Graph Algorithms

Textbook Reading
Chapter 22



Overview

e Learn the structure of the graph by systematic exploration.

e Proof by contradiction

Connected components
Bipartiteness testing
Topological sorting

Strongly connected components



Graphs, Vertices, and Edges

A graph is an ordered pair G = (V,E).

e V is the set of vertices of G.
o Eisthe setof edgesof G.
e The elements of E are pairs of vertices (v, w).
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Graphs, Vertices, and Edges

> 3
A graph is an ordered pair G = (V,E).
e Vis the set of vertices of G.
e E is the set of edges of G.
e The elements of E are pairs of vertlces VAN

The endpoints of an edge (v, w) are v and w.

The endpoints of an edge e are said to be adjacent to each other and incident with e.

The degree of a vertex is the number of its incident edges.



Undirected and Directed Graphs

A graph is undirected if its edges are
unordered pairs, that is, (v, w) = (w,v).
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Undirected and Directed Graphs

A graph is undirected if its edges are
unordered pairs, that is, (v, w) = (w,v).

in-degree |

‘ ut-degree 2

A graph is directed if its edges are ordered
pairs, that is, (v, w) # (w, v).

A directed edge (v, w) is an out-edge of v and
an in-edge of w.

The in-degree and out-degree of a vertex are
the numbers of its in-edges and out-edges,
respectively.
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Paths and Cycles

A path from a vertex s to a vertex t is a sequence of

vertices (Xo, Xy, . .., Xk) such that
® X0 =S5, |
' Xk = t and

o forall | <i <Kk, (X, X )lsanedgeofG

A cycle is a path from a vertex x back to itself.

A path or cycle is simple if it contains every vertex of G at
most once.
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Adjacency List Representation

Doubly-linked list of vertices

Doubly-linked list of edges

One doubly-linked adjacency list per vertex
Pointers from adjacency list entries to vertices
Cross-pointers between edges and adjacency
list entries
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Adjacency List Representation

Doubly-linked list of vertices

Doubly-linked list of edges

One doubly-linked adjacency list per vertex
Pointers from adjacency list entries to vertices
Cross-pointers between edges and adjacency

list entries
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Representing Rooted Trees

A rooted tree T

® is a tree,
e is a directed graph, |
e has one of its vertices, r, designated as a root.

There exists a path from r to every vertex in T.




Representing Rooted Trees

A rooted tree T

® is a tree,
e is a directed graph, |
e has one of its vertices, r, designated as a root.

There exists a path from r to every vertex in T.

Tree = root

Every node stores

e an arbitrary key
e a (doubly-linked) list of its children.




Standard Tree Orderings

e Every vertex appears before its children.

e Every vertex appears before its right sibling.

e The vertices in each subtree appear
consecutively.
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o Every vertex appears after its children.

e Every vertex appears before its right sibling.

e The vertices in each subtree appear
consecutively.
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Standard Tree Orderings

e Every vertex appears before its children.

e Every vertex appears before its right sibling.

e The vertices in each subtree appear
consecutively.

= [a,b,c,d, e, f, g, hij]

o Every vertex appears after its children.

e Every vertex appears before its right sibling.

e The vertices in each subtree appear
consecutively.

= [c,b,f,e,q9,i0j,h, d a]

Lemma: It takes linear time to arrange the vertices of a forest in preorder or postorder.
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Connected Components and Spanning Forests

The connected components of a graph G
are its maximal connected subgraphs.

e List of graphs or

e Labelling of vertices with component
" IDs

A spanning forest of a graph G is a
subgraph F C G with the same number

of connected components and which is a
forest. | |

- List of rooted trees .
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Graph Traversal

We use graph traversal to build a spanning fo‘rest of G.

Different traversal strategies lead to different
spanning forests:

e Breadth-first search
- o Depth-first search |
e Prim's algorithm for computing minimum
spanning trees
e Dijkstra's algorithm for computing shortest
paths




Graph Traversal

TraverseGraph(G)
Mark every vertex of G as unexplored
F =] +
for every vertex u € G

I
2
R
4 do if not u.explored
5
6

" then F.append(TraverseFromVertex(G, u))
return F e ‘




Graph Traversal

TraverseFromVertex(G, u)

0 ~N O O & W I —

u.explored = True
u.tree = Node(u, [])
Q = an empty edge collection
for every out-edge (u,v) of u
~ do Q.add((u, v))
while not Q.isEmpty()
do (v, w) = Q.remove()
if not w.explored
then w.explored = True
w.tree = Node(w, [ ])
v.tree.children.append(w.tree)
for every out-edge (w, x) of v
do Q.add((w, x))

return u.tree



Graph Traversal Computes a Spanning Forest

It computes a subgraph of G because it only adds edges of G to F.



Graph Traversal Computes a Spanning Forest &

It computes a subgraph of G b~~~ =l ~Ada Adman £ R4AE
TraverseFromVertex(G, u)

O NG Or & W N —

u.explored = True
u.tree = Node(u, [ ])
Q = an empty edge collection
for every out-edge (u, v) of u
do Q.add((u, v))
while not Q.isEmpty()
do (v, w) = Q.remove()
if not w.explored
then w.explored = True
w.tree = Node(w, [ ])
v.tree.children.append(w.tree)
for every out-edge (w, x) of v
do Q.add((w, x))

return u.tree



Graph Traversal Computes a Spanning Forest

It computes a subgraph of G because it only adds edges of G to F.

= F has at least as many connected components as G.



Graph Traversal Computes a Spanning Forest

It computes a subgraph of G because it only adds edges of G to F.

= F has at least as many connected components as G.

e | contains no cycle. A |
o If u~cc v (uand v belong to the same component of G), then u ~ccg V.



Graph Traversal Computes a Spanning Forest

It computes a subgraph of G because it only adds edges of G to F.

= F has at least as many connected components as G.

e | contains no cycle. B |
o If u~cc v (uand v belong to the same component of G), then u ~ccg V.

Observation: Every edge (u,v) in Q has at least one explored endpoint, namely u.



Graph Traversal Computes a Spanning Forest &

It computes a subgraph of G brn~rnn # ~nbs adde ~dans o6 2 4n B

= F has at least as many con

To prove:
e [ contains no cycle.
o If u~cce Vv (uandv belo

Observation: Every edge (u,

O NG Or & W N —

TraverseFromVertex(G, u)

u.explored = True
u.tree = Node(u, [ ])
Q = an empty edge collection
for every out-edge (u, v) of u
do Q.add((u, v))
while not Q.isEmpty()
do (v, w) = Q.remove()
if not w.explored
then w.explored = True
w.tree = Node(w, [ ])
v.tree.children.append(w.tree)
for every out-edge (w, x) of v
do Q.add((w, x))

return u.tree



Graph Traversal Computes a Spanning Forest

It computes a subgraph of G because it only ad'ds edges of G to F.

= F has at least as many connected components as G.

e | contains no cycle. et
o If u~cc v (uand v belong to the same component of G), then u ~ccg V.

Observation: Every edge (u,v) in Q has at least one explored endpoint, namely u.

Corollary: Both endpoints of every edge in F are explored.
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u.explored = True
u.tree = Node(u, [ ])
Q = an empty edge collection
for every out-edge (u, v) of u
do Q.add((u, v))
while not Q.isEmpty()
do (v, w) = Q.remove()
if not w.explored
then w.explored = True
w.tree = Node(w, [ ])
v.tree.children.append(w.tree)
for every out-edge (w, x) of v
do Q.add((w, x))

return u.tree



Graph Traversal Computes a Spanning Forest &

It computes a subgraph of G because it only ad'ds edges of G to F.
= F has at least as many connected components as G.

To prove:
e F contains no cycle.
o If u~cce v (uand v belong to the same component of G), then u ~cc(F) v

Observation: Every edge (u,v) in Q has at least one explored endpoint, namely u.
Corollary Both endpolnts of every edge in F are explored.

Corollary F contains no cycle.



Graph Traversal Computes a Spanning Forest &

It computes a subgraph of G because it only ad'ds edges of G to F.
= F has at least as many connected components as G.

To prove:
e F contains no cycle.
o If u~cce v (uand v belong to the same component of G), then u ~cc(F) v

Observation: Every edge (u,v) in Q has at least one explored. endpoint, namely u.
Corollary Both endpolnts of every edge in F are explored.

Corollary F contains no cycle. oo
Proof by contradiction: ’ .’\

By the time we add the last edge to the eycle,

both its endpoints are explored. | | | :
last edge added to F @

= We would not have added it.
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Lemma: TraverseFromVertex(G, u) visits all vertices v such that u ~cc(G) vV and only
those. '

By induction on the number of invocations of TraverseFromVertex made so far.

When TraverseFromVertex(G, u) is called, every vertex v such that u ~cc( Vv is
unexplored.

We visit all vertices v such that u ~c¢(g) v:
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| v

= Wed visit w. U X L
first unexplored vertex on P

We do not visit a vertex v such that u 2cc(g) Vv:
u | i
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such that u 7ccg) V.



Graph Traversal Computes a Spanning Forest

Lemma: TraverseFromVertex(G, u) visits all vertices v such that u ~cc(G) vV and only
those. '

By induction on the number of invocations of TraverseFromVertex made so far.

When TraverseFromVertex(G, u) is called, every vertex v such that u ~cc( Vv is
unexplored.

We visit all vertices v such that u ~c¢(g) v:
| path P fromutov

x adds (x,w) to Q. | ’/-Q\._/‘,__‘\_./Q
| v

= Wed visit w. U X L
first unexplored vertex on P

We do not visit a vertex v such that u 2cc(g) Vv:

e v explored because of edge (w,v) € Q. ’/\_/-\_./’

e w explored before v. e U W
= W ~cc(G) U first explored vertex
= V/~eee) U such that u ’/’CC(G) V.
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The Cost of Graph Traversal

‘ TraverseGraph(G)

Mark every vertex of G as unexplored
| , F=1]
Lemma: TraverseGraph takes for every vertex u € G

I
2
3
of adding and removing aned 4 do if not u.explored
5 then F.append(TraverseFromVertex(G, u))
6

- TraverseGraph itself takes O(n return F
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Every edge is added to Q at most once.
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The Cost of Graph Traversal

Lemma: TraverseGraph takes
of adding and removing an ed

~ TraverseGraph itself takes O(n

Every edge is added to Q at n
= The cost of the for-loops i

TraverseFromVertex(G, u)
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u.explored = True
u.tree = Node(u, [ ])
Q = an empty edge collection
for every out-edge (u, v) of u
do Q.add((u, v))
while not Q.isEmpty()
do (v, w) = Q.remove()
if not w.explored
then w.explored = True
w.tree = Node(w, [ ])
v.tree.children.append(w.tree)
for every out-edge (w, x) of v
do Q.add((w, x))

return u.tree
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Lemma: TraverseGraph takes O(n+m +m - (t, +t,)) time, where t, and t, are the costs
of adding and removing an edge from Q, respectively.

TraverseGraph itself takes O(n) time.’ ’
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The Cost of Graph Traversal

TraverseFromVertex(G, u)

Lemma: TraverseGraph takes
of adding and removing an ed

~ TraverseGraph itself takes O(n
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Every edge is added to Q at n
= The cost of the for-loops i

O

| 10
Every edge that is removed m

= The cost of the while-loop (>

13
14

u.explored = True
u.tree = Node(u, [ ])
Q = an empty edge collection
for every out-edge (u, v) of u
do Q.add((u, v))
while not Q.isEmpty()
do (v, w) = Q.remove()
if not w.explored
then w.explored = True
w.tree = Node(w, [ ])
v.tree.children.append(w.tree)
for every out-edge (w, x) of v
do Q.add((w, x))

return u.tree



The Cost of Graph Traversal

Lemma: TraverseGraph takes O(n+m +m - (t, +t,)) time, where t, and t, are the costs
of adding and removing an edge from Q, respectively.

TraverseGraph itself takes O(n) time.’ ’

Every edge is added to Q at most once.
= The cost of the for-loops in TraverseFromVertex is O(m - (I +t,)).
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= The cost of the while-loop in TraverseFromVertex is O(m - (I + t,)).



Computing Connected Components

e Compute a spanning forest F.
e Collect vertices of trees in F.
e Compute representation of connected components.



Computing Connected Components

e Compute a spanning forest F.
e Collect vertices of trees in F.

e Compute representation of connected components.

ColIectComponentVertices(F)

| L=1]
2 for every tree T € F

3 do L. append(CoIIectDescendantVertlces(T))
"4 return L



Computing Connected Components

e Compute a spanning forest F.
e Collect vertices of trees in F.

e Compute representation of connected components.

ColIectCompo‘nentVertices(F)

| L=1]
2 for every tree T € F

3 do L. append(CoIIectDescendantVertlces(T))
"4 return L

ColIec‘tDescendantVertices(T)

1 L =[T.key] | |
2 for every child T of T

3 do L.concat(CollectDescendantVertices(T"))
4 return L



Computing Connected Components

e Compute a spanning forest F.
e Collect vertices of trees in F.

e Compute representation of connected components.

ColIectCompo’nentVertices(F)

| L=1]
2 for every tree T € F

3 dolL append(CoIIectDescendantVertlces(T))
"4 return L |

ColIec‘tDescendantVertices(T)

1 L =[T.key] | |
2 for every child T of T

3 do L.concat(CollectDescendantVertices(T'))
4 return L

Lemma: Collecting the vertices of all components takes O(n) time.



Computing Connected Components
Representation using vertex labels:

ComponentLabels(L)

i=0
for every list L" € L
doi=i+]|
for every vertex v € L’
do v.cc =i

o B W N —

Cost: O(n)

|



Computing Connected Components

We already have the right adjacency lists for the vertices.
Need to partition the vertex and edge lists into vertex and edge lists for the
components.



Computing Connected Components

We already have the right adjacency lists for the vertices.

Need to partition the vertex and edge lists into vertex and edge lists for the
components. |

BuildVertexLists(L)

1 vE = [

2 foreverylistL' €L

3 daMi =]

4 for every vertex v € L’
5 do VL .append(v)
6 VL.append(VL")

7 return VL. |



Computing Connected Components

BuildEdgeLists(G, L) .

EL =[] 1
for every edge e € G
do e.collected = False
for every list L" € L
do EL’ =] e
for every vertex v e L'
~do for every edge e incident with v
do if not e.collected i
then e.collected = True

EL'.append(e)

REo il o=y ey 0 o n

=Ley

EL.append(EL’)
return EL- o

N



Computing Connected Components

Lemma: The connected components of a graph can be computed in O(n + m) time.

“ e Building a spanning forest takés.O(n +m+m - (t; +t)) time.
e Computing the vertex labelling or list of graphs then takes O(n + m) time.

e Using a stack or queue to represent Q, we get t, € O(l) and t, c O(l).



Breadth-First Search

Breadth-first search (BFS) = graph traversal using a queue to implement Q.

Q.dequeue() b Q.enqueue(x)
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Breadth-First Search

Breadth-first search (BFS) = graph traversal using a queue to implement Q.

Q.dequeue() e Q.enqueue(x)

‘\ ‘J

Doubly-linked list

Singly-linked list with tail pointer
“Circular” array (amortized constant cost)
Pair of singly-linked lists (functional) |

Lemma: Breadth-first search takes O(n + m) time.
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BFS forest = spanning forest computed usingBFS

Let the depth dg(v) of a vertex v in a rooted
forest F be the distance from the root of its tree.

Lemma: BFS visits the vertices of each
component of F in order of increasing depth.
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BFS forest = spanning forest computed using BFS
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= v is visited before w, a contradiction.
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A Property of Undirected BFS Forests '

Lemm‘é: For every edge (v, w) of G and any BFS forest F of G, the depths of v and w
in F differ by at most one.

Assume dp(w) > dp(v) + I.

= dg(parent(w)) > dg(v).

= v is visited before parent(w).

= The edge (v, w) is enqueued before the edge (parent(w), w).

= The edge (v, w) is dequeued before the edge (parent(w), w).

w is unexplored wheh the ed'ge (parent(w), w) is dequeued.
= W is uneXpIored when the edge (v, W)' is dequeued.

= w would be added to the list of v's children, a contradiction.
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Bipartite Graphs

A graph is bipartite if its vertices can be partltloned into two sets (U, W) such that
every edge has one endpomt in U and one endpoint in W.

Lemma: A graph is bipartite if and only if it contains no odd cycle. -

Let F be a BFS forest of G.

Add vertices on odd levels to U, on even
levels to W.

This is the only partition that satisfies the
edges of F! |

— (G is bipartite if and only if there is no
edge with both endpoints on the same
level. |

If there is such an edge, there's an odd
cycle.



Bipartite Graphs

A graph is bipartite if its vertices can be partltloned into two sets (U, W) such that
every edge has one endpomt in U and one endpoint in W.

Lemma: A graph is bipartite if and only if it contains no odd cyele. .

Lemma: Given a BFS forest F of G, G is bipartite if and only if there is no edge in G
with both endpoints on the same level in F. |



Bipartiteness Testing '

Compute BFS forest F of G.

Collect vertices on alternating levels of F into two sets (U, W).

Test whether any edge has both endpoints in the same set, U or W.
If so, report the odd cycle induced by such an edge.

Otherwise, report the bipartition (U, W).

AlternatingLevels(F)
=W

2 for everytree T in F

3 do AlternatingLevels'(T, U, W)
4 return (U, W)

AIternatingLeveIs'(T, U, W)

| U.append(T.key)
2 for every child T' of T
3 do AlternatingLevels'(T', W, U)



Bipartiteness Testing '

Compute BFS forest F of G.

Collect vertices on alternating levels of F into two sets (U, W).

Test whether any edge has both endpoints in the same set, U or W.
If so, report the odd cycle induced by such an edge.

Otherwise, report the bipartition (U, W).

OddEdge(G, U, W)

A = an array of size n
for every vertex u € U
do Afu] = *U”
for every vertex w € W
do Aw] = "W"
for every edge (u,w) € G
do if A[u] = A[w]
then return (u,w)
return Nothing
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Bipartiteness Testing '

Compute BFS forest F of G.

Collect vertices on alternating levels of F into two sets (U, W).

Test whether any edge has both endpoints in the same set, U or W.
If so, report the odd cycle induced by such an edge.

Otherwise, report the bipartition (U, W).

AncestorEdges(F)

-1 L = an empty list of vertex-vertex list pairs
2 foreverytree T € F

3 do AncestorEdges’(T,[], L)
4 return L

AncestorEdges'(T, A L)

| L = Lappend([(T.key, A)])
2 for every child T' of T
3 do AncestorEdges’(T’, [(T.key, T’ .key)] ++ A, L)



Bipartiteness Testing '

Compute BFS forest F of G.

Collect vertices on alternating levels of F into two sets (U, W).

Test whether any edge has both endpoints in the same set, U or W.
If so, report the odd cycle induced by such an edge.

Otherwise, report the bipartition (U, W).

OddCycle(L, (u, w))

Find (u,A,) and (w, Ay) in L
Cu = CW = [] |
while A,.head # A,.head
do C,.append(A,.head)
Cw.append(A,.head)
A, = A, tail
A= Aytail
C,.reverse().concat([(u, w)]).concat(C,,)
return C,
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Bipartiteness Testing '

Compute BFS forest F of G. |

Collect vertices on alternating levels of F into two sets (U, W).

Test whether any edge has both endpoints in the same set, U or W.
If so, report the odd cycle induced by such an edge.

Otherwise, report the bipartition (U, W).

Lemma: It takes linear time to test whether a graph G is blpartlte and either report a
valid bipartition or an odd cycle in G.
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Depth-First Search

Depth-first search (DFS) = graph traversal using a stack to implement Q.

Stack: - Q.pop() A\ f Q.push(x)

Constant-time implementations:

o Singly-linked list |
e Resizeable array (amortlzed constant cost)

Lemma: Depth-first search takes O(n + m) time.
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Depth-First Search and Preorder

Lemma: Depth-first search visits the verticesv‘of the spanning forest it creates in
preorder. '

It visits the children of every node in left-to-right order.
(That's how we define this order.)

It visits every node after its parent:

e v is visited when the edge (parent(v), v) is popped.
.o The edge (parent(v), v) must be pushed before this can happen.
e The edge (parent(v), v) is pushed when parent(v) is visited.

It visits the vertices in each subtree consecutively.

Observation: An edge with one explored and one unexplored endpoint is on the
stack. |



Depth-First Seach and Preorder

Assume there exist two vertices x and y such that

e yis not a descendant of x,
e y is visited after x, and
e y is visited before some descendant z.

Choose y and z so that

e v is the first visited vertex satisfying the above conditions and
e y is visited after parent(z). |
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e v is visited after x, and

e y is visited before some descendant z.
Choose y and z so that

e v is the first visited vertex satisfying the above conditions and
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y is a root.

Cannot happen because the edge (parent(z), z)‘ is on the stack when y is visited and
the stack is empty when a root is visited.
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Depth-First Seach and Preorder

Assume there exist two vertices x and y such that

e yis not a descendant of x,
e y is visited after x, and
e y is visited before some descendant z.

Choose y and z so that

e v is the first visited vertex satisfying the above conditions and
e y is visited after parent(z). |

y has a parent parent(y).

parent(y) is visited before x and thus before parent(z).

= The edge (parent(y), y) is on the stack when parent(z) is visited and thus when the
edge (parent(z), z) is pushed. |

= The edge (parent(z), z) is popped before the edge (parent(y), y).

— z is visited before y, contradiction.
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A Property of Undirected DFS Forests =

e [ree edge (u,w): uis w's parent in F.
e (Cross edge (u, w): Neither u nor w is an ancestor of the other.
e Back edge (u,w): u is an ancestor of w but not its parent.

Lemma: All edges of an undirected graph G are tree or back edges with respect to a
DFS forest of G.

Let a be the LCA of u and v and let u’ and v’ be the
children of a that are ancestors of u and v.

Assume u < v in preorder.

= Vertices a, u’, u, v/, v are visited in this order.

= The edge (a,V’) is pushed before u is visited
and popped after u is visited.

= The edge »(u, v) is pushed after (a,v’) is pushed
and before (a, v') is popped.

= The edge (u, V) is popped before (a,Vv’) is popped.

= v is unexplored when the edge (u, v) is popped, a contradiction.



A Property of Directed DFS Forests

Tree edge (u, w): u is w's parent in F.
-orward edge (u, w): u is an ancestor of w.
Back edge (u,w): w is an ancestor of u.
-orward cross edge (u, w): Neither u nor w
is an ancestor of the other, u < w in
preorder/postorder. |
e Ba (u, w): Neither u nor
w is an ancestor of the other, w < u in
preorder/postorder.




A Property of Directed DFS Forests

Five types of edges:

Tree edge (u, w): u is w's parent in F.
-orward edge (u, w): u is an ancestor of w.
Back edge (u,w): w is an ancestor of u.
-orward cross edge (u, w): Neither u nor w
is an ancestor of the other, u < w in
preorder/postorder. |
e Backward cross edge (u, w): Neither u nor
w is an ancestor of the other, w < u in
preorder/postorder.

Lemma: A directed graph G does not contain any
forward cross edges with respect to a-DFS forest of G.
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Lemma: A graph G has a topological ordering if and only if it contains no directed
cycle. |

If there's a cycle, there is no
topological ordering.

maximum vertex
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A topological ordering of a directed graph is an ordering < of the vertex set of G such
that u < v for every edge (u,v) € G.

Lemma: A graph G has a topological ordering if and only if it contains no directed
cycle. |

We prove that, if there is no cycle, there is always a source (vertex of in-degree 0).

= The following algorithm produces a topological ordering:

e Give s the smallest number.
o Recursively number the rest
of the vertices.

Cannot contain a cycle since
G contains no cycle.
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that u < v for every edge (u,v) € G.

Lemma: A graph G has a topological ordering if and only if it contains no directed
cycle. |

We prove that, if there is no cycle, there is always a source (vertex of in-degree 0).
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Topological Sorting

A topological ordering of a directed graph is an ordering < of the vertex set of G such
that u < v for every edge (u,v) € G.

Lemma: A graph G has a topological ordering if and only if it contains no directed
cycle. |

We prove that, if there is no cycle, there is always a source (vertex of in-degree 0).
Let R(v) be the set of vertices reachable from v. |

For an edge (u, v),

e R(u) D R(v)

e U € R(u) ,
o u & R(v) (otherwise thered be a cycle)
= R(u) D R(v). |

Pick a vertex s such that |R(s)| > |R(v)| for all v € G.

If s had an in-neighbour u, then |R(u)|‘ > [R(s)|, a contradiction.

= § IS a source.



Topological Sorting

Lemma: A topological ordering of a directed ;‘acyclic graph G can be computed in
O(n + m) time. | '
SimpleTopSort(G) '

Q = an empty queue

|
2 for every vertex v € G
3 do label v with its in-degree
4 if in-deg(v) = 0 |
.5 then Q.enqueue(v)
6 O=][] | |
7 while not Q.isEmpty()
8 do v = Q.dequeue()
9 Q.append(v)
10 for every out-neighbour w of v
| “do in-deg(w) = in-deg(w) — |
12 if in-deg(w) = 0
13 then Q.enqueue(w)
14 return O



Topological Sorting Using DFS

Tree edge (u, w): uis w's parent in F.
Forward edge (u, w): u is an ancestor of w.
Back edge (u,w): w is an ancestor of u.
(u, w): Neither u nor
~w is an ancestor of the other, w < u in
postorder.
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~w is an ancestor of the other, w < u in
postorder.
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Topological Sorting Using DFS

e [ree edge (u,w): uis w's parent in F.
e Forward edge (u,w): u is an ancestor of w.
o (u, w): Neither u nor
~w is an ancestor of the other, w < u in
postorder.

For tree, forward, and backward Cross edges
(u,v), u > v in postorder.

= Topological sorting algorithm:

e Compute a DFS forest of G.
o Arrange the vertices in reverse postorder.

This takes O(n + m) time.
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every pair of vertices u,w € G. :
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A graph is strongly connected if there exists a path from u to w and from w to u for
every pair of vertices u,w € G.

The strongly connected components of G are its maximal strongly connected
subgraphs. |

Lemma: For a DFS forest F of G and any two vertices u and w of G,
U ~sce@ W = U ~ccp W. (The vertices of each strongly connected component of G
belong to the same tree of any DFS forest F of G.)

Let C be the strongly connected component containing u and w and let x be the first
vertex in C visited during the construction of F.

It suffices to prove that x ~cc(r) v for every v e C.



Strongly Connected Components

A graph is strongly connected if there exists a path from u to w and from w to u for
every pair of vertices u,w € G.

The strongly connected components of G are its maximal strongly connected

subgraphs.

Lemma: For a DFS

forest F of G and any two vertices u and w of G,

U ~sce@ W = U ~ccp W. (The vertices of each strongly connected component of G

belong to the same

Let C be the strong

vertex in C visited d

tree of any DFS forest F of G.)

y connected component containing u and w and let x be the first
uring the construction of F.

It suffices to prove t

This follows frOm

nat X ~cef) V for every v e C.

Lemma: If there exists a path from x to v consisting of vertices that are unexplored
when x is visited, then v is a descendant of x in F,



Strongly Connected Components '

Lemma: If there exists a path from x to v conS|st|ng of vertices that are unexplored
when x is visited, then v is a descendant of x in F.



Strongly Connected Components

Lemma: If there exists a path from x to v conS|st|ng of vertices that are unexplored
when x is visited, then v is a descendant of x in F.

et P'=#8= x0, 4 L= v) be such a path from x to v and assume v is not a
descendant of x. |



Strongly Connected Components

Lemma: If there exists a path from x to v conS|st|ng of vertices that are unexplored
when x is visited, then v is a descendant of x in F.

Let P = (x = Xg,Xy,...,% = V) be such a path from x to v and assume v is not a
descendant of x. |

Since x is a descendant of x, there exists @ maximal index Q0 < i < k such that
X0, X1, - - ., X; are descendants of x and X, is not.



Strongly Connected Components

Lemma: If there exists a path from x to v conS|st|ng of vertices that are unexplored
when x is visited, then v is a descendant of x in F.

Let P = (x = x0,%,...,X = V) be such a path from x to v and assume v is not a
descendant of x. |

Since x is a descendant of x, there exists @ maximal index Q0 < i < k such that
X0, X1, - - ., X; are descendants of x and X, is not.

Since X, is visited after x and all descendants of x have consecutive preorder
numbers, we have x; < X1 in preorder.



Strongly Connected Components

Lemma: If there exists a path from x to v conS|st|ng of vertices that are unexplored
when x is visited, then v is a descendant of x in F.

Let P = (x = x0,%,...,X = V) be such a path from x to v and assume v is not a
descendant of x. |

Since x is a descendant of x, there exists @ maximal index Q0 < i < k such that
X0, X1, - - ., X; are descendants of x and X, is not.

Since X, is visited after x and all descendants of x have consecutive preorder
numbers, we have x; < X1 in preorder.

Since xi,; is no descendant of x, it is not a descendant of x;.



Strongly Connected Components

Lemma: If there exists a path from x to v conS|st|ng of vertices that are unexplored
when x is visited, then v is a descendant of x in F.

Let P = (x = x0,%,...,X = V) be such a path from x to v and assume v is not a
descendant of x. |

Since x is a descendant of x, there exists @ maximal index Q0 < i < k such that
X0, X1, - . ., X; are descendants of x and xi,; is not.

Since xi is visited after x and all descendants of x have consecutive preorder
numbers, we have x; < X1 in preorder.

Since x;,; is no descendant of x, it is not a descendant of x.

Since x; < Xiy in preorder, thls implies that (x;, Xis1) is @ forward cross edge, a-
contradiction.
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Strongly Connected Components

For a graph G = (V,E), let G’ = (V,E'), where S {(v,u) | (u,v) € E}
Lemma: u ~SCC(G) V‘<:>. u NSCC(Gr) V.

Proof: We have u ~»¢ v if and only if v ~»g u

Let F be a DFS forest of G and let < be the postorder of F.

Let F_ be the DFS forest of G' obtained by calling TraverseFromVertex on unexplored
~ vertices in the opposite order to < | |
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Strongly Connected Components

For a graph G = (V,E), let G’ = (V,E'), where E' = {(v,u) | (u,v) € E}.
Lemma: u ~sccG) V = U NSCC(Gr) V.
We have u ~»g v if and only if v ~»gr u

Let F be a DFS forest of G and let < be the postorder of F.

Let F. be the DFS forest of G’ obtamed by calling TraverseFromVertex on unexplored
vertices in the opposite order to <.

Lemma: u ~SCCG) V < U ~eeFr) Ve

= Kosaraju's strong connectivity algorithm:

e Compute a DFS forest F of G. '

e Compute G' and arrange the vertices in reverse postorder w.r.t. F.

e Compute a DFS forest F' of G'.

e Extract a component labelling of the vertices or the strongly connected
components themselves from F' (almost) as we did for computing connected
components.

This takes O(n + m) time.
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Strongly Connected Components

Lemma: u ~scce) V < U ~ceF) Ve

Assume the contrary. Then there exists an

edge (u,v) € F. such that u 2sce(g) V-

= (vu)eG.
u:

Choose this edge so that each of its £

ancestor edges (x, y) satisfies x ~sccg) Y- i

In particular, u ~scc(g) r, where r is the
root of the tree containing u and v.

All vertices in C are descendants of r in F_
and x <r for all x € C.

Also, v < r because v is a descendant of r in F_.

All vertices in C are descendants of some i
vertex r’ € F and x < v/ for all x € C. |

= r=r"andu<r.
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Strongly Connected Components

Lemma: u ~scce) V < U ~ceF) Ve

If v is a descendant of r in F, then
u ~sccG) Vs @ contradiction.

If v is not a descendant of r in F, then v is
not a descendant of u because uis a
descendant of r.




Strongly Connected Components

Lemma: u ~scce) V < U ~ceF) Ve

If v is a descendant of r in F, then
U ~sccG) Vs a contradiction.

If v is not a descendant of r in F, then v is
not a descendant of u because u is a
descendant of r.

Since u <r, v <r, and the descendants of r
are numbered consecutively, we have v < u.




Strongly Connected Components

Lemma: u ~SCCG) Y S ~CCF Y

If v is a descendant of r in F, then
U ~sccG) Vs a contradiction.

If v is not a descendant of r in F, then v is
not a descendant of u because u is a
descendant of r.

Since u <r, v <r, and the descendants of r
are numbered consecutively, we have v < u.

= (v,u) is a forward cross edge w.r.t. F, a
contrad|ct|on




Summary

Many problems are quite natural to express as graph problems:

e Matching problems

e Scheduling problems
o

Data structures are graphs whose nodes store useful information.

Connectivity problems
Distances between vertices
Planarity



