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1 Introduction

Throughout the implementation of algorithms, we’ll use dictionaries to maintain sets of items and as-

sociated information. In an imperative world, we’d almost always use hash tables to implement this.

In a functional setting, we’re left with deterministic constructions: association lists, search trees, and

arrays. Which of these is most appropriate depends on the capabilities of the types we want to store in

the dictionary, captured by different type classes. We do not care about dynamic updates of dictionaries.

We want to turn a sequence of key-value pairs into a dictionary and we want to have a search function

that allows us to report all values associated with a given key (in case there is more than one key-value

pair in the input with the same key.) So every dictionary should support two operations:

makeDict :: [k]→ [(k, v)]→ d

dictFind :: d→ k→ [v]

In some of the applications where we use this type of dictionary, we also care about not disturbing the

order of elements with the same key. In particular, if the pairs with key k in the key-value list given to

makeDict are (k, v1), (k, v2), . . . , (k, vt) in this order, then dictFind d k should return the list [v1, v2, . . . , vt].

We take care to ensure this property in all our dictionary implementations here.

2 Eq Keys

If all we can do with the keys is to test them for equality, then an association list is the best possible

dictionary type we can find:

newtype EqDict k v= EqDict [(k, v)]

makeEqDict :: Eq k⇒ [k]→ [(k, v)]→ EqDict k v

makeEqDict = EqDict
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eqDictFind :: Eq k⇒ EqDict k v→ k→ [v]
eqDictFind (EqDict xs) k=map snd (filter (λ(k′, )→ k≡ k′) xs)

In this case, building the dictionary takes constant time because all we do is wrap the given list in

an EqDict. Every eqDictFind operation takes linear time because it needs to scan the entire list to find

elements whose keys match the search key.

3 Ord Keys

If we have an ordering on elements of type v, we can use a search tree structure as our dictionary. We

could use an (a, b)-tree, discussed later in class, to do this, but this would be overkill because, as agreed

above, we do not care about dynamic updates of the dictionary. Thus, we implement a very simple

binary search tree here:

data OrdDict k v = EmptyOrdDict

| OrdDict {key :: k

, vals :: [v]

, leftChild, rightChild :: OrdDict k v

}

makeOrdDict :: Ord k⇒ [k]→ [(k, v)]→ OrdDict k v

makeOrdDict [ ] = EmptyOrdDict

makeOrdDict xs =mergeDicts $

map (λxs→ OrdDict (fst $ head xs) (map snd xs) EmptyOrdDict EmptyOrdDict) $

groupBy ((≡) on fst) $

mergeSortBy (compare on fst) xs

where mergeDicts [d] = d

mergeDicts ds =mergeDicts (mergePairs ds)

mergePairs [ ] = [ ]

mergePairs [d] = [d]

mergePairs [d1, d2] = [d2 {leftChild= d1}]
mergePairs [d1, d2, d3] = [d2 {leftChild= d1, rightChild= d3}]
mergePairs (d1 : d2 : d3 : d4 : ds) = d2 {leftChild= d1, rightChild= d3} : d4 : mergePairs ds

makeOrdDict sorts the elements in the input list by their keys (using mergeSortBy) and groups them by

their keys (using groupBy). Since mergeSortBy is stable, it does not alter the order of the elements with

the same key, that is, the elements in each of the list produced by groupBy appear in the same order

as in the input list. makeOrdDict then turns each such list into a singleton dictionary. Next it merges

this sorted list of singleton dictionaries in a bottom-up fashion. It maintains the invariant that every

other entry in the current list of dictionaries is a singleton dictionary. mergeDicts then builds bigger
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dictionaries by making the predecessor and successor of such a singleton dictionary children of the

singleton dictionary. mergeSortBy takes O(n lg n) time. groupBy takes linear time, as does turning all

lists in the output of groupBy into singleton dictionaries. It is not hard to see that the input size of each

recursive call of mergeDicts is half the input size of its parent invocation, so mergeDicts takes linear time.

In total, makeOrdDict takes O(n lg n) time, and the height of tree produced by mergeDicts is dlg ne.
ordDictFind now applies standard binary tree search to find the elements in the dictionary we are

looking for:

ordDictFind :: Ord k⇒ OrdDict k v→ k→ [v]
ordDictFind d k= fd d

where fd EmptyOrdDict = []

fd (OrdDict k′ vs l r) | k≡ k′ = vs

| k< k′ = fd l

| otherwise= fd r

Since each recursive call of fd takes constant time and the height of the given dictionary is dlg ne,
ordDictFind takes O(lg n) time.

4 Ix Keys

If the keys are of an Ix type, we can use an array as our dictionary structure:

newtype IxDict k v= IxDict (Array k [v])

makeIxDict :: Ix k⇒ [k]→ [(k, v)]→ IxDict k v

makeIxDict ks xs= IxDict $ fmap reverse $ accumArray (flip (:)) [ ] (l, u) xs

where l =minimum ks

u=maximum ks

So makeIxDict produces the list ks of keys in the input and scans this list twice to find the minimum

and maximum key. This is the index range of the array we need to allocate. The array antries are then

constructed by collecting the values associated with the different keys using accumArray. In the interest

of efficiency, we prepend the value v of every key-value pair (k, v) to the list of values associated with

k so far. Thus, building this array takes constant time per list element, linear time in total, but the list

of values associated with each keys stores these values in reverse order compared to the order in which

they appear in the input. To fix this, we apply reverse to each arry element using fmap reverse, which

ensures the values in each list are once again stored in the order they occur in the input. Reversing all

these lists takes linear time in their total size, that is, linear time in the size of the input list to makeIxDict.

In total, makeIxDict thus takes linear time.

Searching for a key in the dictionary now reduces to a simple array lookup and thus takes constant

time:
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ixDictFind :: Ix k⇒ IxDict k v→ k→ [v]
ixDictFind (IxDict a) k= a ! k

4


