest Path Tree

Lemma: For every node s ∈ G, there exists a collection of paths S = {Pv | v ∈ R(s)}
such that Pv is a shortest path from s to v and

⋃
v∈R(s) Pv is a tree.

For a vertex s ∈ G, let R(s) be the set of vertices reachable from s: for every vertex
v ∈ R(s), there exists a path from s to v.

Let R(s) = {v1, v2, . . . , vt} and let {P′v1 , P
′
v2 , . . . , P

′
vt } be a

collection of shortest paths from s to these vertices.

We define a sequence of trees 〈T1, T2, . . . , Tt〉
and shortest paths 〈Pv1 , Pv2 , . . . , Pvt〉 as follows:

• T1 = Pv1 = P′v1 .

• For i > 0, let w be the last vertex in P′vi that
belongs to Ti–1 and let Ti–1[s, w] be the path
from s to w in T. Then

• Pvi = T[s, w] ◦ P′vi [w, vi]
• Ti = Ti–1

⋃
P′vi [w, vi]

v2

v4

s

v1

v3

Shortest Path Tree

Lemma: For every node s ∈ G, there exists a collection of paths S = {Pv | v ∈ R(s)}
such that Pv is a shortest path from s to v and

⋃
v∈R(s) Pv is a tree.

For a vertex s ∈ G, let R(s) be the set of vertices reachable from s: for every vertex
v ∈ R(s), there exists a path from s to v.

Let R(s) = {v1, v2, . . . , vt} and let {P′v1 , P
′
v2 , . . . , P

′
vt } be a

collection of shortest paths from s to these vertices.

We define a sequence of trees 〈T1, T2, . . . , Tt〉
and shortest paths 〈Pv1 , Pv2 , . . . , Pvt〉 as follows:

• T1 = Pv1 = P′v1 .

• For i > 0, let w be the last vertex in P′vi that
belongs to Ti–1 and let Ti–1[s, w] be the path
from s to w in T. Then

• Pvi = T[s, w] ◦ P′vi [w, vi]
• Ti = Ti–1

⋃
P′vi [w, vi]

v2

v4

s

v1

v3

Shortest Path Tree

Lemma: For every node s ∈ G, there exists a collection of paths S = {Pv | v ∈ R(s)}
such that Pv is a shortest path from s to v and

⋃
v∈R(s) Pv is a tree.

For a vertex s ∈ G, let R(s) be the set of vertices reachable from s: for every vertex
v ∈ R(s), there exists a path from s to v.

Let R(s) = {v1, v2, . . . , vt} and let {P′v1 , P
′
v2 , . . . , P

′
vt } be a

collection of shortest paths from s to these vertices.

We define a sequence of trees 〈T1, T2, . . . , Tt〉
and shortest paths 〈Pv1 , Pv2 , . . . , Pvt〉 as follows:

• T1 = Pv1 = P′v1 .

• For i > 0, let w be the last vertex in P′vi that
belongs to Ti–1 and let Ti–1[s, w] be the path
from s to w in T. Then

• Pvi = T[s, w] ◦ P′vi [w, vi]
• Ti = Ti–1

⋃
P′vi [w, vi]

v2

v4

s

v1

v3

Shortest Path Tree

Lemma: For every node s ∈ G, there exists a collection of paths S = {Pv | v ∈ R(s)}
such that Pv is a shortest path from s to v and

⋃
v∈R(s) Pv is a tree.

For a vertex s ∈ G, let R(s) be the set of vertices reachable from s: for every vertex
v ∈ R(s), there exists a path from s to v.

Let R(s) = {v1, v2, . . . , vt} and let {P′v1 , P
′
v2 , . . . , P

′
vt } be a

collection of shortest paths from s to these vertices.

We define a sequence of trees 〈T1, T2, . . . , Tt〉
and shortest paths 〈Pv1 , Pv2 , . . . , Pvt〉 as follows:

• T1 = Pv1 = P′v1 .

• For i > 0, let w be the last vertex in P′vi that
belongs to Ti–1 and let Ti–1[s, w] be the path
from s to w in T. Then

• Pvi = T[s, w] ◦ P′vi [w, vi]
• Ti = Ti–1

⋃
P′vi [w, vi]

v2

v4

s

v1

v3

Shortest Path Tree

Lemma: For every node s ∈ G, there exists a collection of paths S = {Pv | v ∈ R(s)}
such that Pv is a shortest path from s to v and

⋃
v∈R(s) Pv is a tree.

For a vertex s ∈ G, let R(s) be the set of vertices reachable from s: for every vertex
v ∈ R(s), there exists a path from s to v.

v2

v4

s

v1

v3

Tt =
⋃

v∈R(s) Pv

Shortest Path Tree

Lemma: For every node s ∈ G, there exists a collection of paths S = {Pv | v ∈ R(s)}
such that Pv is a shortest path from s to v and

⋃
v∈R(s) Pv is a tree.

For a vertex s ∈ G, let R(s) be the set of vertices reachable from s: for every vertex
v ∈ R(s), there exists a path from s to v.

v2

v4

s

v1

v3

Tt =
⋃

v∈R(s) Pv

Tt is a tree:

• T1 is a tree.

• Ti is obtained by adding a path to Ti–1 that
shares only one vertex with Ti–1.

• To create a cycle, the added path would have
to share two vertices with Ti–1.

Shortest Path Tree

Lemma: For every node s ∈ G, there exists a collection of paths S = {Pv | v ∈ R(s)}
such that Pv is a shortest path from s to v and

⋃
v∈R(s) Pv is a tree.

For a vertex s ∈ G, let R(s) be the set of vertices reachable from s: for every vertex
v ∈ R(s), there exists a path from s to v.

v2

v4

s

v1

v3

Pv is a shortest path from s to v, for all v ∈ R(s).

Shortest Path Tree

Lemma: For every node s ∈ G, there exists a collection of paths S = {Pv | v ∈ R(s)}
such that Pv is a shortest path from s to v and

⋃
v∈R(s) Pv is a tree.

For a vertex s ∈ G, let R(s) be the set of vertices reachable from s: for every vertex
v ∈ R(s), there exists a path from s to v.

v2

v4

s

v1

v3

Pv is a shortest path from s to v, for all v ∈ R(s).

Prove by induction on i that Ti[s, v] is a shortest
path from s to v, for all v ∈ Ti.

Shortest Path Tree

Lemma: For every node s ∈ G, there exists a collection of paths S = {Pv | v ∈ R(s)}
such that Pv is a shortest path from s to v and

⋃
v∈R(s) Pv is a tree.

For a vertex s ∈ G, let R(s) be the set of vertices reachable from s: for every vertex
v ∈ R(s), there exists a path from s to v.

v2

v4

s

v1

v3

Pv is a shortest path from s to v, for all v ∈ R(s).

For i = 1, T1 = Pv1 = P′v1 is a shortest path from s
to v1. By optimal substructure, T1[s, v] = P′v1 [s, v]
is a shortest path from s to v for all v ∈ T1.

Shortest Path Tree

Lemma: For every node s ∈ G, there exists a collection of paths S = {Pv | v ∈ R(s)}
such that Pv is a shortest path from s to v and

⋃
v∈R(s) Pv is a tree.

For a vertex s ∈ G, let R(s) be the set of vertices reachable from s: for every vertex
v ∈ R(s), there exists a path from s to v.

v2

v4

s

v1

v3

Pv is a shortest path from s to v, for all v ∈ R(s).

For i = 1, T1 = Pv1 = P′v1 is a shortest path from s
to v1. By optimal substructure, T1[s, v] = P′v1 [s, v]
is a shortest path from s to v for all v ∈ T1.

For i > 1, Ti–1[s, v] is a shortest path from s to v
for all v ∈ Ti–1, by the inductive hypothesis.

Shortest Path Tree

Lemma: For every node s ∈ G, there exists a collection of paths S = {Pv | v ∈ R(s)}
such that Pv is a shortest path from s to v and

⋃
v∈R(s) Pv is a tree.

For a vertex s ∈ G, let R(s) be the set of vertices reachable from s: for every vertex
v ∈ R(s), there exists a path from s to v.

v2

v4

s

v1

v3

Pv is a shortest path from s to v, for all v ∈ R(s).

For i = 1, T1 = Pv1 = P′v1 is a shortest path from s
to v1. By optimal substructure, T1[s, v] = P′v1 [s, v]
is a shortest path from s to v for all v ∈ T1.

For i > 1, Ti–1[s, v] is a shortest path from s to v
for all v ∈ Ti–1, by the inductive hypothesis.

Thus, w(Ti–1[s, w]) ≤ w(P′vi [s, w]) and therefore
w(Pvi) = w(Ti–1[s, w]) + w(P

′
vi [w, vi]) ≤ w(P′vi).

Shortest Path Tree

Lemma: For every node s ∈ G, there exists a collection of paths S = {Pv | v ∈ R(s)}
such that Pv is a shortest path from s to v and

⋃
v∈R(s) Pv is a tree.

For a vertex s ∈ G, let R(s) be the set of vertices reachable from s: for every vertex
v ∈ R(s), there exists a path from s to v.

v2

v4

s

v1

v3

Pv is a shortest path from s to v, for all v ∈ R(s).

For i = 1, T1 = Pv1 = P′v1 is a shortest path from s
to v1. By optimal substructure, T1[s, v] = P′v1 [s, v]
is a shortest path from s to v for all v ∈ T1.

For i > 1, Ti–1[s, v] is a shortest path from s to v
for all v ∈ Ti–1, by the inductive hypothesis.

Thus, w(Ti–1[s, w]) ≤ w(P′vi [s, w]) and therefore
w(Pvi) = w(Ti–1[s, w]) + w(P

′
vi [w, vi]) ≤ w(P′vi).

Since P′vi is a shortest path from s to vi, so is Pvi .

Shortest Path Tree

Lemma: For every node s ∈ G, there exists a collection of paths S = {Pv | v ∈ R(s)}
such that Pv is a shortest path from s to v and

⋃
v∈R(s) Pv is a tree.

For a vertex s ∈ G, let R(s) be the set of vertices reachable from s: for every vertex
v ∈ R(s), there exists a path from s to v.

v2

v4

s

v1

v3

Pv is a shortest path from s to v, for all v ∈ R(s).

For i = 1, T1 = Pv1 = P′v1 is a shortest path from s
to v1. By optimal substructure, T1[s, v] = P′v1 [s, v]
is a shortest path from s to v for all v ∈ T1.

For i > 1, Ti–1[s, v] is a shortest path from s to v
for all v ∈ Ti–1, by the inductive hypothesis.

Thus, w(Ti–1[s, w]) ≤ w(P′vi [s, w]) and therefore
w(Pvi) = w(Ti–1[s, w]) + w(P

′
vi [w, vi]) ≤ w(P′vi).

Since P′vi is a shortest path from s to vi, so is Pvi .

By optimal substructure Pvi [s, v] is a shortest
path from s to v, for all v ∈ Pvi .

A Characterization of Shortest Path Trees
An out-tree of s is a spanning tree T of G[R(s)] = (R(s), E[R(s)]), where
E[R(s)] = {(v, w) ∈ E | v, w ∈ R(s)}, such that there exists a path from s to v in T, for all
v ∈ R(s).

s

A Characterization of Shortest Path Trees
An out-tree of s is a spanning tree T of G[R(s)] = (R(s), E[R(s)]), where
E[R(s)] = {(v, w) ∈ E | v, w ∈ R(s)}, such that there exists a path from s to v in T, for all
v ∈ R(s).

For an out-tree T of s and every v ∈ T, let dT(v) = w(T[s, v]).

s

A Characterization of Shortest Path Trees
An out-tree of s is a spanning tree T of G[R(s)] = (R(s), E[R(s)]), where
E[R(s)] = {(v, w) ∈ E | v, w ∈ R(s)}, such that there exists a path from s to v in T, for all
v ∈ R(s).

For an out-tree T of s and every v ∈ T, let dT(v) = w(T[s, v]).

Let D(T) =
∑
v∈R(s)

dT(v).

s

A Characterization of Shortest Path Trees
An out-tree of s is a spanning tree T of G[R(s)] = (R(s), E[R(s)]), where
E[R(s)] = {(v, w) ∈ E | v, w ∈ R(s)}, such that there exists a path from s to v in T, for all
v ∈ R(s).

Lemma: An out-tree T of s is a shortest path tree if and only if D(T) is minimal
among all out-trees of s.

For an out-tree T of s and every v ∈ T, let dT(v) = w(T[s, v]).

Let D(T) =
∑
v∈R(s)

dT(v).

A Characterization of Shortest Path Trees
An out-tree of s is a spanning tree T of G[R(s)] = (R(s), E[R(s)]), where
E[R(s)] = {(v, w) ∈ E | v, w ∈ R(s)}, such that there exists a path from s to v in T, for all
v ∈ R(s).

Lemma: An out-tree T of s is a shortest path tree if and only if D(T) is minimal
among all out-trees of s.

For an out-tree T of s and every v ∈ T, let dT(v) = w(T[s, v]).

Let D(T) =
∑
v∈R(s)

dT(v).

Let T and T′ be two out-trees of s such that
• T is a shortest path tree and
• D(T′) is minimal among all out-trees of s. In particular, D(T′) ≤ D(T).

A Characterization of Shortest Path Trees
An out-tree of s is a spanning tree T of G[R(s)] = (R(s), E[R(s)]), where
E[R(s)] = {(v, w) ∈ E | v, w ∈ R(s)}, such that there exists a path from s to v in T, for all
v ∈ R(s).

Lemma: An out-tree T of s is a shortest path tree if and only if D(T) is minimal
among all out-trees of s.

For an out-tree T of s and every v ∈ T, let dT(v) = w(T[s, v]).

Let D(T) =
∑
v∈R(s)

dT(v).

Let T and T′ be two out-trees of s such that
• T is a shortest path tree and
• D(T′) is minimal among all out-trees of s. In particular, D(T′) ≤ D(T).

If D(T′) < D(T), there exists some vertex v ∈ R(s) such that dT′ (v) < dT(v).

A Characterization of Shortest Path Trees
An out-tree of s is a spanning tree T of G[R(s)] = (R(s), E[R(s)]), where
E[R(s)] = {(v, w) ∈ E | v, w ∈ R(s)}, such that there exists a path from s to v in T, for all
v ∈ R(s).

Lemma: An out-tree T of s is a shortest path tree if and only if D(T) is minimal
among all out-trees of s.

For an out-tree T of s and every v ∈ T, let dT(v) = w(T[s, v]).

Let D(T) =
∑
v∈R(s)

dT(v).

Let T and T′ be two out-trees of s such that
• T is a shortest path tree and
• D(T′) is minimal among all out-trees of s. In particular, D(T′) ≤ D(T).

If D(T′) < D(T), there exists some vertex v ∈ R(s) such that dT′ (v) < dT(v).

⇒ T is not a shortest path tree, a contradiction.

A Characterization of Shortest Path Trees
An out-tree of s is a spanning tree T of G[R(s)] = (R(s), E[R(s)]), where
E[R(s)] = {(v, w) ∈ E | v, w ∈ R(s)}, such that there exists a path from s to v in T, for all
v ∈ R(s).

Lemma: An out-tree T of s is a shortest path tree if and only if D(T) is minimal
among all out-trees of s.

For an out-tree T of s and every v ∈ T, let dT(v) = w(T[s, v]).

Let D(T) =
∑
v∈R(s)

dT(v).

Let T and T′ be two out-trees of s such that
• T is a shortest path tree and
• D(T′) is minimal among all out-trees of s. In particular, D(T′) ≤ D(T).

If D(T′) < D(T), there exists some vertex v ∈ R(s) such that dT′ (v) < dT(v).

⇒ T is not a shortest path tree, a contradiction.

⇒ D(T) = D(T′).

A Characterization of Shortest Path Trees
An out-tree of s is a spanning tree T of G[R(s)] = (R(s), E[R(s)]), where
E[R(s)] = {(v, w) ∈ E | v, w ∈ R(s)}, such that there exists a path from s to v in T, for all
v ∈ R(s).

Lemma: An out-tree T of s is a shortest path tree if and only if D(T) is minimal
among all out-trees of s.

For an out-tree T of s and every v ∈ T, let dT(v) = w(T[s, v]).

Let D(T) =
∑
v∈R(s)

dT(v).

Let T and T′ be two out-trees of s such that D(T) = D(T′) is minimal among all
out-trees of s and
• T is a shortest path tree,
• T′ is not.

A Characterization of Shortest Path Trees
An out-tree of s is a spanning tree T of G[R(s)] = (R(s), E[R(s)]), where
E[R(s)] = {(v, w) ∈ E | v, w ∈ R(s)}, such that there exists a path from s to v in T, for all
v ∈ R(s).

Lemma: An out-tree T of s is a shortest path tree if and only if D(T) is minimal
among all out-trees of s.

For an out-tree T of s and every v ∈ T, let dT(v) = w(T[s, v]).

Let D(T) =
∑
v∈R(s)

dT(v).

Let T and T′ be two out-trees of s such that D(T) = D(T′) is minimal among all
out-trees of s and
• T is a shortest path tree,
• T′ is not.

⇒ There exists a vertex v ∈ R(s) such that dT(v) < dT′ (v).

A Characterization of Shortest Path Trees
An out-tree of s is a spanning tree T of G[R(s)] = (R(s), E[R(s)]), where
E[R(s)] = {(v, w) ∈ E | v, w ∈ R(s)}, such that there exists a path from s to v in T, for all
v ∈ R(s).

Lemma: An out-tree T of s is a shortest path tree if and only if D(T) is minimal
among all out-trees of s.

For an out-tree T of s and every v ∈ T, let dT(v) = w(T[s, v]).

Let D(T) =
∑
v∈R(s)

dT(v).

Let T and T′ be two out-trees of s such that D(T) = D(T′) is minimal among all
out-trees of s and
• T is a shortest path tree,
• T′ is not.

⇒ There exists a vertex v ∈ R(s) such that dT(v) < dT′ (v).

⇒ There exists a vertex v′ ∈ R(s) such that dT′ (v′) < dT(v′), a contradiction.

A Characterization of Shortest Path Trees
An out-tree of s is a spanning tree T of G[R(s)] = (R(s), E[R(s)]), where
E[R(s)] = {(v, w) ∈ E | v, w ∈ R(s)}, such that there exists a path from s to v in T, for all
v ∈ R(s).

Lemma: An out-tree T of s is a shortest path tree if and only if D(T) is minimal
among all out-trees of s.

For an out-tree T of s and every v ∈ T, let dT(v) = w(T[s, v]).

Let D(T) =
∑
v∈R(s)

dT(v).

Let T and T′ be two out-trees of s such that D(T) = D(T′) is minimal among all
out-trees of s and
• T is a shortest path tree,
• T′ is not.

⇒ There exists a vertex v ∈ R(s) such that dT(v) < dT′ (v).

⇒ There exists a vertex v′ ∈ R(s) such that dT′ (v′) < dT(v′), a contradiction.

⇒ T′ is a shortest path tree.

Dijkstra’s Algorithm

Build a shortest-path tree by starting with s and adding vertices in R(s) one by one.

Dijkstra’s Algorithm

Build a shortest-path tree by starting with s and adding vertices in R(s) one by one.

In each step, we can only add out-neighbours of vertices already in T.

Dijkstra’s Algorithm

Build a shortest-path tree by starting with s and adding vertices in R(s) one by one.

In each step, we can only add out-neighbours of vertices already in T.

A greedy choice:

Add the vertex v 6∈ T that minimizes dT(v).

Dijkstra’s Algorithm

Build a shortest-path tree by starting with s and adding vertices in R(s) one by one.

In each step, we can only add out-neighbours of vertices already in T.

A greedy choice:

Add the vertex v 6∈ T that minimizes dT(v).

Dijkstra(G, s)

1 T = ({s}, ∅)
2 while some vertex in T has an out-neighbour not in T
3 do choose an edge (u, v) such that

• u ∈ T,
• v 6∈ T, and
• dT(u) + w(u, v) is minimized.

4 add v and (u, v) to T
5 return T

Dijkstra’s Algorithm
Dijkstra(G, s)

1 T = (V, ∅)
2 mark every vertex of G as unexplored
3 set d(v) = +∞ and e(v) = nil for every vertex v ∈ G
4 mark s as explored and set d(v) = 0
5 Q = an empty priority queue
6 for every edge (s, v) incident to s
7 do Q.insert(v, w(s, v))
8 d(v) = w(s, v)
9 e(v) = (s, v)
10 while not Q.isEmpty()
11 do u = Q.deleteMin()
12 mark u as explored
13 add e(u) to T
14 for every edge (u, v) incident to u
15 do if v is unexplored and (v 6∈ Q or d(u) + w(u, v) < d(v))
16 then d(v) = d(u) + w(u, v)
17 e(v) = (u, v)
18 if v 6∈ Q
19 then Q.insert(v, d(v))
20 else Q.decreaseKey(v, d(v))
21 return T

Dijkstra’s Algorithm
Dijkstra(G, s)

1 T = (V, ∅)
2 mark every vertex of G as unexplored
3 set d(v) = +∞ and e(v) = nil for every vertex v ∈ G
4 mark s as explored and set d(v) = 0
5 Q = an empty priority queue
6 for every edge (s, v) incident to s
7 do Q.insert(v, w(s, v))
8 d(v) = w(s, v)
9 e(v) = (s, v)
10 while not Q.isEmpty()
11 do u = Q.deleteMin()
12 mark u as explored
13 add e(u) to T
14 for every edge (u, v) incident to u
15 do if v is unexplored and (v 6∈ Q or d(u) + w(u, v) < d(v))
16 then d(v) = d(u) + w(u, v)
17 e(v) = (u, v)
18 if v 6∈ Q
19 then Q.insert(v, d(v))
20 else Q.decreaseKey(v, d(v))
21 return T

This is the same as Prim’s
algorithm, except that vertex
priorities are calculated
di�erently.

Dijkstra’s Algorithm
Dijkstra(G, s)

1 T = (V, ∅)
2 mark every vertex of G as unexplored
3 set d(v) = +∞ and e(v) = nil for every vertex v ∈ G
4 mark s as explored and set d(v) = 0
5 Q = an empty priority queue
6 for every edge (s, v) incident to s
7 do Q.insert(v, w(s, v))
8 d(v) = w(s, v)
9 e(v) = (s, v)
10 while not Q.isEmpty()
11 do u = Q.deleteMin()
12 mark u as explored
13 add e(u) to T
14 for every edge (u, v) incident to u
15 do if v is unexplored and (v 6∈ Q or d(u) + w(u, v) < d(v))
16 then d(v) = d(u) + w(u, v)
17 e(v) = (u, v)
18 if v 6∈ Q
19 then Q.insert(v, d(v))
20 else Q.decreaseKey(v, d(v))
21 return T

This is the same as Prim’s
algorithm, except that vertex
priorities are calculated
di�erently.

⇒ Dijkstra’s algorithm takes
O(n lg n + m) time.

Correctness of Dijkstra’s Algorithm

Dijkstra’s algorithm does not necessarily produce a shortest path tree if there are
edges with negative weights!

Correctness of Dijkstra’s Algorithm

Dijkstra’s algorithm does not necessarily produce a shortest path tree if there are
edges with negative weights!

Lemma: If all edges in G have non-negative weights, then Dijkstra’s algorithm
computes a shortest path tree of G.

Correctness of Dijkstra’s Algorithm

Dijkstra’s algorithm does not necessarily produce a shortest path tree if there are
edges with negative weights!

Lemma: If all edges in G have non-negative weights, then Dijkstra’s algorithm
computes a shortest path tree of G.

Assume the contrary and let v be the first vertex added to T such that dT(v) > dist(s, v).

Correctness of Dijkstra’s Algorithm

Dijkstra’s algorithm does not necessarily produce a shortest path tree if there are
edges with negative weights!

Lemma: If all edges in G have non-negative weights, then Dijkstra’s algorithm
computes a shortest path tree of G.

Assume the contrary and let v be the first vertex added to T such that dT(v) > dist(s, v).

For every vertex x 6∈ T, we have

d(x) = min
(u,x)∈E
u∈T

d(u) + w(u, x) = min
(u,x)∈E
u∈T

dist(s, u) + w(u, x).

s
x

Correctness of Dijkstra’s Algorithm

Dijkstra’s algorithm does not necessarily produce a shortest path tree if there are
edges with negative weights!

Lemma: If all edges in G have non-negative weights, then Dijkstra’s algorithm
computes a shortest path tree of G.

Assume the contrary and let v be the first vertex added to T such that dT(v) > dist(s, v).

The shortest path π(s, v) from s to v must include a vertex w 6∈ T whose predecessor
u in π(s, v) belongs to T.

wu

s
v

T

π(s, v)

d(v)

Correctness of Dijkstra’s Algorithm

Dijkstra’s algorithm does not necessarily produce a shortest path tree if there are
edges with negative weights!

Lemma: If all edges in G have non-negative weights, then Dijkstra’s algorithm
computes a shortest path tree of G.

Assume the contrary and let v be the first vertex added to T such that dT(v) > dist(s, v).

The shortest path π(s, v) from s to v must include a vertex w 6∈ T whose predecessor
u in π(s, v) belongs to T.

⇒ d(w) ≤ dist(s, u) + w(u, w) = dist(s, w) ≤ dist(s, v) < d(v).

wu

s
v

T

π(s, v)

d(v)

Correctness of Dijkstra’s Algorithm

Dijkstra’s algorithm does not necessarily produce a shortest path tree if there are
edges with negative weights!

Lemma: If all edges in G have non-negative weights, then Dijkstra’s algorithm
computes a shortest path tree of G.

Assume the contrary and let v be the first vertex added to T such that dT(v) > dist(s, v).

The shortest path π(s, v) from s to v must include a vertex w 6∈ T whose predecessor
u in π(s, v) belongs to T.

⇒ d(w) ≤ dist(s, u) + w(u, w) = dist(s, w) ≤ dist(s, v) < d(v).

⇒ v is not the next vertex we add to T, a contradiction.

wu

s
v

T

π(s, v)

d(v)

Minimum Length Codes

This is a
text to be
encoded.

010101011100011100101010000110111001101
This is a
text to be
encoded.

01
01
01
01
110

00
111
00

10
10
10
00

Goal:

• Encode a given text using as few bits as possible:
• Limit amount of disk space required to store

the text.
• Send the text over a potentially slow network.
• . . .

Codes That Can Be Decoded

A code is a mapping C(·) that maps every character x to a bit string C(x), called the
encoding of x.

Codes That Can Be Decoded

A code is a mapping C(·) that maps every character x to a bit string C(x), called the
encoding of x.

e f i p r x -
C1 000 001 010 011 100 101 110

Codes That Can Be Decoded

A code is a mapping C(·) that maps every character x to a bit string C(x), called the
encoding of x.

For a text T = 〈x1, x2, . . . , xn〉, let C(T) = C(x1) ◦ C(x2) ◦ · · · ◦ C(xn) be the bit string
obtained by concatenating the encodings of its characters. We call C(T) the encoding
of T.

e f i p r x -
C1 000 001 010 011 100 101 110

Codes That Can Be Decoded

A code is a mapping C(·) that maps every character x to a bit string C(x), called the
encoding of x.

For a text T = 〈x1, x2, . . . , xn〉, let C(T) = C(x1) ◦ C(x2) ◦ · · · ◦ C(xn) be the bit string
obtained by concatenating the encodings of its characters. We call C(T) the encoding
of T.

“prefix-free”

e f i p r x -
C1 000 001 010 011 100 101 110

C1(prefix-free) = 011 100 000 001 010 101 110 001 100 000 000 (33 bits)

Codes That Can Be Decoded

A code is a mapping C(·) that maps every character x to a bit string C(x), called the
encoding of x.

For a text T = 〈x1, x2, . . . , xn〉, let C(T) = C(x1) ◦ C(x2) ◦ · · · ◦ C(xn) be the bit string
obtained by concatenating the encodings of its characters. We call C(T) the encoding
of T.

“prefix-free”

e f i p r x -
C1 000 001 010 011 100 101 110
C2 00 010 0110 0111 10 110 111

C1(prefix-free) = 011 100 000 001 010 101 110 001 100 000 000 (33 bits)

C2(prefix-free) = 0111 10 00 010 0110 110 111 010 10 00 00 (30 bits)

Codes That Can Be Decoded

A code is a mapping C(·) that maps every character x to a bit string C(x), called the
encoding of x.

For a text T = 〈x1, x2, . . . , xn〉, let C(T) = C(x1) ◦ C(x2) ◦ · · · ◦ C(xn) be the bit string
obtained by concatenating the encodings of its characters. We call C(T) the encoding
of T.

“prefix-free”

C1(prefix-free) = 011 100 000 001 010 101 110 001 100 000 000 (33 bits)

C2(prefix-free) = 0111 10 00 010 0110 110 111 010 10 00 00 (30 bits)

C3(prefix-free) = 01 10 0 1 00 11 000 1 10 0 0 (18 bits)

e f i p r x -
C1 000 001 010 011 100 101 110
C2 00 010 0110 0111 10 110 111
C3 0 1 00 01 10 11 000

Codes That Can Be Decoded

A code is a mapping C(·) that maps every character x to a bit string C(x), called the
encoding of x.

A code C(·) is prefix-free if there are no two characters x and y such that C(x) is a
prefix of C(y).

For a text T = 〈x1, x2, . . . , xn〉, let C(T) = C(x1) ◦ C(x2) ◦ · · · ◦ C(xn) be the bit string
obtained by concatenating the encodings of its characters. We call C(T) the encoding
of T.

“prefix-free”

C1(prefix-free) = 011 100 000 001 010 101 110 001 100 000 000 (33 bits)

C2(prefix-free) = 0111 10 00 010 0110 110 111 010 10 00 00 (30 bits)

C3(prefix-free) = 01 10 0 1 00 11 000 1 10 0 0 (18 bits)

e f i p r x -
C1 000 001 010 011 100 101 110
C2 00 010 0110 0111 10 110 111
C3 0 1 00 01 10 11 000

Codes That Can Be Decoded

A code is a mapping C(·) that maps every character x to a bit string C(x), called the
encoding of x.

A code C(·) is prefix-free if there are no two characters x and y such that C(x) is a
prefix of C(y).

Non-prefix-free codes cannot always be decoded uniquely!

For a text T = 〈x1, x2, . . . , xn〉, let C(T) = C(x1) ◦ C(x2) ◦ · · · ◦ C(xn) be the bit string
obtained by concatenating the encodings of its characters. We call C(T) the encoding
of T.

“prefix-free”

C1(prefix-free) = 011 100 000 001 010 101 110 001 100 000 000 (33 bits)

C2(prefix-free) = 0111 10 00 010 0110 110 111 010 10 00 00 (30 bits)

C3(prefix-free) = 01 10 0 1 00 11 000 1 10 0 0 (18 bits)

e f i p r x -
C1 000 001 010 011 100 101 110
C2 00 010 0110 0111 10 110 111
C3 0 1 00 01 10 11 000

Codes That Can Be Decoded

Lemma: If C(·) is a prefix-free code and T 6= T′, then C(T) 6= C(T′).

Codes That Can Be Decoded

Lemma: If C(·) is a prefix-free code and T 6= T′, then C(T) 6= C(T′).

Let T = 〈x1, x2, . . . , xm〉 and T′ = 〈y1, y2, . . . , yn〉 and assume C(T) = C(T′).

C(T)

C(T′)

Codes That Can Be Decoded

Lemma: If C(·) is a prefix-free code and T 6= T′, then C(T) 6= C(T′).

Let T = 〈x1, x2, . . . , xm〉 and T′ = 〈y1, y2, . . . , yn〉 and assume C(T) = C(T′).

Let i be the minimum index such that xi 6= yi.

C(T)

C(T′)

Codes That Can Be Decoded

Lemma: If C(·) is a prefix-free code and T 6= T′, then C(T) 6= C(T′).

Let T = 〈x1, x2, . . . , xm〉 and T′ = 〈y1, y2, . . . , yn〉 and assume C(T) = C(T′).

Let i be the minimum index such that xi 6= yi.

⇒ C(〈x1, x2, . . . , xi–1〉) = C(〈y1, y2, . . . , yi–1〉) and
C(〈xi, xi+1, . . . , xm〉) = C(〈yi, yi+1, . . . , yn〉).

C(T)

C(T′) C(〈y1, y2, . . . , yi–1〉) C(〈yi+1, yi+2, . . . , yn〉)C(yi)

C(〈x1, x2, . . . , xi–1〉) C(〈xi+1, xi+2, . . . , xm〉)C(xi)

Codes That Can Be Decoded

Lemma: If C(·) is a prefix-free code and T 6= T′, then C(T) 6= C(T′).

Let T = 〈x1, x2, . . . , xm〉 and T′ = 〈y1, y2, . . . , yn〉 and assume C(T) = C(T′).

Let i be the minimum index such that xi 6= yi.

⇒ C(〈x1, x2, . . . , xi–1〉) = C(〈y1, y2, . . . , yi–1〉) and
C(〈xi, xi+1, . . . , xm〉) = C(〈yi, yi+1, . . . , yn〉).

Assume w.l.o.g. that |C(xi)| ≤ |C(yi)|.

C(T)

C(T′) C(〈y1, y2, . . . , yi–1〉) C(〈yi+1, yi+2, . . . , yn〉)C(yi)

C(〈x1, x2, . . . , xi–1〉) C(〈xi+1, xi+2, . . . , xm〉)C(xi)

Codes That Can Be Decoded

Lemma: If C(·) is a prefix-free code and T 6= T′, then C(T) 6= C(T′).

Let T = 〈x1, x2, . . . , xm〉 and T′ = 〈y1, y2, . . . , yn〉 and assume C(T) = C(T′).

Let i be the minimum index such that xi 6= yi.

⇒ C(〈x1, x2, . . . , xi–1〉) = C(〈y1, y2, . . . , yi–1〉) and
C(〈xi, xi+1, . . . , xm〉) = C(〈yi, yi+1, . . . , yn〉).

Assume w.l.o.g. that |C(xi)| ≤ |C(yi)|.

Since both C(xi) and C(yi) are prefixes of C(〈xi, xi+1, . . . , xm〉), C(xi) must be a prefix of
C(yi), a contradiction.

C(T)

C(T′) C(〈y1, y2, . . . , yi–1〉) C(〈yi+1, yi+2, . . . , yn〉)C(yi)

C(〈x1, x2, . . . , xi–1〉) C(〈xi+1, xi+2, . . . , xm〉)C(xi)

Prefix Codes and Binary Trees

Observation: Every prefix-free code C(·) can be represented as a binary tree TC
whose leaves correspond to the le�ers in the alphabet.

e f i p r x -
C 00 010 0110 0111 10 110 111

0

1

1

1

1

1

10

0

0

0

0e

f

i

x

p

r

-

Prefix Codes and Binary Trees

The depth of character x in TC is the number of bits |C(x)| used to encode x using C(·).

Observation: Every prefix-free code C(·) can be represented as a binary tree TC
whose leaves correspond to the le�ers in the alphabet.

e f i p r x -
C 00 010 0110 0111 10 110 111

0

1

1

1

1

1

10

0

0

0

0e

f

i

x

p

r

-

Optimal Prefix Codes and Binary Trees

An optimal prefix-free code for a text T is a prefix-free code C that minimizes |C(T)|.

Optimal Prefix Codes and Binary Trees

An optimal prefix-free code for a text T is a prefix-free code C that minimizes |C(T)|.

Lemma: For every text T, there exists an optimal prefix-free code C(·) such that every
internal node in TC has two children.

TC x1

x2

x3 x6x4

x5

x7

v

Optimal Prefix Codes and Binary Trees

An optimal prefix-free code for a text T is a prefix-free code C that minimizes |C(T)|.

Lemma: For every text T, there exists an optimal prefix-free code C(·) such that every
internal node in TC has two children.

Choose C(·) so that TC has as few internal
nodes with only one child as possible among
all optimal prefix-free codes for T.

TC x1

x2

x3 x6x4

x5

x7

v

Optimal Prefix Codes and Binary Trees

An optimal prefix-free code for a text T is a prefix-free code C that minimizes |C(T)|.

Lemma: For every text T, there exists an optimal prefix-free code C(·) such that every
internal node in TC has two children.

Choose C(·) so that TC has as few internal
nodes with only one child as possible among
all optimal prefix-free codes for T.

If TC has no internal node with only one child,
the lemma holds.

TC x1

x2

x3 x6x4

x5

x7

v

Optimal Prefix Codes and Binary Trees

An optimal prefix-free code for a text T is a prefix-free code C that minimizes |C(T)|.

Lemma: For every text T, there exists an optimal prefix-free code C(·) such that every
internal node in TC has two children.

Choose C(·) so that TC has as few internal
nodes with only one child as possible among
all optimal prefix-free codes for T.

If TC has no internal node with only one child,
the lemma holds.

Otherwise, choose an internal node v with
only one child w and contract the edge (v, w).

TC x1

x2

x3 x6x4

x5

x7

TC′ x1

x2

x3

x6

x4

x5

x7

v

Optimal Prefix Codes and Binary Trees

An optimal prefix-free code for a text T is a prefix-free code C that minimizes |C(T)|.

Lemma: For every text T, there exists an optimal prefix-free code C(·) such that every
internal node in TC has two children.

Choose C(·) so that TC has as few internal
nodes with only one child as possible among
all optimal prefix-free codes for T.

If TC has no internal node with only one child,
the lemma holds.

Otherwise, choose an internal node v with
only one child w and contract the edge (v, w).

The resulting tree TC′ has one less internal
node with only one child and represents a
prefix-free code C′(·) with the property that
|C′(x)| ≤ |C(x)| for every character x.

TC x1

x2

x3 x6x4

x5

x7

TC′ x1

x2

x3

x6

x4

x5

x7

v

Optimal Prefix Codes and Binary Trees

An optimal prefix-free code for a text T is a prefix-free code C that minimizes |C(T)|.

Lemma: For every text T, there exists an optimal prefix-free code C(·) such that every
internal node in TC has two children.

Choose C(·) so that TC has as few internal
nodes with only one child as possible among
all optimal prefix-free codes for T.

If TC has no internal node with only one child,
the lemma holds.

Otherwise, choose an internal node v with
only one child w and contract the edge (v, w).

The resulting tree TC′ has one less internal
node with only one child and represents a
prefix-free code C′(·) with the property that
|C′(x)| ≤ |C(x)| for every character x.

⇒ |C′(T)| ≤ |C(T)|, contradicting the choice of C.

TC x1

x2

x3 x6x4

x5

x7

TC′ x1

x2

x3

x6

x4

x5

x7

v

A Greedy Choice for Optimal Prefix Codes
We can build binary trees by starting with each leaf in its own tree, joining two trees
under a common parent, and repeating this until only one tree is left.

A Greedy Choice for Optimal Prefix Codes
We can build binary trees by starting with each leaf in its own tree, joining two trees
under a common parent, and repeating this until only one tree is left.

e f i xp r -

A Greedy Choice for Optimal Prefix Codes
We can build binary trees by starting with each leaf in its own tree, joining two trees
under a common parent, and repeating this until only one tree is left.

e f i xp r -

A Greedy Choice for Optimal Prefix Codes
We can build binary trees by starting with each leaf in its own tree, joining two trees
under a common parent, and repeating this until only one tree is left.

e f i xp r -

A Greedy Choice for Optimal Prefix Codes
We can build binary trees by starting with each leaf in its own tree, joining two trees
under a common parent, and repeating this until only one tree is left.

e i xp r -

f

A Greedy Choice for Optimal Prefix Codes
We can build binary trees by starting with each leaf in its own tree, joining two trees
under a common parent, and repeating this until only one tree is left.

e i xp

r

-

f

A Greedy Choice for Optimal Prefix Codes
We can build binary trees by starting with each leaf in its own tree, joining two trees
under a common parent, and repeating this until only one tree is left.

i xp

r

-

f

e

A Greedy Choice for Optimal Prefix Codes
We can build binary trees by starting with each leaf in its own tree, joining two trees
under a common parent, and repeating this until only one tree is left.

e

f

i

x

p

r

-

A Greedy Choice for Optimal Prefix Codes
We can build binary trees by starting with each leaf in its own tree, joining two trees
under a common parent, and repeating this until only one tree is left.

The length of the encoding of T is |C(T)| =
∑

x fT(x)|C(x)|, where fT(x) is the frequency
of x in T.

e

f

i

x

p

r

-

A Greedy Choice for Optimal Prefix Codes
We can build binary trees by starting with each leaf in its own tree, joining two trees
under a common parent, and repeating this until only one tree is left.

The length of the encoding of T is |C(T)| =
∑

x fT(x)|C(x)|, where fT(x) is the frequency
of x in T.
When making a node r a child of a new parent, we add 1 bit to the encoding C(x) of
every descendant leaf x of r.

e

f

i

x

p

r

-

A Greedy Choice for Optimal Prefix Codes
We can build binary trees by starting with each leaf in its own tree, joining two trees
under a common parent, and repeating this until only one tree is left.

The length of the encoding of T is |C(T)| =
∑

x fT(x)|C(x)|, where fT(x) is the frequency
of x in T.
When making a node r a child of a new parent, we add 1 bit to the encoding C(x) of
every descendant leaf x of r.

⇒ By choosing the two roots with minimum total frequency of their descendent
leaves, we minimize the increase in |C(T)|.

e

f

i

x

p

r

-

A Greedy Choice for Optimal Prefix Codes
We can build binary trees by starting with each leaf in its own tree, joining two trees
under a common parent, and repeating this until only one tree is left.

The length of the encoding of T is |C(T)| =
∑

x fT(x)|C(x)|, where fT(x) is the frequency
of x in T.
When making a node r a child of a new parent, we add 1 bit to the encoding C(x) of
every descendant leaf x of r.

⇒ By choosing the two roots with minimum total frequency of their descendent
leaves, we minimize the increase in |C(T)|.

“prefix-free”

x e f i p r x -
fT(x) 3 2 1 1 2 1 1

e (3) f (2) i (1) x (1)p (1) r (2) - (1)

A Greedy Choice for Optimal Prefix Codes
We can build binary trees by starting with each leaf in its own tree, joining two trees
under a common parent, and repeating this until only one tree is left.

The length of the encoding of T is |C(T)| =
∑

x fT(x)|C(x)|, where fT(x) is the frequency
of x in T.
When making a node r a child of a new parent, we add 1 bit to the encoding C(x) of
every descendant leaf x of r.

⇒ By choosing the two roots with minimum total frequency of their descendent
leaves, we minimize the increase in |C(T)|.

“prefix-free”

x e f i p r x -
fT(x) 3 2 1 1 2 1 1

e (3) f (2) i (1) x (1)p (1) r (2) - (1)

(2)

A Greedy Choice for Optimal Prefix Codes
We can build binary trees by starting with each leaf in its own tree, joining two trees
under a common parent, and repeating this until only one tree is left.

The length of the encoding of T is |C(T)| =
∑

x fT(x)|C(x)|, where fT(x) is the frequency
of x in T.
When making a node r a child of a new parent, we add 1 bit to the encoding C(x) of
every descendant leaf x of r.

⇒ By choosing the two roots with minimum total frequency of their descendent
leaves, we minimize the increase in |C(T)|.

“prefix-free”

x e f i p r x -
fT(x) 3 2 1 1 2 1 1

e (3) f (2) i (1) x (1)p (1) r (2) - (1)

(2) (2)

A Greedy Choice for Optimal Prefix Codes
We can build binary trees by starting with each leaf in its own tree, joining two trees
under a common parent, and repeating this until only one tree is left.

The length of the encoding of T is |C(T)| =
∑

x fT(x)|C(x)|, where fT(x) is the frequency
of x in T.
When making a node r a child of a new parent, we add 1 bit to the encoding C(x) of
every descendant leaf x of r.

⇒ By choosing the two roots with minimum total frequency of their descendent
leaves, we minimize the increase in |C(T)|.

“prefix-free”

x e f i p r x -
fT(x) 3 2 1 1 2 1 1

e (3)

f (2)

i (1) x (1)p (1) r (2) - (1)

(2) (2)

(4)

A Greedy Choice for Optimal Prefix Codes
We can build binary trees by starting with each leaf in its own tree, joining two trees
under a common parent, and repeating this until only one tree is left.

The length of the encoding of T is |C(T)| =
∑

x fT(x)|C(x)|, where fT(x) is the frequency
of x in T.
When making a node r a child of a new parent, we add 1 bit to the encoding C(x) of
every descendant leaf x of r.

⇒ By choosing the two roots with minimum total frequency of their descendent
leaves, we minimize the increase in |C(T)|.

“prefix-free”

x e f i p r x -
fT(x) 3 2 1 1 2 1 1

e (3)

f (2)

i (1) x (1)p (1)

r (2)

- (1)

(2) (2)

(4) (4)

A Greedy Choice for Optimal Prefix Codes
We can build binary trees by starting with each leaf in its own tree, joining two trees
under a common parent, and repeating this until only one tree is left.

The length of the encoding of T is |C(T)| =
∑

x fT(x)|C(x)|, where fT(x) is the frequency
of x in T.
When making a node r a child of a new parent, we add 1 bit to the encoding C(x) of
every descendant leaf x of r.

⇒ By choosing the two roots with minimum total frequency of their descendent
leaves, we minimize the increase in |C(T)|.

“prefix-free”

x e f i p r x -
fT(x) 3 2 1 1 2 1 1

e (3)

f (2)

i (1) x (1)p (1)

r (2)

- (1)

(2) (2)

(4) (4)

(7)

A Greedy Choice for Optimal Prefix Codes
We can build binary trees by starting with each leaf in its own tree, joining two trees
under a common parent, and repeating this until only one tree is left.

The length of the encoding of T is |C(T)| =
∑

x fT(x)|C(x)|, where fT(x) is the frequency
of x in T.
When making a node r a child of a new parent, we add 1 bit to the encoding C(x) of
every descendant leaf x of r.

⇒ By choosing the two roots with minimum total frequency of their descendent
leaves, we minimize the increase in |C(T)|.

“prefix-free”

x e f i p r x -
fT(x) 3 2 1 1 2 1 1

e (3)

f (2)

i (1)

x (1)

p (1)

r (2)

- (1)
(2)

(2)(4)

(4)(7)

(11)

Hu�man’s Algorithm

Hu�man(T)

1 determine the set A of characters that occur in T and their frequencies
2 Q = an empty priority queue
3 for every character x ∈ A
4 do create a node v associated with x and define f(v) = f(x)
5 Q.insert(v, f(v))
6 while |Q| > 1
7 do v = Q.deleteMin()
8 w = Q.deleteMin()
9 u = a new node with frequency f(u) = f(v) + f(w)
10 make v and w children of u
11 Q.insert(u, f(u))
12 return Q.deleteMin()

Lemma: Hu�man’s algorithm runs in O(m lg n) time, where m = |T| and n is the size of
the alphabet.

Correctness of Hu�man’s Algorithm
Lemma: Hu�man’s algorithm computes an optimal prefix-free code for its input text T.

Correctness of Hu�man’s Algorithm
Lemma: Hu�man’s algorithm computes an optimal prefix-free code for its input text T.

Proof by induction on n.

Correctness of Hu�man’s Algorithm
Lemma: Hu�man’s algorithm computes an optimal prefix-free code for its input text T.

Proof by induction on n.

Base case: n = 2.

Correctness of Hu�man’s Algorithm
Lemma: Hu�man’s algorithm computes an optimal prefix-free code for its input text T.

Proof by induction on n.

Base case: n = 2.

We cannot do be�er than using one bit per
character.

Correctness of Hu�man’s Algorithm
Lemma: Hu�man’s algorithm computes an optimal prefix-free code for its input text T.

Proof by induction on n.

Base case: n = 2.

We cannot do be�er than using one bit per
character.

Inductive step: n > 2.

Correctness of Hu�man’s Algorithm

λ (2)

Lemma: Hu�man’s algorithm computes an optimal prefix-free code for its input text T.

Proof by induction on n.

Base case: n = 2.

We cannot do be�er than using one bit per
character.

Inductive step: n > 2.

Consider the first two characters a and b that are
joined under a common parent z with frequency
f(z) = f(a) + f(b).

e (3) f (2) i (1) x (1)p (1) r (2) - (1)

Correctness of Hu�man’s Algorithm

i (1) p (1)

Lemma: Hu�man’s algorithm computes an optimal prefix-free code for its input text T.

Proof by induction on n.

Base case: n = 2.

We cannot do be�er than using one bit per
character.

Inductive step: n > 2.

Consider the first two characters a and b that are
joined under a common parent z with frequency
f(z) = f(a) + f(b).

Replacing a and b with z in T produces a new text
T′ over an alphabet of size n – 1 where z has
frequency f(z).

“prefix-free”

“zrefzx-free”
⇓

z (2)

e (3) f (2) x (1)r (2) - (1)

Correctness of Hu�man’s Algorithm
Lemma: Hu�man’s algorithm computes an optimal prefix-free code for its input text T.

Proof by induction on n.

Base case: n = 2.

We cannot do be�er than using one bit per
character.

Inductive step: n > 2.

Consider the first two characters a and b that are
joined under a common parent z with frequency
f(z) = f(a) + f(b).

Replacing a and b with z in T produces a new text
T′ over an alphabet of size n – 1 where z has
frequency f(z).

After joining a and b under z, Hu�man’s algorithm
behaves exactly as if it was run on T′.

“prefix-free”

“zrefzx-free”
⇓

e (3)

f (2)

i (1)

x (1)

p (1)

r (2)

- (1)
z (2)

Correctness of Hu�man’s Algorithm
Lemma: Hu�man’s algorithm computes an optimal prefix-free code for its input text T.

Proof by induction on n.

Base case: n = 2.

We cannot do be�er than using one bit per
character.

Inductive step: n > 2.

Consider the first two characters a and b that are
joined under a common parent z with frequency
f(z) = f(a) + f(b).

Replacing a and b with z in T produces a new text
T′ over an alphabet of size n – 1 where z has
frequency f(z).

After joining a and b under z, Hu�man’s algorithm
behaves exactly as if it was run on T′.

By induction, it produces an optimal code C′(·) for T′.

“prefix-free”

“zrefzx-free”
⇓

e (3)

f (2)

i (1)

x (1)

p (1)

r (2)

- (1)
z (2)

Correctness of Hu�man’s Algorithm
Claim: There exists an optimal prefix-free code C(·) for T such that the two least
frequent characters a and b in T are siblings in TC.

Correctness of Hu�man’s Algorithm
Claim: There exists an optimal prefix-free code C(·) for T such that the two least
frequent characters a and b in T are siblings in TC.

⇒ Hu�man’s algorithm produces an optimal prefix-free code for T.

Correctness of Hu�man’s Algorithm
Claim: There exists an optimal prefix-free code C(·) for T such that the two least
frequent characters a and b in T are siblings in TC.

⇒ Hu�man’s algorithm produces an optimal prefix-free code for T.

Assume there exists a be�er code C∗(·) such that a
and b are siblings in TC∗ , that is, |C∗(T)| < |C(T)|.

“prefix-free”

e (3)

f (2)

i (1)

x (1)

p (1)

r (2)

- (1)
z (2)

Correctness of Hu�man’s Algorithm
Claim: There exists an optimal prefix-free code C(·) for T such that the two least
frequent characters a and b in T are siblings in TC.

⇒ Hu�man’s algorithm produces an optimal prefix-free code for T.

Assume there exists a be�er code C∗(·) such that a
and b are siblings in TC∗ , that is, |C∗(T)| < |C(T)|.

Let C′′(·) be the code for T′ defined as

C′′(x) =

{
C∗(x) x 6= z
σ x = z and C∗(a) = σ0

e (3)

f (2)

i (1)

x (1)

p (1)

r (2)

- (1)
z (2)

“prefix-free”

“zrefzx-free”
⇓

Correctness of Hu�man’s Algorithm
Claim: There exists an optimal prefix-free code C(·) for T such that the two least
frequent characters a and b in T are siblings in TC.

⇒ Hu�man’s algorithm produces an optimal prefix-free code for T.

Assume there exists a be�er code C∗(·) such that a
and b are siblings in TC∗ , that is, |C∗(T)| < |C(T)|.

Let C′′(·) be the code for T′ defined as

C′′(x) =

{
C∗(x) x 6= z
σ x = z and C∗(a) = σ0

We also have

C′(x) =

{
C(x) x 6= z
σ x = z and C(a) = σ0

e (3)

f (2)

i (1)

x (1)

p (1)

r (2)

- (1)
z (2)

“prefix-free”

“zrefzx-free”
⇓

Correctness of Hu�man’s Algorithm
Claim: There exists an optimal prefix-free code C(·) for T such that the two least
frequent characters a and b in T are siblings in TC.

⇒ Hu�man’s algorithm produces an optimal prefix-free code for T.

Assume there exists a be�er code C∗(·) such that a
and b are siblings in TC∗ , that is, |C∗(T)| < |C(T)|.

Let C′′(·) be the code for T′ defined as

C′′(x) =

{
C∗(x) x 6= z
σ x = z and C∗(a) = σ0

We also have

C′(x) =

{
C(x) x 6= z
σ x = z and C(a) = σ0

|C(T)| = |C′(T′)| + f(z) and |C∗(T)| = |C′′(T′)| + f(z).

e (3)

f (2)

i (1)

x (1)

p (1)

r (2)

- (1)
z (2)

“prefix-free”

“zrefzx-free”
⇓

Correctness of Hu�man’s Algorithm
Claim: There exists an optimal prefix-free code C(·) for T such that the two least
frequent characters a and b in T are siblings in TC.

⇒ Hu�man’s algorithm produces an optimal prefix-free code for T.

Assume there exists a be�er code C∗(·) such that a
and b are siblings in TC∗ , that is, |C∗(T)| < |C(T)|.

Let C′′(·) be the code for T′ defined as

C′′(x) =

{
C∗(x) x 6= z
σ x = z and C∗(a) = σ0

We also have

C′(x) =

{
C(x) x 6= z
σ x = z and C(a) = σ0

|C(T)| = |C′(T′)| + f(z) and |C∗(T)| = |C′′(T′)| + f(z).

⇒ |C′′(T′)| < |C′(T′)|, a contradiction because C′(·) is optimal for T′.

e (3)

f (2)

i (1)

x (1)

p (1)

r (2)

- (1)
z (2)

“prefix-free”

“zrefzx-free”
⇓

Correctness of Hu�man’s Algorithm
Claim: There exists an optimal prefix-free code C(·) for T such that the two least
frequent characters a and b in T are siblings in TC.

Correctness of Hu�man’s Algorithm

Let C∗(·) be an optimal code for T.

Claim: There exists an optimal prefix-free code C(·) for T such that the two least
frequent characters a and b in T are siblings in TC.

Correctness of Hu�man’s Algorithm

Let C∗(·) be an optimal code for T.

The sibling b′ of the deepest leaf a′ in
TC∗ is also a leaf.

Claim: There exists an optimal prefix-free code C(·) for T such that the two least
frequent characters a and b in T are siblings in TC.

TC∗

a b

a′ b′

Correctness of Hu�man’s Algorithm

Let C∗(·) be an optimal code for T.

The sibling b′ of the deepest leaf a′ in
TC∗ is also a leaf.

We have |C∗(a)| ≤ |C∗(a′)| and
|C∗(b)| ≤ |C∗(b′)|.

Claim: There exists an optimal prefix-free code C(·) for T such that the two least
frequent characters a and b in T are siblings in TC.

TC∗

a b

a′ b′

Correctness of Hu�man’s Algorithm

Let C∗(·) be an optimal code for T.

The sibling b′ of the deepest leaf a′ in
TC∗ is also a leaf.

Now assume f(a) ≤ f(b) and f(a′) ≤ f(b′).

We have |C∗(a)| ≤ |C∗(a′)| and
|C∗(b)| ≤ |C∗(b′)|.

Claim: There exists an optimal prefix-free code C(·) for T such that the two least
frequent characters a and b in T are siblings in TC.

TC∗

a b

a′ b′

Correctness of Hu�man’s Algorithm

Let C∗(·) be an optimal code for T.

The sibling b′ of the deepest leaf a′ in
TC∗ is also a leaf.

Now assume f(a) ≤ f(b) and f(a′) ≤ f(b′).

Let C(·) be the code such that TC is
obtained from TC∗ by swapping a and a′,
and b and b′.

We have |C∗(a)| ≤ |C∗(a′)| and
|C∗(b)| ≤ |C∗(b′)|.

Claim: There exists an optimal prefix-free code C(·) for T such that the two least
frequent characters a and b in T are siblings in TC.

TC∗

a b

a′ b′

Correctness of Hu�man’s Algorithm

Let C∗(·) be an optimal code for T.

The sibling b′ of the deepest leaf a′ in
TC∗ is also a leaf.

Now assume f(a) ≤ f(b) and f(a′) ≤ f(b′).

Let C(·) be the code such that TC is
obtained from TC∗ by swapping a and a′,
and b and b′.

We have |C∗(a)| ≤ |C∗(a′)| and
|C∗(b)| ≤ |C∗(b′)|.

We prove that |C(T)| ≤ |C∗(T)|, that is, C(·)
is an optimal prefix-free code for T.

Claim: There exists an optimal prefix-free code C(·) for T such that the two least
frequent characters a and b in T are siblings in TC.

TC∗

a b

a′ b′

Correctness of Hu�man’s Algorithm

Let C∗(·) be an optimal code for T.

The sibling b′ of the deepest leaf a′ in
TC∗ is also a leaf.

Now assume f(a) ≤ f(b) and f(a′) ≤ f(b′).

Let C(·) be the code such that TC is
obtained from TC∗ by swapping a and a′,
and b and b′.

We have |C∗(a)| ≤ |C∗(a′)| and
|C∗(b)| ≤ |C∗(b′)|.

We prove that |C(T)| ≤ |C∗(T)|, that is, C(·)
is an optimal prefix-free code for T.

Since a and b are siblings in TC, this
proves the claim.

Claim: There exists an optimal prefix-free code C(·) for T such that the two least
frequent characters a and b in T are siblings in TC.

TC∗

a b

a′ b′

Correctness of Hu�man’s Algorithm
Claim: There exists an optimal prefix-free code C(·) for T such that the two least
frequent characters a and b in T are siblings in TC.

Given: |C∗(a)| ≤ |C∗(a′)|, |C∗(b)| ≤ |C∗(b′)|, f(a) ≤ f(b), and f(a′) ≤ f(b′).

Correctness of Hu�man’s Algorithm
Claim: There exists an optimal prefix-free code C(·) for T such that the two least
frequent characters a and b in T are siblings in TC.

Given: |C∗(a)| ≤ |C∗(a′)|, |C∗(b)| ≤ |C∗(b′)|, f(a) ≤ f(b), and f(a′) ≤ f(b′).

⇒ f(a) ≤ f(a′) and f(b) ≤ f(b′).

Correctness of Hu�man’s Algorithm
Claim: There exists an optimal prefix-free code C(·) for T such that the two least
frequent characters a and b in T are siblings in TC.

Given: |C∗(a)| ≤ |C∗(a′)|, |C∗(b)| ≤ |C∗(b′)|, f(a) ≤ f(b), and f(a′) ≤ f(b′).

⇒ f(a) ≤ f(a′) and f(b) ≤ f(b′).

|C(T)| – |C∗(T)| = f(a)|C(a)| + f(b)|C(b)| + f(a′)|C(a′)| + f(b′)|C(b′)| –

f(a)|C∗(a)| – f(b)|C∗(b)| – f(a′)|C∗(a′)| – f(b′)|C∗(b′)|

Correctness of Hu�man’s Algorithm
Claim: There exists an optimal prefix-free code C(·) for T such that the two least
frequent characters a and b in T are siblings in TC.

Given: |C∗(a)| ≤ |C∗(a′)|, |C∗(b)| ≤ |C∗(b′)|, f(a) ≤ f(b), and f(a′) ≤ f(b′).

⇒ f(a) ≤ f(a′) and f(b) ≤ f(b′).

|C(T)| – |C∗(T)| = f(a)|C(a)| + f(b)|C(b)| + f(a′)|C(a′)| + f(b′)|C(b′)| –

f(a)|C∗(a)| – f(b)|C∗(b)| – f(a′)|C∗(a′)| – f(b′)|C∗(b′)|

= f(a)|C∗(a′)| + f(b)|C∗(b′)| + f(a′)|C∗(a)| + f(b′)|C∗(b)| –

f(a)|C∗(a)| – f(b)|C∗(b)| – f(a′)|C∗(a′)| – f(b′)|C∗(b′)|

Correctness of Hu�man’s Algorithm
Claim: There exists an optimal prefix-free code C(·) for T such that the two least
frequent characters a and b in T are siblings in TC.

Given: |C∗(a)| ≤ |C∗(a′)|, |C∗(b)| ≤ |C∗(b′)|, f(a) ≤ f(b), and f(a′) ≤ f(b′).

⇒ f(a) ≤ f(a′) and f(b) ≤ f(b′).

|C(T)| – |C∗(T)| = f(a)|C(a)| + f(b)|C(b)| + f(a′)|C(a′)| + f(b′)|C(b′)| –

f(a)|C∗(a)| – f(b)|C∗(b)| – f(a′)|C∗(a′)| – f(b′)|C∗(b′)|

= f(a)|C∗(a′)| + f(b)|C∗(b′)| + f(a′)|C∗(a)| + f(b′)|C∗(b)| –

f(a)|C∗(a)| – f(b)|C∗(b)| – f(a′)|C∗(a′)| – f(b′)|C∗(b′)|

= (f(a) – f(a′)) (|C∗(a′)| – |C∗(a)|) + (f(b) – f(b′)) (|C∗(b′)| – |C∗(b)|)

Correctness of Hu�man’s Algorithm
Claim: There exists an optimal prefix-free code C(·) for T such that the two least
frequent characters a and b in T are siblings in TC.

Given: |C∗(a)| ≤ |C∗(a′)|, |C∗(b)| ≤ |C∗(b′)|, f(a) ≤ f(b), and f(a′) ≤ f(b′).

⇒ f(a) ≤ f(a′) and f(b) ≤ f(b′).

|C(T)| – |C∗(T)| = f(a)|C(a)| + f(b)|C(b)| + f(a′)|C(a′)| + f(b′)|C(b′)| –

f(a)|C∗(a)| – f(b)|C∗(b)| – f(a′)|C∗(a′)| – f(b′)|C∗(b′)|

= f(a)|C∗(a′)| + f(b)|C∗(b′)| + f(a′)|C∗(a)| + f(b′)|C∗(b)| –

f(a)|C∗(a)| – f(b)|C∗(b)| – f(a′)|C∗(a′)| – f(b′)|C∗(b′)|

= (f(a) – f(a′))︸ ︷︷ ︸
≤0

(|C∗(a′)| – |C∗(a)|)︸ ︷︷ ︸
≥0

+ (f(b) – f(b′))︸ ︷︷ ︸
≤0

(|C∗(b′)| – |C∗(b)|)︸ ︷︷ ︸
≥0

Correctness of Hu�man’s Algorithm
Claim: There exists an optimal prefix-free code C(·) for T such that the two least
frequent characters a and b in T are siblings in TC.

Given: |C∗(a)| ≤ |C∗(a′)|, |C∗(b)| ≤ |C∗(b′)|, f(a) ≤ f(b), and f(a′) ≤ f(b′).

⇒ f(a) ≤ f(a′) and f(b) ≤ f(b′).

|C(T)| – |C∗(T)| = f(a)|C(a)| + f(b)|C(b)| + f(a′)|C(a′)| + f(b′)|C(b′)| –

f(a)|C∗(a)| – f(b)|C∗(b)| – f(a′)|C∗(a′)| – f(b′)|C∗(b′)|

= f(a)|C∗(a′)| + f(b)|C∗(b′)| + f(a′)|C∗(a)| + f(b′)|C∗(b)| –

f(a)|C∗(a)| – f(b)|C∗(b)| – f(a′)|C∗(a′)| – f(b′)|C∗(b′)|

= (f(a) – f(a′))︸ ︷︷ ︸
≤0

(|C∗(a′)| – |C∗(a)|)︸ ︷︷ ︸
≥0

+ (f(b) – f(b′))︸ ︷︷ ︸
≤0

(|C∗(b′)| – |C∗(b)|)︸ ︷︷ ︸
≥0

≤ 0

Summary

Greedy algorithms make natural local choices in their search for a globally optimal
solution.

Many good heuristics are greedy:

• Simple
• Work well in practice

Proof that a greedy algorithm finds an optimal solution:

• Induction
• Exchange argument

Useful data structures:

• Union-find data structure
• Thin Heap

Analysis of a sequence of data structure operations:

• Amortized analysis
• Potential functions

