
Foundations

Textbook Reading

Chapters 2 & 3

Overview

Review of things you should know

• Proof by contradiction
• Arrays, linked lists, stacks, and queues

Analysis of algorithms

• Worst-case and average-case running time
• Asymptotic notation

Stable Matching: The Gale-Shapley Algorithm

StableMatching(M,W)

1 while there exists an unmarried man m
2 do m proposes to the most preferable woman w he has not proposed to yet
3 if w is unmarried or likes m be�er than her current partner m′

4 then if w is married
5 then w divorces m′

6 w marries m

Questions we can and should ask about the algorithm:

• Is there always a stable matching?
• Does the algorithm always terminate?
• Does the algorithm always produce a stable matching?
• How e�cient is the algorithm? Can we bound its running time?

Stable Matching: The Gale-Shapley Algorithm

StableMatching(M,W)

1 while there exists an unmarried man m
2 do m proposes to the most preferable woman w he has not proposed to yet
3 if w is unmarried or likes m be�er than her current partner m′

4 then if w is married
5 then w divorces m′

6 w marries m

Questions we can and should ask about the algorithm:

• Is there always a stable matching?
• Does the algorithm always terminate?
• Does the algorithm always produce a stable matching?
• How e�cient is the algorithm? Can we bound its running time?

Stable Matching: The Gale-Shapley Algorithm

Questions we can and should ask about the algorithm:

• Is there always a stable matching?
• Does the algorithm always terminate?
• Does the algorithm always produce a stable matching?
• How e�cient is the algorithm? Can we bound its running time?

StableMatching(M,W)

1 while there exists an unmarried man m who has not proposed to all women yet
2 do m proposes to the most preferable woman w he has not proposed to yet
3 if w is unmarried or likes m be�er than her current partner m′

4 then if w is married
5 then w divorces m′

6 w marries m

Termination of the Gale-Shapley Algorithm

StableMatching(M,W)

1 while there exists an unmarried man m who has not proposed to all women yet
2 do m proposes to the most preferable woman w he has not proposed to yet
3 if w is unmarried or likes m be�er than her current partner m′

4 then if w is married
5 then w divorces m′

6 w marries m

Lemma: The Gale-Shapley Algorithm terminates after at most n2 iterations.

Termination of the Gale-Shapley Algorithm

StableMatching(M,W)

1 while there exists an unmarried man m who has not proposed to all women yet
2 do m proposes to the most preferable woman w he has not proposed to yet
3 if w is unmarried or likes m be�er than her current partner m′

4 then if w is married
5 then w divorces m′

6 w marries m

Lemma: The Gale-Shapley Algorithm terminates after at most n2 iterations.

There are n men.

Termination of the Gale-Shapley Algorithm

StableMatching(M,W)

1 while there exists an unmarried man m who has not proposed to all women yet
2 do m proposes to the most preferable woman w he has not proposed to yet
3 if w is unmarried or likes m be�er than her current partner m′

4 then if w is married
5 then w divorces m′

6 w marries m

Lemma: The Gale-Shapley Algorithm terminates after at most n2 iterations.

There are n men.
Every man can propose to n women.

Termination of the Gale-Shapley Algorithm

StableMatching(M,W)

1 while there exists an unmarried man m who has not proposed to all women yet
2 do m proposes to the most preferable woman w he has not proposed to yet
3 if w is unmarried or likes m be�er than her current partner m′

4 then if w is married
5 then w divorces m′

6 w marries m

Lemma: The Gale-Shapley Algorithm terminates after at most n2 iterations.

There are n men.
Every man can propose to n women.
No man proposes to the same woman twice.

Termination of the Gale-Shapley Algorithm

StableMatching(M,W)

1 while there exists an unmarried man m who has not proposed to all women yet
2 do m proposes to the most preferable woman w he has not proposed to yet
3 if w is unmarried or likes m be�er than her current partner m′

4 then if w is married
5 then w divorces m′

6 w marries m

Lemma: The Gale-Shapley Algorithm terminates after at most n2 iterations.

There are n men.
Every man can propose to n women.
No man proposes to the same woman twice.

⇒ There are n2 proposals to be made.

Termination of the Gale-Shapley Algorithm

StableMatching(M,W)

1 while there exists an unmarried man m who has not proposed to all women yet
2 do m proposes to the most preferable woman w he has not proposed to yet
3 if w is unmarried or likes m be�er than her current partner m′

4 then if w is married
5 then w divorces m′

6 w marries m

Lemma: The Gale-Shapley Algorithm terminates after at most n2 iterations.

There are n men.
Every man can propose to n women.
No man proposes to the same woman twice.

⇒ There are n2 proposals to be made.

In every iteration, one proposal is made.

Termination of the Gale-Shapley Algorithm

StableMatching(M,W)

1 while there exists an unmarried man m who has not proposed to all women yet
2 do m proposes to the most preferable woman w he has not proposed to yet
3 if w is unmarried or likes m be�er than her current partner m′

4 then if w is married
5 then w divorces m′

6 w marries m

Lemma: The Gale-Shapley Algorithm terminates after at most n2 iterations.

There are n men.
Every man can propose to n women.
No man proposes to the same woman twice.

⇒ There are n2 proposals to be made.

In every iteration, one proposal is made.

⇒ There are at most n2 iterations.

Everybody Gets Married: Proof by Contradiction

Lemma: At the end of the Gale-Shapley Algorithm every woman (and hence every
man) is married.

Everybody Gets Married: Proof by Contradiction

Lemma: At the end of the Gale-Shapley Algorithm every woman (and hence every
man) is married.

Proof by contradiction:

• Assume that what we want to prove is incorrect.
• Prove that this leads to a contradiction.

Everybody Gets Married: Proof by Contradiction

Lemma: At the end of the Gale-Shapley Algorithm every woman (and hence every
man) is married.

Proof by contradiction:

• Assume that what we want to prove is incorrect.
• Prove that this leads to a contradiction.

Assumption: There is an unmarried woman at the end of the algorithm.

Everybody Gets Married: Proof by Contradiction

Lemma: At the end of the Gale-Shapley Algorithm every woman (and hence every
man) is married.

Proof by contradiction:

• Assume that what we want to prove is incorrect.
• Prove that this leads to a contradiction.

Assumption: There is an unmarried woman at the end of the algorithm.

A woman, once married, stays married (not necessarily to the same man).

Everybody Gets Married: Proof by Contradiction

Lemma: At the end of the Gale-Shapley Algorithm every woman (and hence every
man) is married.

Proof by contradiction:

• Assume that what we want to prove is incorrect.
• Prove that this leads to a contradiction.

Assumption: There is an unmarried woman at the end of the algorithm.

A woman, once married, stays married (not necessarily to the same man).
If there is an unmarried woman w, there must be an unmarried man m.

Everybody Gets Married: Proof by Contradiction

Lemma: At the end of the Gale-Shapley Algorithm every woman (and hence every
man) is married.

Proof by contradiction:

• Assume that what we want to prove is incorrect.
• Prove that this leads to a contradiction.

Assumption: There is an unmarried woman at the end of the algorithm.

A woman, once married, stays married (not necessarily to the same man).
If there is an unmarried woman w, there must be an unmarried man m.
When the algorithm terminates, m must have proposed to all women, including w.

Everybody Gets Married: Proof by Contradiction

Lemma: At the end of the Gale-Shapley Algorithm every woman (and hence every
man) is married.

Proof by contradiction:

• Assume that what we want to prove is incorrect.
• Prove that this leads to a contradiction.

Assumption: There is an unmarried woman at the end of the algorithm.

Contradiction.

A woman, once married, stays married (not necessarily to the same man).
If there is an unmarried woman w, there must be an unmarried man m.
When the algorithm terminates, m must have proposed to all women, including w.
w would have married m then.

Stable Matching: The Gale-Shapley Algorithm

Questions we can and should ask about the algorithm:

• Is there always a stable matching?
• Does the algorithm always terminate?
• Does the algorithm always produce a stable matching?
• How e�cient is the algorithm? Can we bound its running time?

StableMatching(M,W)

1 while there exists an unmarried man m who has not proposed to all women yet
2 do m proposes to the most preferable woman w he has not proposed to yet
3 if w is unmarried or likes m be�er than her current partner m′

4 then if w is married
5 then w divorces m′

6 w marries m

Stable Matching: The Gale-Shapley Algorithm

StableMatching(M,W)

1 while there exists an unmarried man m
2 do m proposes to the most preferable woman w he has not proposed to yet
3 if w is unmarried or likes m be�er than her current partner m′

4 then if w is married
5 then w divorces m′

6 w marries m

Questions we can and should ask about the algorithm:

• Is there always a stable matching?
• Does the algorithm always terminate?
• Does the algorithm always produce a stable matching?
• How e�cient is the algorithm? Can we bound its running time?

Stable Matching: The Gale-Shapley Algorithm

StableMatching(M,W)

1 while there exists an unmarried man m
2 do m proposes to the most preferable woman w he has not proposed to yet
3 if w is unmarried or likes m be�er than her current partner m′

4 then if w is married
5 then w divorces m′

6 w marries m

Questions we can and should ask about the algorithm:

• Is there always a stable matching?
• Does the algorithm always terminate?
• Does the algorithm always produce a stable matching?
• How e�cient is the algorithm? Can we bound its running time?

Correctness of the Gale-Shapley Algorithm

Lemma: The matching produced by the Gale-Shapley Algorithm is stable.

Correctness of the Gale-Shapley Algorithm

Lemma: The matching produced by the Gale-Shapley Algorithm is stable.

Proof by contradiction:

Assume there exist two marriages (m, w) and (m′, w′) such that m′ ≺w m and
w ≺m′ w′.

Correctness of the Gale-Shapley Algorithm

Lemma: The matching produced by the Gale-Shapley Algorithm is stable.

Proof by contradiction:

Assume there exist two marriages (m, w) and (m′, w′) such that m′ ≺w m and
w ≺m′ w′.

Since w ≺m′ w′, m′ must have proposed to w before ge�ing married to w′.

Correctness of the Gale-Shapley Algorithm

Lemma: The matching produced by the Gale-Shapley Algorithm is stable.

Proof by contradiction:

Assume there exist two marriages (m, w) and (m′, w′) such that m′ ≺w m and
w ≺m′ w′.

Since w ≺m′ w′, m′ must have proposed to w before ge�ing married to w′.
Let m′′ be w’s partner immediately after m′ proposed to her.

• If w accepts m′, then m′′ = m′.
• If w rejects m′, then m′′ ≺w m′.

Correctness of the Gale-Shapley Algorithm

Lemma: The matching produced by the Gale-Shapley Algorithm is stable.

Proof by contradiction:

Assume there exist two marriages (m, w) and (m′, w′) such that m′ ≺w m and
w ≺m′ w′.

Since w ≺m′ w′, m′ must have proposed to w before ge�ing married to w′.
Let m′′ be w’s partner immediately after m′ proposed to her.

• If w accepts m′, then m′′ = m′.
• If w rejects m′, then m′′ ≺w m′.
⇒ m′′ �w m′

Correctness of the Gale-Shapley Algorithm

Lemma: The matching produced by the Gale-Shapley Algorithm is stable.

Proof by contradiction:

Assume there exist two marriages (m, w) and (m′, w′) such that m′ ≺w m and
w ≺m′ w′.

Since w ≺m′ w′, m′ must have proposed to w before ge�ing married to w′.
Let m′′ be w’s partner immediately after m′ proposed to her.

• If w accepts m′, then m′′ = m′.
• If w rejects m′, then m′′ ≺w m′.
⇒ m′′ �w m′

Let m′′ = m1, m2, . . . , mk = m be the sequence of partners w has from this time on.

Correctness of the Gale-Shapley Algorithm

Lemma: The matching produced by the Gale-Shapley Algorithm is stable.

Proof by contradiction:

Assume there exist two marriages (m, w) and (m′, w′) such that m′ ≺w m and
w ≺m′ w′.

Since w ≺m′ w′, m′ must have proposed to w before ge�ing married to w′.
Let m′′ be w’s partner immediately after m′ proposed to her.

• If w accepts m′, then m′′ = m′.
• If w rejects m′, then m′′ ≺w m′.
⇒ m′′ �w m′

Let m′′ = m1, m2, . . . , mk = m be the sequence of partners w has from this time on.
If k = 1, then m = m′′ �w m′.

Correctness of the Gale-Shapley Algorithm

Lemma: The matching produced by the Gale-Shapley Algorithm is stable.

Proof by contradiction:

Assume there exist two marriages (m, w) and (m′, w′) such that m′ ≺w m and
w ≺m′ w′.

Since w ≺m′ w′, m′ must have proposed to w before ge�ing married to w′.
Let m′′ be w’s partner immediately after m′ proposed to her.

• If w accepts m′, then m′′ = m′.
• If w rejects m′, then m′′ ≺w m′.
⇒ m′′ �w m′

Let m′′ = m1, m2, . . . , mk = m be the sequence of partners w has from this time on.
If k = 1, then m = m′′ �w m′.
If k > 1, then m = mk ≺w mk–1 ≺w · · · ≺w m2 ≺w m1 = m′′ �w m′.

Correctness of the Gale-Shapley Algorithm

Lemma: The matching produced by the Gale-Shapley Algorithm is stable.

Proof by contradiction:

Assume there exist two marriages (m, w) and (m′, w′) such that m′ ≺w m and
w ≺m′ w′.

Contradiction.

Since w ≺m′ w′, m′ must have proposed to w before ge�ing married to w′.
Let m′′ be w’s partner immediately after m′ proposed to her.

• If w accepts m′, then m′′ = m′.
• If w rejects m′, then m′′ ≺w m′.
⇒ m′′ �w m′

Let m′′ = m1, m2, . . . , mk = m be the sequence of partners w has from this time on.
If k = 1, then m = m′′ �w m′.
If k > 1, then m = mk ≺w mk–1 ≺w · · · ≺w m2 ≺w m1 = m′′ �w m′.
⇒ m �w m′

More Questions

Does the final matching depend on the order in which the men propose?
No!

Is the process fair?
No! The men fare much be�er than the women.

Can the algorithm be implemented e�ciently?

Can we implement a faster algorithm?
Yes, using randomization.

Computational Tractability

Informally, we consider a problem computationally tractable if it can be solved using
reasonable resources.

Resources:

• Running time
• Memory usage
• Disk usage
• Number of messages sent across the network
• Energy
• . . .

Model of Computation: The RAM Model

We would like to be able to predict the running time of algorithms before
implementing them.

We would like our analysis to be applicable to a wide range of machines.

⇒ We need to base our analysis on a model of computation that captures the
characteristics of a wide range of machines.

Model of Computation: The RAM Model

We would like to be able to predict the running time of algorithms before
implementing them.

We would like our analysis to be applicable to a wide range of machines.

⇒ We need to base our analysis on a model of computation that captures the
characteristics of a wide range of machines.

The Random Access Machine (RAM) model:

Elementary operations take constant time:

• Arithmetic operations: addition, subtraction, multiplication, division
• Boolean operations: and, or, not
• If-statements
• Checking of loop conditions
• Memory access

Model of Computation: The RAM Model

We would like to be able to predict the running time of algorithms before
implementing them.

We would like our analysis to be applicable to a wide range of machines.

⇒ We need to base our analysis on a model of computation that captures the
characteristics of a wide range of machines.

The Random Access Machine (RAM) model:

Elementary operations take constant time:

• Arithmetic operations: addition, subtraction, multiplication, division
• Boolean operations: and, or, not
• If-statements
• Checking of loop conditions
• Memory access

⇒ By counting elementary operations, we can compare the actual running times of
two algorithms up to constant factors.

E�cient Algorithm = Polynomial Running Time

Most algorithms are fast for small inputs. We care about their behaviour for non-trivial
(i.e., large) inputs.

⇒ We would like to express the running time as a function of the input size n.

E�cient Algorithm = Polynomial Running Time

Definition: We consider an algorithm e�cient if its running time is polynomial in the
input size.

Most algorithms are fast for small inputs. We care about their behaviour for non-trivial
(i.e., large) inputs.

⇒ We would like to express the running time as a function of the input size n.

E�cient Algorithm = Polynomial Running Time

Definition: We consider an algorithm e�cient if its running time is polynomial in the
input size.

Motivation:

If the input size doubles, the running time should increase by only a constant factor.

Most algorithms are fast for small inputs. We care about their behaviour for non-trivial
(i.e., large) inputs.

⇒ We would like to express the running time as a function of the input size n.

E�cient Algorithm = Polynomial Running Time

Definition: We consider an algorithm e�cient if its running time is polynomial in the
input size.

Motivation:

If the input size doubles, the running time should increase by only a constant factor.

Most algorithms are fast for small inputs. We care about their behaviour for non-trivial
(i.e., large) inputs.

⇒ We would like to express the running time as a function of the input size n.

Questions:
Is n100 e�cient?

E�cient Algorithm = Polynomial Running Time

Definition: We consider an algorithm e�cient if its running time is polynomial in the
input size.

Motivation:

If the input size doubles, the running time should increase by only a constant factor.

Most algorithms are fast for small inputs. We care about their behaviour for non-trivial
(i.e., large) inputs.

⇒ We would like to express the running time as a function of the input size n.

Questions:
Is n100 e�cient? No.

E�cient Algorithm = Polynomial Running Time

Definition: We consider an algorithm e�cient if its running time is polynomial in the
input size.

Motivation:

If the input size doubles, the running time should increase by only a constant factor.

Most algorithms are fast for small inputs. We care about their behaviour for non-trivial
(i.e., large) inputs.

⇒ We would like to express the running time as a function of the input size n.

Questions:
Is n100 e�cient?
Is n1+0.02 lg n ine�cient?

No.

E�cient Algorithm = Polynomial Running Time

Definition: We consider an algorithm e�cient if its running time is polynomial in the
input size.

Motivation:

If the input size doubles, the running time should increase by only a constant factor.

Most algorithms are fast for small inputs. We care about their behaviour for non-trivial
(i.e., large) inputs.

⇒ We would like to express the running time as a function of the input size n.

Questions:
Is n100 e�cient?
Is n1+0.02 lg n ine�cient?

No.
No.

E�cient Algorithm = Polynomial Running Time

Definition: We consider an algorithm e�cient if its running time is polynomial in the
input size.

Motivation:

If the input size doubles, the running time should increase by only a constant factor.

Justification: Overwhelmingly, polynomial-time algorithms are fast in practice and
exponential-time algorithms are not.

Most algorithms are fast for small inputs. We care about their behaviour for non-trivial
(i.e., large) inputs.

⇒ We would like to express the running time as a function of the input size n.

Questions:
Is n100 e�cient?
Is n1+0.02 lg n ine�cient?

No.
No.

Running Time May Depend on Specific Input

InsertionSort(A, n)

1 for i = 2 to n
2 do x = A[i]
3 j = i – 1
4 while j > 0 and A[j] > x
5 do A[j + 1] = A[j]
6 A[j + 1] = x

Running Time May Depend on Specific Input

InsertionSort(A, n)

1 for i = 2 to n
2 do x = A[i]
3 j = i – 1
4 while j > 0 and A[j] > x
5 do A[j + 1] = A[j]
6 A[j + 1] = x

Running time: Linear for sorted inputs, quadratic for inputs sorted in reverse order
(and in fact for most inputs).

Running Time May Depend on Specific Input

InsertionSort(A, n)

1 for i = 2 to n
2 do x = A[i]
3 j = i – 1
4 while j > 0 and A[j] > x
5 do A[j + 1] = A[j]
6 A[j + 1] = x

Running time: Linear for sorted inputs, quadratic for inputs sorted in reverse order
(and in fact for most inputs).

How do we unify this into one function T(n)?

Worst-Case and Average-Case Running Time

The worst-case running time of an algorithm A is a function T(n) defined as the
maximum running time of A over all possible inputs of size n.

The average-case running time of an algorithm A is a function T(n) defined as the
average running time of A over all possible inputs of size n.

Asymptotic Running Time

Scenario: Given two algorithms A and B which we want to compare.

Do we care which one is faster for small inputs?

Asymptotic Running Time

Scenario: Given two algorithms A and B which we want to compare.

Do we care which one is faster for small inputs?

Not really. We care most about which one is faster for large inputs, where e�ciency
really ma�ers.

Asymptotic Running Time

Scenario: Given two algorithms A and B which we want to compare.

Do we care which one is faster for small inputs?

Not really. We care most about which one is faster for large inputs, where e�ciency
really ma�ers.

Formally: We want TA(n) < T(B) for all n ≥ n0, where n0 is the smallest input size we
consider to be “large”.

O-Notation

f(n) ∈ O(g(n)) means that f(n) is at most a constant factor larger than g(n) for large
enough n.

c · g(n)

f(n)

n0

f(n) ∈ O(g(n))

m
∃c > 0, n0 ≥ 0 ∀n ≥ n0 : f(n) ≤ c · g(n)

Formally:

Ω-Notation

f(n) ∈ Ω(g(n)) means that f(n) is at most a constant factor smaller than g(n) for large
enough n.

f(n) ∈ Ω(g(n))

m
∃c > 0, n0 ≥ 0 ∀n ≥ n0 : f(n) ≥ c · g(n)

Formally:

c · g(n)

n0

f(n)

Θ-Notation

f(n) ∈ Θ(g(n)) means that the di�erence between f(n) and g(n) is at most a constant
factor for large enough n.

f(n) ∈ Θ(g(n))
m

∃c1 > 0, c2 > 0, n0 ≥ 0 ∀n ≥ n0 : c1 · g(n) ≤ f(n) ≤ c2 · g(n)

Formally:

c2 · g(n)

f(n)

n0

c1 · g(n)

o-Notation

f(n) ∈ o(g(n)) means that the ratio between g(n) and f(n) grows without bounds as n
grows. An algorithm with running time f(n) is much faster than one with running time
g(n) for large enough inputs, even if run on a slower computer!

c2 · g(n)

f(n)

n1

c3 · g(n)

c1 · g(n)

n2 n3

f(n) ∈ o(g(n))

m
∀c > 0 ∃n0 ≥ 0 ∀n ≥ n0 : f(n) ≤ c · g(n)

Formally:

ω-Notation

f(n) ∈ ω(g(n)) means that the ratio between f(n) and g(n) grows without bounds as n
grows. An algorithm with running time g(n) is much faster than one with running time
f(n) for large enough inputs, even if run on a slower computer!

f(n) ∈ ω(g(n))

m
∀c > 0 ∃n0 ≥ 0 ∀n ≥ n0 : f(n) ≥ c · g(n)

Formally:

c2 · g(n)

f(n)

n1

c3 · g(n)

c1 · g(n)

n2 n3

A Few Simple Facts

f(n) ∈ O(f(n)) f(n) ∈ Ω(f(n)) f(n) ∈ Θ(f(n))

f(n) ∈ O(g(n)) and g(n) ∈ O(h(n)) =⇒ f(n) ∈ O(h(n))
f(n) ∈ Ω(g(n)) and g(n) ∈ Ω(h(n)) =⇒ f(n) ∈ Ω(h(n))
f(n) ∈ Θ(g(n)) and g(n) ∈ Θ(h(n)) =⇒ f(n) ∈ Θ(h(n))

f(n) ∈ O(g(n))⇐⇒ g(n) ∈ Ω(f(n))
f(n) ∈ o(g(n))⇐⇒ g(n) ∈ ω(f(n))

f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n))⇐⇒ f(n) ∈ Θ(g(n))

f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)) =⇒ f1(n) + f2(n) ∈ O(g1(n) + g2(n))

f(n) ∈ O(g(n)) =⇒ f(n) + g(n) ∈ O(g(n))

Asymptotic Analysis and Limits

The following relationships hold for positive increasing functions f(n) and g(n). Since
the running times of algorithms are positive and increasing, we can use these rules
when analyzing algorithms.

lim
n→∞

f(n)
g(n)

= 0⇐⇒ f(n) ∈ o(g(n))

lim
n→∞

f(n)
g(n)

= c > 0 =⇒ f(n) ∈ Θ(g(n))

lim
n→∞

f(n)
g(n)

= 0 =⇒ af(n) ∈ o(ag(n)) for any a > 1

f(n) ∈ o(g(n)) =⇒ af(n) ∈ o(ag(n)) for any a > 1

f(n) ∈ Θ(g(n)) 6=⇒ af(n) ∈ Θ(ag(n))

Asymptotic Analysis and Algorithm Performance

What does it mean if TA(n) ∈ O(TB(n))?

Asymptotic Analysis and Algorithm Performance

What does it mean if TA(n) ∈ O(TB(n))?

Algorithm A is at most a constant factor slower than algorithm B.
The constant factor may be large!!!

Asymptotic Analysis and Algorithm Performance

What does it mean if TA(n) ∈ o(TB(n))?

What does it mean if TA(n) ∈ O(TB(n))?

Algorithm A is at most a constant factor slower than algorithm B.
The constant factor may be large!!!

Asymptotic Analysis and Algorithm Performance

What does it mean if TA(n) ∈ o(TB(n))?

For su�ciently large n, algorithm A will outperform algorithm B.

What does it mean if TA(n) ∈ O(TB(n))?

Algorithm A is at most a constant factor slower than algorithm B.
The constant factor may be large!!!

Asymptotic Analysis and Algorithm Performance

Can we ignore constants?

What does it mean if TA(n) ∈ o(TB(n))?

For su�ciently large n, algorithm A will outperform algorithm B.

What does it mean if TA(n) ∈ O(TB(n))?

Algorithm A is at most a constant factor slower than algorithm B.
The constant factor may be large!!!

Asymptotic Analysis and Algorithm Performance

Can we ignore constants?

In a first filter step to select possible candidate algorithms and during algorithm
design, this is helpful.

Subsequent choices have to be based on our experience, analyses that do take
constants into account, or experimental evaluation.

What does it mean if TA(n) ∈ o(TB(n))?

For su�ciently large n, algorithm A will outperform algorithm B.

What does it mean if TA(n) ∈ O(TB(n))?

Algorithm A is at most a constant factor slower than algorithm B.
The constant factor may be large!!!

Asymptotic Analysis and Algorithm Performance

What do we gain?

Can we ignore constants?

In a first filter step to select possible candidate algorithms and during algorithm
design, this is helpful.

Subsequent choices have to be based on our experience, analyses that do take
constants into account, or experimental evaluation.

What does it mean if TA(n) ∈ o(TB(n))?

For su�ciently large n, algorithm A will outperform algorithm B.

What does it mean if TA(n) ∈ O(TB(n))?

Algorithm A is at most a constant factor slower than algorithm B.
The constant factor may be large!!!

Asymptotic Analysis and Algorithm Performance

What do we gain?

A simple, succinct expression of the performance of an algorithm.

Can we ignore constants?

In a first filter step to select possible candidate algorithms and during algorithm
design, this is helpful.

Subsequent choices have to be based on our experience, analyses that do take
constants into account, or experimental evaluation.

What does it mean if TA(n) ∈ o(TB(n))?

For su�ciently large n, algorithm A will outperform algorithm B.

What does it mean if TA(n) ∈ O(TB(n))?

Algorithm A is at most a constant factor slower than algorithm B.
The constant factor may be large!!!

Implementation of the Gale-Shapley Algorithm

StableMatching(M : Array[Man], W : Array[Woman])

1 Q = an empty queue
2 for every man m ∈ M
3 do Q.enqueue(m)
4 while not Q.isEmpty()
5 do m = Q.dequeue()
6 w = W[m.nextOnList()]
7 if not w.isMarried()
8 then w.marry(m)
9 else m′ = w.partner()
10 if w.prefers(m, m′)
11 then w.marry(m)
12 Q.enqueue(m′)
13 else Q.enqueue(m)

Implementation of the Gale-Shapley Algorithm

Queue:
• O(1) time per operation

StableMatching(M : Array[Man], W : Array[Woman])

1 Q = an empty queue
2 for every man m ∈ M
3 do Q.enqueue(m)
4 while not Q.isEmpty()
5 do m = Q.dequeue()
6 w = W[m.nextOnList()]
7 if not w.isMarried()
8 then w.marry(m)
9 else m′ = w.partner()
10 if w.prefers(m, m′)
11 then w.marry(m)
12 Q.enqueue(m′)
13 else Q.enqueue(m)

Implementation of the Gale-Shapley Algorithm

Man:
• Preference list = array + current
index/list
• nextOnList = access + increase
index or pointer jump on list

⇒ O(1) time

StableMatching(M : Array[Man], W : Array[Woman])

1 Q = an empty queue
2 for every man m ∈ M
3 do Q.enqueue(m)
4 while not Q.isEmpty()
5 do m = Q.dequeue()
6 w = W[m.nextOnList()]
7 if not w.isMarried()
8 then w.marry(m)
9 else m′ = w.partner()
10 if w.prefers(m, m′)
11 then w.marry(m)
12 Q.enqueue(m′)
13 else Q.enqueue(m)

Queue:
• O(1) time per operation

Implementation of the Gale-Shapley Algorithm

StableMatching(M : Array[Man], W : Array[Woman])

1 Q = an empty queue
2 for every man m ∈ M
3 do Q.enqueue(m)
4 while not Q.isEmpty()
5 do m = Q.dequeue()
6 w = W[m.nextOnList()]
7 if not w.isMarried()
8 then w.marry(m)
9 else m′ = w.partner()
10 if w.prefers(m, m′)
11 then w.marry(m)
12 Q.enqueue(m′)
13 else Q.enqueue(m)

Woman:
• Stores pointer to her partner
⇒ isMarried/marry/partner take O(1)

time

Implementation of the Gale-Shapley Algorithm

StableMatching(M : Array[Man], W : Array[Woman])

1 Q = an empty queue
2 for every man m ∈ M
3 do Q.enqueue(m)
4 while not Q.isEmpty()
5 do m = Q.dequeue()
6 w = W[m.nextOnList()]
7 if not w.isMarried()
8 then w.marry(m)
9 else m′ = w.partner()
10 if w.prefers(m, m′)
11 then w.marry(m)
12 Q.enqueue(m′)
13 else Q.enqueue(m)

Woman:
• Stores pointer to her partner
⇒ isMarried/marry/partner take O(1)

time

• prefers takes O(1) time if we have
an inverted preference list:
• Map every man to his rank in

the preference list.

Inverting a Preference List

1 2 345 6

132 4 56

InvertPreflist(w : Woman)

1 L = new array of size |w.preflist|
2 for i = 1 to |w.preflist|
3 do L[w.preflist[i]] = i
4 w.preflist = L

This takes linear time.

Implementation of the Gale-Shapley Algorithm

StableMatching(M : Array[Man], W : Array[Woman])

1 Q = an empty queue
2 for every man m ∈ M
3 do Q.enqueue(m)
4 for every woman w ∈ W
5 do InvertPreflist(w)
6 while not Q.isEmpty()
7 do m = Q.dequeue()
8 w = W[m.nextOnList()]
9 if not w.isMarried()
10 then w.marry(m)
11 else m′ = w.partner()
12 if w.prefers(m, m′)
13 then w.marry(m)
14 Q.enqueue(m′)
15 else Q.enqueue(m)

The Gale-Shapley algorithm can be implemented to run in O(n2) time.

Summary

Review of things you should know

• Proof by contradiction
• Arrays, linked lists, stacks, and queues

Analysis of algorithms

• Worst-case and average-case running time
• Asymptotic notation

