
Part 4

—

Representing Rooted Forests

CSCI 3110 Code

Summer 2015

1 Introduction

Most of our graph algorithms construct and manipulate some kind of spanning tree or forest of the graph.

Thus, it makes sense to have a representation for rooted trees; forests are just lists of rooted trees. In

fact, as we will see, for some applications it is more useful to have the tree edges directed away from

the root, while for others directing the edges toward the root is easier. So we provide representations

for both cases.

2 Top-Down Trees and Forests

First we’ll consider trees and forests where edges are directed away from the root. Thinking about the

root being at the top of the tree, we call these “top-down” trees and forests. Since they’re the more

common types of trees and forests we’ll manipulate in our algorithms, we still call the data types simply

Tree and Forest, respectively. In theory, a tree is just a node together with a forest of child subtrees.

However, we often want to remember which graph edge we used to get to a given vertex, so we augment

this a bit:

newtype Forest v e= Forest {trees :: [Tree v e]}
data Tree v e= Tree v [Subtree v e]

data Subtree v e= Subtree e (Tree v e)

There are a number of standard orderings of the vertices of a tree, which are easily extended to a forest

by concatenating the vertex orderings of its constituent trees. A preordering orders the vertices of the

tree so that every node appears before all its descendants and the nodes in every subtree appear before

the nodes in its right sibling subtree:

preOrderForest :: Forest v e→ [v]
preOrderForest= concatMap preOrderTree ◦ trees

1

preOrderTree :: Tree v e→ [v]
preOrderTree t= go t []

where go (Tree v ws) vs= v : foldr go vs (map (λ(Subtree t′)→ t′) ws)

In a postordering, every vertex needs to come after all its descendants and again the nodes in every

subtree must appear before the nodes in its right sibling subtree:

postOrderForest :: Forest v e→ [v]
postOrderForest= concatMap postOrderTree ◦ trees

postOrderTree :: Tree v e→ [v]
postOrderTree t= go t []

where go (Tree v ws) vs= foldr go (v : vs) (map (λ(Subtree t′)→ t′) ws)

A level ordering finally orders the nodes of a tree so they appear level by level, left to right in each level:

levelOrderForest :: Forest v e→ [v]
levelOrderForest= concatMap levelOrderTree ◦ trees

levelOrderTree :: Tree v e→ [v]
levelOrderTree t = levelOrder′ [t]

levelOrder′ :: [Tree v e]→ [v]
levelOrder′ [] = []

levelOrder′ ts =map (λ(Tree v)→ v) ts++

levelOrder′ (concatMap (λ(Tree ws)→map (λ(Subtree t)→ t) ws) ts)

To get convenient access to these ordering functions for trees and forests, we define a type class TreeLike

here:

class TreeLike t v | t→ v where

preOrder :: t→ [v]
postOrder :: t→ [v]
levelOrder :: t→ [v]

instance TreeLike (Forest v e) v where

preOrder = preOrderForest

postOrder = postOrderForest

levelOrder= levelOrderForest

instance TreeLike (Tree v e) v where

preOrder = preOrderTree

postOrder = postOrderTree

levelOrder= levelOrderTree

2

3 Bottom-Up Trees and Forests

We represent a bottom-up tree or forest as a list of vertices. Each vertex stores its path to the root of its

tree. Thanks to sharing of most of the structure of these lists (the path for a given node is composed of

a single edge followed by the path for its parent), the internal structure of this representation is exactly

the forest and thus uses linear space.

type UpTree v e= [(v, [(e, v)])]

So, for every vertex v an UpTree stores a pair consisting of v itself and a list of edge-vertex pairs repre-

senting the alternating sequence of edges and vertices that make up the path from v to the root. What we

want to do with an UpTree depends a lot on the particular algorithm, so we provide only two primitive

functions here: conversion from a Forest or Tree to an UpTree and back.

First let’s focus on converting an UpTree to a Forest. We can’t reasonably convert it to a Tree because

there is no guarantee that the UpTree is in fact a single tree. If we are certain of this in the application

where we use this function, we can of course always convert the single-tree Forest into a Tree using

head ◦ trees. In general, we know very little about the order in which nodes are listed in the UpTree,

which makes efficient conversion to a Forest difficult. So, once again, we actually offer six functions for

UpTrees whose vertices are of Eq, Ord or Ix type or for which we know mappings from vertices to values

of such types. The costs of these functions are O(n2), O(n lg n), and O(n), respectively. We define these

functions using a more general function toForest that again relies on a dictionary to do its work:

toForestEq :: Eq v⇒ UpTree v e→ Forest v e

toForestEq= toForestIndexByEq id

toForestOrd :: Ord v⇒ UpTree v e→ Forest v e

toForestOrd= toForestIndexByOrd id

toForestIx :: Ix v⇒ UpTree v e→ Forest v e

toForestIx = toForestIndexByIx id

toForestIndexByEq :: Eq k⇒ (v→ k)→ UpTree v e→ Forest v e

toForestIndexByEq f = toForest f makeEqDict eqDictFind

toForestIndexByOrd :: Ord k⇒ (v→ k)→ UpTree v e→ Forest v e

toForestIndexByOrd f = toForest f makeOrdDict ordDictFind

toForestIndexByIx :: Ix k⇒ (v→ k)→ UpTree v e→ Forest v e

toForestIndexByIx f = toForest f makeIxDict ixDictFind

3

toForest :: (v→ k)→ ([k]→ [(k, Subtree v e)]→ d)→ (d→ k→ [Subtree v e])→
UpTree v e→ Forest v e

toForest f makeDict findDict t= Forest $ map (λ(v,)→ Tree v (findDict d (f v))) roots

where (roots, nonroots) = partition (null ◦ snd) t

d =makeDict (map (f ◦ fst) t)

(map (λ(v, (e, p): _)→ (f p, Subtree e $ Tree v $ findDict d (f v)))

nonroots)

Holy cow! Let’s take this apart slowly. First we split the vertices of the UpTree t into two lists: roots

and nonroots. Roots are those vertices without proper ancestors; non-roots are all other vertices. The

dictionary d we construct stores for every node v the list of subtrees of the tree with root v. Thus, our

final output is the list of trees containing for every root v a tree with root v and whose subtrees are

exactly the ones associated with f v in d. So how do we build this dictionary d? We apply makeDict to a

list of pairs of the form (f v, s) where s is a subtree of the tree with root v. Every non-root v with parent

p creates such a pair. Specifically, if e is the parent edge of v, then the resulting pair is (f p, s), where s

is a Subtree with root edge e and root node v. Of course we also need to store the subtrees of this tree.

We find those using findDict d (f v) exploiting laziness once again, that is, we can store elements in d

that are defined via lookups in d because these elements are evaluated only when we use them later.

Conversion from a Tree or Forest to an UpTree is much easier in comparison:

toUpTreeT :: Tree v e→ UpTree v e

toUpTreeT t= tut t []

where tut (Tree v ws) as= (v, as) : concatMap (λ(Subtree e t)→ tut t ((e, v) : as)) ws

toUpTreeF :: Forest v e→ UpTree v e

toUpTreeF = concatMap toUpTree ◦ trees

In order not to have to distinguish between Trees and Forests, we add a toUpTree function to the TreeLike

type class:

class TreeLike t v e | t→ v, t→ e where

preOrder :: t→ [v]
postOrder :: t→ [v]
levelOrder :: t→ [v]
toUpTree :: t→ UpTree v e

instance TreeLike (Forest v e) v e where

preOrder = preOrderForest

postOrder = postOrderForest

levelOrder= levelOrderForest

toUpTree = toUpTreeF

4

instance TreeLike (Tree v e) v e where

preOrder = preOrderTree

postOrder = postOrderTree

levelOrder= levelOrderTree

toUpTree = toUpTreeT

5

