
Part 1

—

An Implementation of the Gale-Shapley Algorithm

CSCI 3110 Code

Fall 2015

1 Introduction

Here’s the pseudo-code of the Gale-Shapley algorithm from class:

GALESHAPLEY(M , W)
while there is an unmarried man m do

m chooses the first woman w on his preference list he has not proposed to yet and proposes to her
if w is unmarried or prefers m over her current partner m′ then

w divorces m′

w marries m

Here we develop a full implementation of this algorithm.

2 The Algorithm

The input to the algorithm is represented as an input size n, a list of men, along with their preference

lists, and a list of women, along with their preference lists:

data Instance= Instance {n :: Int

, men :: [Man]

, women :: [Woman]

}

Men and women are both two types of Persons. Every Person has a name of some type a and is eligible

to get married to Persons with names of some other type b. The ranking of potential partners is given

as a simple list of type [b]:

data Person a b= Person {name :: a

, prefList :: [b]

}

1

Men are Persons with names of type M and preferring women, whose names are of type W. For women,

the roles of M and W are reversed:

type Man = Person M W

type Woman= Person W M

In our implementation, we assume the names of men and women are just integers. However, to allow

the Haskell compiler to check that we’re not accidentally adding a man to a man’s preference list or a

woman to a woman’s preference list, we wrap these integers into types M and W that inherit the Int

type’s notions of equality, ordering, and ranges but are considered distinct types by the compiler:

newtype M =M Int deriving (Eq, Ord, Ix)

newtype W =W Int deriving (Eq, Ord, Ix)

This ensures that the compiler complains whenever we try to use a W where an M is expected and vice

versa, but the internal representation of each type is just a plain integer.1

Now, the main function, stableMatching, is to produce a stable Matching from a given input Instance,

where a Matching is just a list of Marriages and a Marriage is simply a pair of a man and a woman (their

names suffice):

stableMatching :: Instance→Matching

type Marriage = (M, W)

type Matching= [Marriage]

As we discussed in class, the ordered sequence of women in the preference list of each Man is perfectly

adequate to allow the Man to propose to the women on his preference list in order. In order to decide

whether a woman should accept or reject a proposal, she needs to know here current partner and

she needs to have a constant-time ranking function that returns the position of a given man in her

preference list. As discussed in class, this function can be implemented using a simple lookup in an

inverted preference list, implemented as an Array. We pack this information about each Woman into a

data structure of type State and store the states of all women in a state Array indexed by the names of

all women:

data State = State {partner :: Maybe Man

, rank :: Man→ Int

}

1Haskell gives us three keywords to define new types: data, newtype, and type. type is similar to C’s typedef; type t1 = t2

introduces t1 as a type synonym for t2. Either can be used where the other is expected. data defines a new data type similar to
C’s struct. The type is different from all other types and it has a distinct runtime representation. newtype is somewhere in the
middle. We are only allowed to define structs with exactly one field using newtype. To the compiler the type is distinct from
all other types as if we had defined it using data. The runtime representation of a type t1 defined using newtype t1 = T t2 is
exactly the same as that of t2. Thus, newtype can be used help the type checker help us ensure write correct programs but
without the runtime overhead of a data declaration.

2

type States= Array W State

A woman’s partner is of type Maybe Man, that is, it can have values Nothing, if she does not have a

partner, or Just m, if m is her partner. To initialize the state of the algorithm, we can now populate

the States array with State records that store Nothing as their partners and whose rank functions are

constructed by calling a function makeRank on each Woman’s preference list:

initState :: Instance→ States

initState inst= array (W 1, W (n inst)) ◦
map (λw→ (name w, State Nothing (makeRank (n inst) (prefList w)))) $

women inst

makeRank constructs an inverted preference list from a given preference list by combining every entry

in the preference list with its position in the preference list: zip (prefList w) [1 . .]. Then we construct

the inverted preference list, an array with index range (M 1, M n), by storing j in position M i of the

array, for every pair (M i, j) in the resulting list. The function returned by makeRank is then simply

implemented as a lookup in this inverted preference list:

makeRank :: Int→ [M]→Man→ Int

makeRank n ms= rank

where rank m = rankArray ! name m

rankArray = array (M 1, M n) (zip ms [1 . .])

The core of our algorithm is a function proposals, which turns the initial States constructed by initState

into the final States where every State stores the corresponding woman’s partner in the final solution,

using the proposals made by a sequence of men:

proposals :: [Man]→ States→ States

Given the final States, we need to extract the final Matching from these States using the following func-

tion:

getMatching :: States→Matching

Given these three functions, we can now specify our stableMatching function as:

stableMatching inst= getMatching (proposals (men inst) (initState inst))

The getMatching function is easy enough to implement. All we have to do is extract the partner of every

woman and produce a list of these pairs. assocs applied to an Array returns the list of (index, value) pairs

of the Array. In our case, the indices are of type W and the values are of type State. To obtain a valid

Marriage from such a pair of type (W, State), we need to extract the name of the partner stored in the

State record and reverse the order of Man and Woman because, in our Marriage type, the Man’s name

comes first. This gives the following implementation:

3

getMatching=map (λ(w, s)→ (name ◦ fromJust ◦ partner $ s, w)) ◦ assocs

where

fromJust :: Maybe a→ a

fromJust Nothing= error "Undefined for Nothing"
fromJust (Just x) = x

is a pretty dangerous function in general because it may crash our program. Here, it is fine to use it

because we know that at the end of the algorithm, the partner of every woman is Just a man.

The proposals function is where we have to leave the realm of pure functions and dive into using

our strict state monad ST s: Our algorithm needs to update the partners of women as they change after

proposals are made. Since we also want constant-time access to the woman the current man proposes

to, we need to store the states of the women in an array and purely functional arrays are immutable, so

each update would take O(n) time. Our strategy is to turn our States array into a mutable array, whose

array cells can be updated in constant time. We start by defining a type synonym similar to States to

refer to our mutable state within the stateful computation:

type MStates s= STArray s W State

The proposals function now runs a stateful computation proposalsM wrapped in a pair of thaw/freeze

calls to convert the initial state into a mutable state and the final state back into an immutable state:

proposals ms st= runST $ do mst← thaw st

proposalsM mst ms Nothing

freeze mst

proposalsM :: MStates s→ [Man]→Maybe Man→ ST s ()

The arguments to proposalsM are the current states of the women, a list of unmarried men who are

currently waiting to propose, and Maybe a Man who is unmarried and has been selected to make the next

proposal. Initially, we haven’t chosen any Man to make the next proposal, so we pass all unmarried men

in as the original list ms and set the currently proposing man to Nothing. Now, how should proposalsM

behave?

If there is no unmarried Man, then it should exit without any further modifications to the state; all

men are married, we are done.

If we have selected a Man to make the next proposal (the third argument is Just m), we should let

him make his next proposal. This proposal itself is implemented by a proposeM computation:

proposeM :: MStates s→Man→ ST s (Maybe Man)

The return value of type Maybe Man is used to return Maybe a Man who is unmarried as a result of this

proposal. Thus, if m’s proposal is accepted and the woman wasn’t married before, m is now married and

4

no new unmarried man has been created; the computation returns Nothing. If m’s proposal is rejected,

then m is still unmarried; we return Just m. Finally, if m’s proposal is accepted but the woman was

married to a man m′ before, m′ is now unmarried, so we return Just m′. To continue the proposal

process, proposalsM takes this return value and calls itself recursively on the current state, the current

list of unmarried men, and the return value of proposeM.

Finally, if there are unmarried men but none has been picked for the next proposal, we should

pick the next unmarried Man from our list and make him the next Man to propose. These three cases

translate into the following computation:

proposalsM [] Nothing = return ()

proposalsM st (m : ms) Nothing = proposalsM st ms (Just m)

proposalsM st ms (Just m) = proposeM st m 〉〉= proposalsM st ms

Before describing the proposeM computation, let us specify the logic of a proposal, which can be ex-

pressed as a pure function:

propose :: Man→ State→ (Maybe Man, State)

propose m w | w ‘likesBetter‘ m= (partner w, w {partner=m′})
| otherwise = (m′, w)

where m′ = Just $ m {prefList= tail (prefList m)}

This code is pretty self-explanatory, but let’s discuss it anyway. Given a Man m and a woman with

State w, a proposal by m results in an update of w and Maybe a new unmarried Man. Hence, the inputs

of the function are m and w and the result is a pair of type (Maybe Man, State). We make use of a

predicate w ‘likesBetter‘ m, which is True if w is unmarried or likes m better than her current partner.

If w ‘likesBetter‘ m, then her current partner, who may be Nothing, becomes unmarried, and w’s new

partner becomes m with w removed from his preference list because he has just proposed to her. This

updated m, wrapped in Just, is the m′ constructed in the where clause. If w does not like m better than

her current partner, then w does not change and m remains unmarried, so we return the pair (m′, w)

because we should still remove w from m’s preference list as m has just proposed to her and should not

propose to her again.

The predicate w ‘likesBetter‘ m should return True if w’s current partner is Nothing (w is unmarried)

or m’s rank in w’s preference list is less than her current partner’s rank:

likesBetter :: State→Man→ Bool

likesBetter w m=maybe True

(λp→ rank w m< rank w p)

(partner w)

Finally, to implement a proposal by the currently active Man m, all we have to do is to take the first

Woman on his preference list, lookup her state in the current MStates array, pass the Man and the

woman’s state to our propose function, write the updated state back to the MStates array, and return

5

the Maybe unmarried Man the proposal produced. This can be expressed in terms of a modifyArray

computation that takes care of reading and writing the MStates array:

proposeM st m=modifyArray st (head ◦ prefList $ m) (propose m)

modifyArray :: Ix a⇒ STArray s a b→ a→ (b→ (c, b))→ ST s c

modifyArray a i f = do (r, x)← f $ readArray a i

writeArray a i x

return r

And that’s it. The algorithm is finished.

6

