
Part 12

—

Topological Sorting

CSCI 3110 Code

Summer 2015

For topological sorting, we present two algorithms here, just as in class. Both algorithms are expected

to produce the list of vertices of the given graph in topologically sorted order. The first algorithm

uses DFS and exploits the fact that a topological ordering is nothing but a reverse postordering. The

second one applies the approach of “peeling sources”. Each algorithm has its own appeal. The DFS-

based algorithm is easy to implement, given that we already have functions for DFS and postordering.

However, it reverses the list of vertices in postorder, so it cannot produce the list of vertices in the

topological ordering on the fly; the entire list must be produced in one go. It would be more in the

spirit of lazy evaluation if every vertex in the topological ordering were produced as it is needed. The

simple topological sorting algorithm based on peeling sources achieves this goal but has the “downside”

of requiring the ST monad for its implementation, in order to keep track of the number of not-yet-peeled

in-neighbours of each vertex.

1 DFS-Based Algorithm

Given that we already have a dfs function and a postorder function, topological sorting becomes trivial:

dfsTopSort :: AdjList v vl el→ [V]
dfsTopSort= reverse ◦ postOrder ◦ dfs

2 Peeling Sources

The simple topological sorting algorithm based on peeling sources is easily implemented using a recur-

sive formulation. Since this algorithm needs to keep track of a mutable array containing the in-degrees

of vertices, we implement it in the ST monad. Specifically, we run a computation simpleTopSortM on

the graph g:

simpleTopSort :: Show v⇒ AdjList v vl el→ [V]
simpleTopSort g= runST (simpleTopSortM g)

1

simpleTopSortM g first collects the in-degrees of all vertices in g in an array indegs and uses it to identify

all the sources of g. It then thaws indegs into a mutable array and applies peel mIndegs to the identified

sources, which produces a vertex list starting with these sources, followed by vertices that become

sources after removing the initial set of sources, and so on. This is exactly the strategy of our simple

topological sorting algorithm from class:

simpleTopSortM :: Show v⇒ AdjList v vl el→ ST s [V]

simpleTopSortM g= do let gs = adjGraph g

indegs = array (1, gNumVertices gs) $

map (λv→ (vIx v, vInDegree v)) (gVertices gs)

sources= filter (λv→ indegs ! vIx v≡ 0) (gVertices gs)

mIndegs← thaw indegs

peel mIndegs sources

peel does the actual work of peeling the sources. For every source, it iterates over its out-neighbours,

decreases their in-degrees by one, and collects those vertices that become sources as a result. It then

returns the input list of sources followed by the result of recursively peeling the collected out-neighbours:

peel :: STArray s Int Int→ [V]→ ST s [V]

peel indegs= go

where go [] = return []

go vs = do ws←mapM peelVertex vs

(vs++) $ go (concat ws)

peelVertex takes care of removing a single source and collecting its out-neighbours that become sources:

peelVertex v= catMaybes $ mapM collectOutNeighbour (vOutNeighbours v)

collectOutNeighbour finally takes care of decreasing a given vertex’s in-degree by one and returning

Maybe this vertex if its in-degree is now 0:

collectOutNeighbour w= do let i= vIx w

d← (subtract 1) $ readArray indegs i

writeArray indegs i d

return (if d≡ 0 then Just w else Nothing)

2

