
Part 20

—

Sorting and Selection

CSCI 3110 Code

Summer 2015

1 Introduction

Here we implement the different sorting algorithms discussed in class: Insertion Sort, Merge Sort, and

the various variants of Quick Sort. We also discuss how to implement linear-time selection (because it’s

closely related to and used by Quick Sort) and how to construct a uniform random permutation of an

input list in linear time, again because one of the Quick Sort variants uses this.

2 Insertion Sort

In an imperative language, Insertion Sort has appeal due to its simplicity. In Haskell, Merge Sort is

ridiculously easy to implement, as we will see below, so there is little motivation for using Insertion

Sort. However, we present it here anyway because we will use it as part of our linear-time selection

algorithm:

insertionSort :: Ord a⇒ [a]→ [a]
insertionSort= insertionSortBy compare

insertionSortBy :: (a→ a→ Ordering)→ [a]→ [a]
insertionSortBy cmp xs= insSort xs

where insSort [] = []

insSort (x : xs) = ins (insSort xs)

where ins [] = [x]

ins ys@(y : ys′) | cmp x y ≡ GT = y : ins ys′

| otherwise = x : ys

So, to sort the empty list, we don’t need to do anything. To sort a non-empty list x : xs, we first sort xs

and then insert x into the result. Inserting x into a list ys produces the list x : ys if x is no greater than

the head of ys—the resulting list is sorted in this case. Otherwise, we recursively insert x into ys tail.

1

3 Merge Sort

The strategy of Merge Sort is straightforward in a world where we know the size of the input: recursively

sort the left half, recursively sort the right half, then merge the two lists. If we don’t know the input

size (because we don’t want to traverse the input list only to figure out this size), we don’t know where

the left half ends and the right half begins. However, we can do exactly what I told you not to do in

class: consider how the recursion unfolds. At the bottom of the recursion, the merge process starts

with trivially sorted singleton lists. As we work our way back up the recursion tree, we form bigger and

bigger sorted lists by merging them in a pairwise fashion. This is easy enough to implement in Haskell:

mergeSort :: Ord a⇒ [a]→ [a]
mergeSort=mergeSortBy compare

mergeSortBy :: (a→ a→ Ordering)→ [a]→ [a]
mergeSortBy cmp xs=mSort xs

where mSort [] = []

mSort xs =ms $ map (:[]) xs

where ms [s] = s

ms ss =ms (m2 ss)

m2 (s1 : s2 : ss) =mergeBy cmp s1 s2 : m2 ss

m2 ss = ss

So mergeSort first turns every input element into a singleton list using map (:[]) and then calls ms on

the resulting list of lists. If ms is given a single list, this is the final sorted list, so it returns it. Otherwise,

it applies m2 once to the current list of lists and then recurses on the result. m2 merges the lists in the

given list of lists in a pairwise fashion. If there are at least two lists, it takes the first two, merges them,

and prepends the result to the list produced by calling m2 recursively on the remaining lists. Otherwise,

it just returns the current list of lists. merge itself is straightforward to implement, and I present it here

without further discussion:

merge :: Ord a⇒ [a]→ [a]→ [a]
merge=mergeBy compare

mergeBy :: (a→ a→ Ordering)→ [a]→ [a]→ [a]
mergeBy cmp ls rs=mrg ls rs

where mrg ls [] = ls

mrg [] rs = rs

mrg ls@(l : ls′) rs@(r : rs′) | cmp l r≡ GT = r : mrg ls rs′

| otherwise = l : mrg ls′ rs

2

4 Quick Sort

Quick Sort is also simple enough. We pick an element from the input as a pivot and partition the input

list into three sublists, one containing only elements less than the pivot, one containing elements equal

to the pivot, and one containing elements greater than the pivot. We recursively sort the first and last

lists and concatenate the results:

quickSort :: Ord a⇒ ([a]→ a)→ [a]→ [a]
quickSort findPivot xs= qs xs

where qs [] = []

qs xs = qs ls++ms++ qs rs

where (ls, ms, rs) = partition (findPivot xs) xs

This quickSort function takes a function findPivot as its first argument, which is used to select the pivot

from the input. The pivot finding strategy is the main difference between different variants of Quick

Sort. While this is intuitively the right definition (and would be perfectly fine in an imperative language),

we have a bit of a problem: the type of findPivot isn’t quite right. Since it’s a pure function, it behaves

the same every time we call it on a given input list. However, we want to be able to pick a random pivot

in our randomPivotQuickSort implementation. To do this, we implement Quick Sort in the State monad.

The state is the current pivot selector. The pivot selector itself can then replace itself with an updated

pivot selector if necessary to ensure we use a pseudo-random sequence of pivot selectors

newtype PivotSelect a= PS {runPS :: [a]→ State (PivotSelect a) a}

getPivot :: [a]→ State (PivotSelect a) a

getPivot xs= get 〉〉= flip runPS xs

quickSort now runs in this pivot monad:

quickSort :: Ord a⇒ PivotSelect a→ [a]→ [a]
quickSort findPivot= quickSortBy findPivot compare

quickSortBy :: PivotSelect a→ (a→ a→ Ordering)→ [a]→ [a]
quickSortBy findPivot cmp xs= evalState (qs xs) findPivot

where qs [] = return []

qs xs = do p← getPivot xs

let (ls, ms, rs) = partitionBy cmp p xs

sls ← qs ls

srs← qs rs

return (sls++ms++ srs)

Now, partition is straightforward to implement again, so I present it without comment:

partition :: Ord a⇒ a→ [a]→ ([a], [a], [a])
partition= partitionBy compare

3

partitionBy :: (a→ a→ Ordering)→ a→ [a]→ ([a], [a], [a])
partitionBy cmp p= part

where part [] = ([], [], [])

part (x : xs) | cmp x p≡ LT = (x : ls, ms, rs)

| cmp x p≡ EQ= (ls, x : ms, rs)

| otherwise = (ls, ms, x : rs)

where (ls, ms, rs) = part xs

As already said, the different implementations of quickSort differ mainly in how they choose the pivot.

The simplest strategy is to simply choose the first input element as pivot:

simpleQuickSort :: Ord a⇒ [a]→ [a]
simpleQuickSort= simpleQuickSortBy compare

simpleQuickSortBy :: (a→ a→ Ordering)→ [a]→ [a]
simpleQuickSortBy = quickSortBy pickFirst

pickFirst :: PivotSelect a

pickFirst= PS (return ◦ head)

This is extremely simple and works very well if the input is a uniformly random permutation: the

expected running time is O(n lg n) in this case because the pivot is very likely to split the input roughly

in half most of the time. An almost sorted input, on the other hand, forces simpleQuickSort to take

quadratic time. We can guarantee that the pivot splits the input in half by choosing the pivot to be the

median of the input:

worstCaseQuickSort :: Ord a⇒ [a]→ [a]
worstCaseQuickSort= worstCaseQuickSortBy compare

worstCaseQuickSortBy :: (a→ a→ Ordering)→ [a]→ [a]
worstCaseQuickSortBy cmp= quickSortBy (pickMedianBy cmp) cmp

pickMedianBy :: (a→ a→ Ordering)→ PivotSelect a

pickMedianBy cmp= PS $λxs→ return (worstCaseSelectBy cmp (|xs| div 2) xs)

worstCaseSelect k xs selects the kth smallest element in xs using linear-time selection and is discussed

below. This guarantees that the running time is in O(n lg n), but worstCaseSelect is not a cheap operation,

so this is more of an academic exercise. What we would like is a simple algorithm that exhibits the

same expected running time as simpleQuickSort but is independent of the input permutation. This

would guarantee that an adversary cannot force the algorithm to take quadratic time by providing a

particularly bad input permutation. The first strategy is to guarantee that the input is a uniform random

permutation, at which point we can safely use simpleQuickSort:

randomPermutationQuickSort :: (Ord a, RandomGen g)⇒ g→ [a]→ [a]
randomPermutationQuickSort= randomPermutationQuickSortBy compare

4

randomPermutationQuickSortBy :: RandomGen g⇒ (a→ a→ Ordering)→ g→ [a]→ [a]
randomPermutationQuickSortBy cmp g= simpleQuickSortBy cmp ◦ randomPermutation g

randomPermutation is a linear-time function that uses a random number generator g, which must be

provided as part of the input.1 randomPermutation is provided by Algos.Random.Permuting.

There is a second strategy to avoid the worst case using randomness. To come up with it, we need to

look a little closer at why simpleQuickSort does well on random inputs. The reason is that every element

is equally likely to be the first element in the input and thus is equally likely to be chosen as the pivot if the

input is a random permutation. This suggests choose the pivot uniformly at random from the input list

as an alternate strategy for randomized Quicksort. This is the strategy used by randomPivotQuickSort:

randomPivotQuickSort :: (Ord a, RandomGen g)⇒ g→ [a]→ [a]
randomPivotQuickSort= randomPivotQuickSortBy compare

randomPivotQuickSortBy :: RandomGen g⇒ (a→ a→ Ordering)→ g→ [a]→ [a]
randomPivotQuickSortBy cmp g= quickSortBy (pickRandom g) cmp

pickRandom :: RandomGen g⇒ g→ PivotSelect a

pickRandom g= PS $λxs→ do let (i, g′) = randomR (0, |xs| − 1) g

put (pickRandom g′)

return (xs !! i)

5 Selection

As discussed in class, we can implement linear-time selection using a minor adaptation of quickSort.

Again, we have a choice in how we choose the pivot, so we obtain:

select :: Ord a⇒ PivotSelect a→ Int→ [a]→ a

select findPivot= selectBy findPivot compare

1Getting a hold of a good random number generator in Haskell is is notoriously hard; since it’s inherently impure, we can
really only do this in the IO monad.

5

selectBy :: PivotSelect a→ (a→ a→ Ordering)→ Int→ [a]→ a

selectBy findPivot cmp k xs= evalState (sel k xs) findPivot

where sel k xs= do p← getPivot xs

let (ls, ms, rs) = partitionBy cmp p xs

nls = |ls|
nms = |ms|

if k< nls

then sel k ls

else if k< nls+ nms

then return (head ms)

else sel (k− nls− nms) rs

The simple deterministic and the two randomized versions of select are analogous to their counterpart

variants of quickSort:

simpleSelect :: Ord a⇒ Int→ [a]→ a

simpleSelect= simpleSelectBy compare

simpleSelectBy :: (a→ a→ Ordering)→ Int→ [a]→ a

simpleSelectBy = selectBy pickFirst

randomPermutationSelect :: (Ord a, RandomGen g)⇒ g→ Int→ [a]→ a

randomPermutationSelect= randomPermutationSelectBy compare

randomPermutationSelectBy :: RandomGen g⇒ (a→ a→ Ordering)→ g→ Int→ [a]→ a

randomPermutationSelectBy cmp g k= simpleSelectBy cmp k ◦ randomPermutation g

randomPivotSelect :: (Ord a, RandomGen g)⇒ g→ Int→ [a]→ a

randomPivotSelect= randomPivotSelectBy compare

randomPivotSelectBy :: RandomGen g⇒ (a→ a→ Ordering)→ g→ Int→ [a]→ a

randomPivotSelectBy cmp g= selectBy (pickRandom g) cmp

worstCaseQuickSort punted by calling worstCaseSelect to find the median of the input elements. Clearly,

worstCaseSelect cannot do this because finding the median is just selection. So we employ the strategy

from class: Instead of using the median as the pivot, we find the median of a 5-sample of the input,

which is guaranteed to split the input 30-70 or better:

worstCaseSelect :: Ord a⇒ Int→ [a]→ a

worstCaseSelect= worstCaseSelectBy compare

worstCaseSelectBy :: (a→ a→ Ordering)→ Int→ [a]→ a

worstCaseSelectBy cmp= selectBy (pickApproxMedianBy cmp) cmp

6

pickApproxMedianBy :: (a→ a→ Ordering)→ PivotSelect a

pickApproxMedianBy cmp= PS $λxs→ return (go xs)

where go [x] = x

go xs = worstCaseSelectBy cmp (|ys| div 2) ys

where ys= fiveSampleBy cmp xs

fiveSampleBy :: (a→ a→ Ordering)→ [a]→ [a]
fiveSampleBy cmp= unfoldr pickSample

where pickSample [] = Nothing

pickSample xs = Just (m, zs)

where (ys, zs) = splitAt 5 xs

m = sortSelectBy cmp (|ys| div 2) ys

The sortSelect function just uses the naïve strategy of sorting the input using insertionSort and then

picking the kth element:

sortSelectBy :: (a→ a→ Ordering)→ Int→ [a]→ a

sortSelectBy cmp k xs= insertionSortBy cmp xs !! k

6 Sorting in Expected Linear Time

If the input elements are real numbers sampled uniformly at random from a certain range, then we can

sort them in expected linear time:

bucketSort :: Real t⇒ [t]→ [t]
bucketSort= bucketSortBy realToFrac

bucketSortBy :: (a→ Double)→ [a]→ [a]
bucketSortBy key xs = concatMap (insertionSortBy $ comparing key) (elems a)

where n = |xs|
keys =map key xs

minKey =minimum keys

maxKey =maximum keys

scale = fromIntegral n / (maxKey−minKey)

buckets =map (λk→ b(k−minKey) · scalec) keys

bucketvals= zip buckets xs

a = fmap reverse $ accumArray (flip (:)) [] (0, n) bucketvals

We determine the range of key values and divide it into n equal intervals. Then we map every element

in the input to a bucket corresponding to one of these intervals and collect the elements in each bucket.

We sort each bucket and concatenate the results. We proved in class that this takes expected linear time

if the input keys are uniformly distributed.

7

7 Sorting Integers in Linear Time

The final two sorting algorithms here are ones we do not discuss in class, but they are tremendously

useful. The first one, countingSort, sorts n integers between 1 and n in O(n) time.2 The second one,

radixSort is generally described in terms of boosting the range of integers that can be sorted in linear time

to polynomial. Specifically, integers between 1 and nk can be sorted in O(kn) time using radixSort. We

will be mostly interested in using radixSort to sort edges over n vertices efficiently. Thus, we generalize

it a bit so it can sort any kind of items by any sequence of k predicates that are integers between 1

and n. If this is confusing right now, don’t worry, we’ll get to it. First we’ll look at countingSort. Similar

to radixSort, we’ll make this one a bit more general, too:

countingSortBy :: (a→ Int)→ [a]→ [a]

countingSortBy key xs produces a list xs′ containing the same elements as xs but sorted by their keys.

That is, if x predeces y in xs′, then key x ¶ key y. If minKey = minimum (map key xs) and maxKey =

maximum (map key xs), then countingSortBy takes O(1+xs+maxKey−minKey) time. Thus, the following

version of countingSortBy specialized to integers takes O(n) time to sort n integers between 1 and n.

countingSort :: Integral t⇒ [t]→ [t]
countingSort= countingSortBy fromIntegral

It remains to implement countingSortBy:

countingSortBy [] = []

countingSortBy key xs = concat $ elems a

where keys =map key xs

keyvals = zip keys xs

minKey =minimum keys

maxKey =maximum keys

a = fmap reverse $ accumArray (flip (:)) [] (minKey, maxKey) keyvals

So we first create a list of key-value pairs keyvals from the input list xs and determine the minimum

and maximum keys, minKey and maxKey. Then we create an array of lists, each initially empty, and

scan keyvals to prepend every value in this list to the list corresponding to its key. If all we cared

about is obtaining the input elements in sorted order, we could now concatenate the lists of elements

in increasing order of keys. That’s in fact what we do using concat $ elems a, but before doing this,

we reverse every list the array using fmap reverse. We do this because we want countingSortBy to be

stable, that is, if key x ≡ key y and x precedes y in the input, then x should precede y in the output;

elements should change their order only if absolutely necessary to ensure the output is sorted. Without

fmap reverse, the output would be “anti-stable” (not a real term): if key x ≡ key y and x precedes y in

the input, then y is prepended to the (key x)th list in a after x and thus would precede x in the output.

2The functional implementation we use here does not pull some of the fancy tricks the imperative version in the textbook
applies, simply because it doesn’t have to.

8

Why do we care about stability? It’s a useful property to have for a sorting algorithm and it is

absolutely crucial for the correctness of our next algorithm, radixSort.

radixSortBy :: [a→ Int]→ [a]→ [a]

Now we are given not one key function but a whole sequence of them. If the functions we are given are

[key1, key2, . . . , keyk], then we want the output to be sorted primarily by keyk, secondarily by keyk−1,

and so on down to key1. Using this, we can easily sort n integers between 1 and nk:

radixSort :: Integral t⇒ [t]→ [t]
radixSort [] = []

radixSort [x] = [x]

radixSort xs = radixSortBy digits xs

where n = |xs|
maxx =maximum xs

k = 1+ ilog n (fromIntegral maxx)

digits =map digit (take k divs)

divs = 1 : map (·n) divs

digit dv x = (fromIntegral x div dv)mod n

ilog base x = go 0 x

where go lg y | y< base = lg

| otherwise= go (lg+ 1) (y div n)

radixSort itself doesn’t do anything interesting beyond figuring out the key functions for extracting the

digits, to be passed to radixSortBy. So we first find the number n of elements in xs and the maximum

element maxx in xs. The number of digits by which to sort is the number of digits needed to represent

maxx in base-n. That’s what 1 + ilog n maxx computes. divs is the sequence of divisors of the digits

from lowest to highest, [1, n, n2, n3, . . .]. Finally, we construct a sequence of key functions, digits, by

mapping digit over the first k values in this list of divisors. For a given divisor dv, digit dv x simply

computes x’s digit value by dividing by dv and taking the remainder modulo n of the result. By passing

these digit functions to radixSortBy, we ensure the numbers are sorted primarily by their highest digit,

secondarily by their second-highest digit, and so on, which is obviously the correct sorting order. Now

on to implementing radixSortBy:

radixSortBy keys xs= foldl′ (flip countingSortBy) xs keys

Woah, that’s it? We repeatedly sort the input, first by the first key in the list, then by the second, then

by the third, and so on. Due to the stability of countingSortBy, this does the right thing: The final sort

arranges the elements so that the elements are sorted by their final key. All elements with the same final

key are kept in the same order as in the input to the final sort. By induction, the input to the final sort

was sorted by the first k−1 keys. Thus, the final output is sorted primarily by the final key, secondarily

by the second-last key, and so on.

9

