
Part 9

—

A Queue

CSCI 3110 Code

Summer 2015

1 Introduction

This code example is strictly optional (but rather informative) to read. I wanted to provide a purely

functional queue that guarantees constant amortized time per operation no matter how we use the

queue. This leads us into an area of algorithm design we did not touch on in class: amortized analysis

of lazy, persistent data structures. The techniques required for such an analysis are really cool but

beyond the scope of 3110. Most of what I discuss here, including the queue data structure itself, is

taken directly from or based on Chris Okasaki’s PhD thesis.

“Normally” (that is, when we want an imperative, ephemeral queue) we’d implement a queue as an

array, a doubly-linked list or a singly-linked list with a tail pointer. None of these can be implemented

purely functionally, at least not efficiently. The problem is that, since the data structures we create are

immutable, every operation creates an entirely new data structure (which may share a significant portion

of its representation with the data structure it was created from). Thus, there’s nothing that prevents us

from applying two or more operations to the same version of the data structure. In an imperative world,

we call this a persistent data structure. In such a data structure, every update operation produces a new

version and every operation is allowed to operate on any previous version of the data structure. This is

in contrast to standard imperative data structures, whose operations usually update the data structures

destructively: an update changes the representation of the data structure in place to produce the new

version; nothing but the new version is accessible from this point on. This is known as an ephemeral

data structure.

Okasaki models the manipulation of persistent data structures using logical futures and pasts. An

operation o is in the logical future of another operation o′ (and o′ is in the logical past of o) if o’s input

depends on the output of o′. We also often say that o is in the logical future of any data structure

produced by o′.

Since logical futures and pasts define a partial order on all the operations carried out by an algorithm,

it should not come as a surprise that analyzing the total cost of a functional computation becomes non-

trivial. Throw Haskell’s lazy evaluation into the mix, and you have a real challenge on your hands. As

Okasaki argues, it’s impossible to implement many functional data structures even with amortized costs

of their operations without laziness. If we want worst-case bounds (something we won’t explore here),

then it’s interesting to observe that a careful combination of strict and lazy evaluation is needed in many

cases. Neither by itself can guarantee efficiency in the worst case.

2 An Unsuccessful Attempt at Implementing a Queue

The first attempt at implementing a queue functionally is as a pair of lists:

data Queue t= Queue {f , b :: [t]}

Then we would implement enqueue and dequeue as follows:

enqueue :: Queue t→ t→ Queue t

enqueue q x = q {b= x : b q}

dequeue :: Queue t→ Queue t

dequeue (Queue [] b) = dequeue (Queue (reverse b) [])

dequeue q = q {f = tail (f q)}

It is not hard to prove that, if every operation in the algorithm has a single logical future, then the

amortized cost per operation is constant. Multiple logical futures make this a poor implementation,

however. For now, let’s assume everything we do is evaluated strictly. Then consider a queue q produced

using a sequence n enqueue operations: q= foldl enqueue emptyQueue xs, where xs contains n elements.

This sequence of enqueue operations is easily seen to take O(n) time, O(1) per operation. Now let’s

follow this up with a dequeue q operations. No problem yet: We reverse the list b in O(n) time and make

the resulting list f . Since we have performed n+1 operations so far and their total cost is O(n), we still

have constant amortized cost per operation. But what if we performed n dequeue q operations. Each

such operation would reverse b from scratch, at a cost of Θ(n). The total cost would therefore be Θ(n2),

but we have only 2n operations to pay for this cost. The amortized cost is no longer constant.

To see whether laziness helps (it doesn’t with the queue implementation above), we need to dive a

little deeper into how it’s implemented. As already said, pretty much every operation creates a thunk, a

piece of code that computes the result of the operation when it’s needed, if it’s needed. Once computed,

it caches the result so it’s not computed from scratch again. To make things concrete, you can think of

a thunk as a record in memory consisting of a reference to a piece of code to compute the value of the

thunk and a pointer to the result of this computation, initially null. When asking a thunk for its value,

called “forcing the thunk”, we first check its result pointer. If its not null, we simply return the result it

points to. This takes constant time. If the pointer is null, we run the code referenced by the thunk and

then update the pointer so it points to the result of the computation. Thus, next time we force the thunk,

the pointer isn’t null anymore and we simply return the result just computed at constant cost. Note that

what I’ve just described is strictly imperative because we modify the result pointer of the thunk in place.

2

That shouldn’t be surprising; we’re talking about the implementation details of lazy evaluation here,

and ultimately our computer only knows how to do imperative things.

Since accessing any value takes constant time and accessing a cached value through a thunk only

requires us to reference one additional pointer, the cost of accessing the value of a thunk once it has

been computed is only a (non-trivial) constant factor higher than accessing the value directly. Thus, we

will think about evaluating a thunk as actually replacing the thunk with its value. Thus, we don’t have

to talk about thunks that have been forced already and thunks that haven’t been forced yet. Instead,

we can talk about values and thunks, which, because they still exist, haven’t been forced yet.

One extra complication we may have to deal with is that some structures may be computed incre-

mentally: they are defined by a thunk. When forcing the thunk, some part of the structure is created

and includes references to more thunks representing the rest of the structure and to be evaluated when

necessary. As an example, consider the list [1 . . 10]. Initially, that’s just a thunk. When we force this

thunk, we create a pair (commonly called a cons-cell) consisting of the head of the list, 1, and a thunk

representing the tail of the list, [2 . . 10]. This thunk, when forced, and only then, gets replaced with a

cons-cell consisting of 2 and a thunk for the list [3 . . 10], and so on. This makes figuring out the cost of

lazy evaluation rather tricky. A first simple attempt at getting a handle on this is to pretend evaluation

is strict or alternatively all thunks are forced immediately after they are created until no thunks remain.

The resulting analysis provides a valid upper bound on the cost of a sequence of operations: if the result

of a thunk produced by some operation o is subsequently needed by an operation o′, it has no impact

on the total cost of the sequence of operations whether we consider the cost of evaluating the thunk

to be part of o’s cost (strict evaluation) or of the cost of o′ (lazy evaluation). If the value of a thunk

is not needed at all, then all we do is overestimate the cost of the sequence of operations because we

do charge o for the cost of this thunk. As we will see, there are situations where this overestimation

becomes a problem for our amortized analysis because, well, we overestimate the cost, by more than a

constant factor. Whenever the estimate is good enough, though, it helps simplify things substantially to

assume strictness.

Whenever pretending evaluation is strict does not produce good enough upper bounds, we need to

more carefully reason about when particular thunks are forced. To this end, we still consider the final

data structure produced by forcing the thunk computing this data structure and recursively forcing all

thunks this produces until no more thunks remain. We can model this recursive forcing of thunks as

a graph structure: the children of a thunk are all parts of the data structure created by the thunk, as

well as further thunks created by forcing this thunk. The children of a part of the data structure are the

thunks it references. To illustrate this, two examples:

When defining the list [1 . . 10], the thunk representing the list has a single cons-cell as a child

because that’s all it creates. The children of this cons cell are 1 and a thunk representing the list [2 . . 10].

This thunk once again has a cons-cell as child with children 2 and a thunk representing the list [3 . . 10]

and so on.

If, on the other hand, we look at a tail-recursive computation, say computing factorials

3

factorial n= fac 1 n

where fac f 1= f

fac f x = fac (f ∗ x) (x− 1)

Then factorial n has a single thunk fac 1 n as a child. Its child is a thunk for fac n (n− 1), and so on,

until we finally get a thunk for fac (n!) 1 whose child is the value n!, without any further children. Now,

observe that until we ask for the value of factorial n, none of these thunks is forced. When we need the

value, all the thunks are forced. The same is true for any sequence of thunks that need to be forced to

produce some part of a data structure. As long as we don’t access this part of the data structure, we don’t

need to force any of the thunks; once we access this part of the data structure, we need to force all the

thunks. Thus, for our analysis, we can collapse all thunks that need to be forced successively to produce

a single part of the data structure into a single thunk whose cost is the total cost of the collapsed thunks.

This leads a graph structure where every part of the data structure is produced by a unique thunk. This

thunk needs to be forced the first time we try to access this part of the data structure and not before.

This clear view of when a thunk needs to be forced will be helpful later in our analysis.

For now, back to our question whether laziness helps with our queue implementation above. The

dequeue q operation now just creates a thunk for reverse b. that is forced only once we want to know

the head of reverse b. reverse is implemented as:

reverse xs= rev [] xs

where rev ys [] = ys

rev ys (x : xs) = rev (x : ys) xs

It is important to observe that reverse b collapses into a single thunk because the thunk for reverse b

needs to be forced only once we need to know the head of reverse b and at this time, we need to force

all thunks this creates recursively to produce the head of reverse b. For this reason, we call reverse a

monolithic operation.

Here now is the problem. Let’s say we implement a front operation that allows us to inspect the first

element in the queue. We’ll need such an operation eventually because otherwise the queue is useless!

front :: Queue t→Maybe t

front (Queue [] []) = Nothing

front (Queue [] b) = front (Queue (reverse b) [])

front (Queue f) = Just (head f)

We can now either consider a sequence of 2n alternating dequeue and front operations on q or even just

a sequence of n front q operations. For simplicity, we choose the latter: Each front q operation creates a

thunk for reverse b and then immediately evaluates it because we actually want to know the first element

in the list produced by reverse b. The reversal takes linear time. What’s worse, the fact that every thunk

gets forced only once doesn’t help here because each front q operation creates a new thunk for reverse b

and evaluates this thunk, so the reversal is really computed n times, for a total cost of Θ(n2) for only

2n operations.

4

3 Queue Operations with Constant Amortized Cost

To avoid this problem, we should not wait to reverse b until we absolutely cannot wait any more (that

is, until f is empty). The trick is to ensure that f is at least as long as b:

data Queue t= Queue {f , b :: [t]

, lenF, lenB :: Int

}

enqueue q x = checkQueue (q {b= x : b q, lenB= lenB q+ 1})

dequeue q= checkQueue (q {f = tail (f q), lenF = lenF q− 1})

checkQueue :: Queue t→ Queue t

checkQueue q@(Queue f b lf lb) | lf ¾ lb = q

| otherwise= Queue (f ++ reverse b) [] (lf + lb) 0

Since this guarantees that the queue is empty if f is empty, the front operation becomes a little simpler:

front :: Queue t→Maybe t

front (Queue []) = Nothing

front q = Just (head (f q))

Similar to stacks, we also implement convenience functions for building a queue from a list and vice

versa, and for creating an empty queue:

queueFromList :: [t]→ Queue t

queueFromList xs= Queue xs [] (|xs|) 0

listFromQueue :: Queue t→ [t]
listFromQueue (Queue f b) = f ++ reverse b

emptyQueue :: Queue t

emptyQueue= queueFromList []

So how does reversing b early help exactly? First the intuitive version: Let’s assume we have a queue

q0 such that |f | = |b| = n and, to keep the discussion simple, let’s assume that dequeue is actually a

combination of dequeue and front, which removes the first element from the queue and returns it. We

do this to ensure that, when a dequeue operation produces a list consisting of only reverse b, the reversal

actually needs to be forced, as it would have to be for front. dequeue q0 produces a new queue q1 whose

front is f ++ reverse b. Let us ignore the cost of (++) completely for now. Then the cost of producing q1

is constant because so far we’ve only created a thunk for reverse b. Now observe that there is no need

to evaluate reverse b until we have removed all elements from f , which takes n dequeue operations. So

consider a whole sequence q0, q1, . . . , qn+1, where qi = dequeue qi−1. Producing each queue qi with i ≤ n

takes constant time because we only have to remove the frontmost element from f . Producing qn+1 takes

5

Θ(n) time because we finally need to force the thunk for reverse b. So far that’s fine because this means

we have a cost of Θ(n) for a sequence of n+ 1 operations. Now let’s consider what happens when we

use some queue qk as the starting point for multiple logical futures, exactly the case our original queue

couldn’t handle. Specifically, let’s say we repeat the computation of qk+1, qk+2, . . . , qn+1 from qk m times.

If k > 0, then we have t = k + m(n + 1 − k) operations. Each of these operations has cost O(1)

except for the last operation in each of the m logical futures of qk. For these final operations, observe

that they all evaluate the same thunk for reverse b. Thus, the first of these operations actually spends

Θ(n) time to evaluate reverse b . . . and then the thunk is replaced with its result. All other operations

just use this cached result. Thus, the total cost of the entire sequence of operations is O(t + n) = O(t),

again constant amortized cost per operation.

If k = 0, the picture is rather different. Since we produce q1 from q0 m times, we create m distinct

thunks for reverse b. The final operation in each logical future forces one of these thunks, at a cost of

Θ(n). Thus, the total cost of all t operations is Θ(t +mn). In this case, however, we have t = m(n+1),

so again the cost is bounded by O(t).

It remains to formally prove that the amortized cost per operation is indeed O(1). We use an adap-

tation of the accounting method for amortized analysis. The accounting method of ephemeral data

structures places credits on different parts of the data structure when they are created and then uses

these credits to pay for the cost of operations. This does not work that well with persistent data struc-

tures because persistence opens the door for us to try and use the same credit more than once to pay for

the costs of operations. So, Okasaki went and turned the whole idea upside down: He places debits on

parts of the data structure. Initially, the debits on each data structure part equal the cost of the thunk

producing this part of the data structure. As long as there is no need to force a thunk, the thunk does

not incur any cost. When forcing a thunk, we do incur its cost and we need to make sure that our

analysis pays for this cost. We do this using two parts of the analysis: operations may pay debits on

arbitrary parts of the data structure. The amortized cost of an operation then the number of debits paid

by the operation plus what Okasaki calls the unshared cost of the operation—the cost of the operation

assuming it does not force any thunks it did not create itself. To ensure these amortized costs pay for

the costs of forcing thunks, we now require that our analysis ensures that no thunk is forced before the

debits on the part of the data structure it produces have been paid in full. In other words, the amortized

costs of the operations in the logical past of the operation that ends up forcing the thunk already account

for the cost of forcing the thunk, so the sum of the amortized costs of the operations in any sequence is

an upper bound on the actual cost of this sequence, including the cost of forcing all thunks that do get

forced.

For our queue, we place debits on the nodes of the front list f . Let di be the number of debits of the

ith node in f and let Di =
∑i

j=0 d j . We maintain the following debit invariant:

Di ≤min(2i, | f | − |r|).

Since this invariant ensures that D0 = 0, we can force the thunk producing the first cons cell of f , for

example using front, whenever we want.

6

To enable the analysis of queueFromList and listFromQueue, we also assign debits to the nodes of any

list not part of a queue. Or rather, we don’t. We require that every node of such a list carries 0 debits,

that is, its thunk can be evaluated at any time. Now let’s look at the costs of the different operations.

First the easy ones:

queueFromList simply installs the given list xs as the head of the queue. Since every element in the

list has zero debits, this maintains the debit invariant. The actual cost of the operation is constant. So

the amortized cost of queueFromList is also constant.

emptyQueue is just an application of queueFromList to the empty list. So this also has amortized

constant cost.

listFromQueue reverses b and then concatenates f and reverse b. Since we want the resulting list

to carry no debits, we have to pay for the costs of these two operations right away, and we have to

pay off the debits of the elements in f . The cost of f ++ reverse b is O(| f |+ |b|) = O(n), where n is the

number of elements in the queue as can be seen from the following implementation of (++) and the

implementation of reverse given earlier:

[] ++ ys = ys

xs ++ [] = xs

(x : xs) ++ ys = x : (xs++ ys)

By the debit invariant, the elements in f carry at most | f | debits, so paying them off adds at most

| f | ∈ O(n) to the amortized cost of the operation. In summary, listFromQueue takes linear time.

Now let’s look at enqueue, dequeue, and front. front is easy: Its unshared cost is constant because it

only inspects the head of f . It also does not change the structure of q, so no debits need to be paid off

to maintain the debit invariant. Thus, the amortized cost of front is constant.

For enqueue and dequeue, consider first the case when checkQueue does not reverse b. Then enqueue

increases the length of b and thus decreases | f |−|b| by one. Thus, for every node such that Di = | f |−|r|
before the enqueue operation, the debit invariant is now violated. We restore the debit invariant by

paying off the first debit in the queue, that is, we find the first node in f such that d j > 0 and decrease

d j by one. The amortized cost of the enqueue operation is thus constant: constant unshared cost plus

one debit that is paid. Similarly, a dequeue operation that does not reverse r decreases the length of f

by one and thus decreases | f | − |r| by one. It also decreases the position of every node in f . Thus, any

node in f may now exceed its bound on Di by one or two. We fix this by paying off the first two debits

in f . Again, the amortized cost is constant: constant unshared cost plus two debits paid off.

Finally, consider what happens when | f | = |b| before the enqueue or dequeue operation and thus

m = | f | = |b| − 1 after the operation. In this case, the operation first behaves as above and thus incurs

constant amortized cost, and then it replaces f with f ++ reverse b. Observe that currently there are no

debits on any nodes in f , by the debit invariant. To pay for the thunk created for reverse b, we place

a debit of |b| = m+ 1 on the head of reverse b. To pay for the thunks created for the elements in f by

f ++ reverse b, we place one debit on every node in f . This ensures that the debit invariant is satisfied for

every node in f ++ reverse b except the 0th node, which has cumulative debit D0 = 1 and the first node

7

of reverse b, which has cumulative debit Dm = 2m+ 1. We restore the invariant by paying off the first

debit in f again. Thus, also in this case, the amortized cost of enqueue and dequeue is constant because

their unshared cost is constant and each pays off one debit.

8

