
Part 6

—

Depth-First Search

CSCI 3110 Code

Summer 2015

Now let’s put our graph traversal framework from Algos.Graphs.Traversal to work to compute a DFS

forest of the graph. Here’s the type signature of the function we want:

dfs :: AdjList v vl el→ Forest V E

We already have a graph traversal function. What’s missing is a vertex set data structure, which in the

case of DFS should behave like a stack.

dfs= traverse makeVertexStack

This vertex stack is of course easy to implement using the stack implementation from Algos.DS.Stack

stored in an STRef . We also need an array to keep track of explored vertices:

data VertexStack s= VertexStack (STArray s Int Bool) (STRef s (Stack (V, [(E, V)])))

To create such a vertex stack, we simply allocate a new Boolean array of size n all of whose entries

are initially False—all vertices are initially unexplored—and we create a new STRef initially storing an

empty stack:

makeVertexStack :: Int→ ST s (VertexStack s)

makeVertexStack n= VertexStack $ newArray (1, n) False * newSTRef emptyStack

Next the implementations of the two set operations:

instance VertexSet VertexStack where

add (VertexStack st) v p=modifySTRef st (flip push (v, p))

1



remove (VertexStack exp st) = readSTRef st 〉〉= rem

where rem s= case top s of

Nothing → writeSTRef st s 〉〉 return Nothing

Just p@(v, )→ do e← readArray exp (vIx v)

if e then rem (pop s)

else do writeSTRef st (pop s)

writeArray exp (vIx v) True

return (Just p)

add simply pushes the given pair (v, p) onto the stack. remove reads the stack and passes it to the helper

function rem. If the given stack is empty, we write this information back into the STRef and return

Nothing. Otherwise, we inspect the topmost pair p. If its vertex v is already explored, which we check

by reading the array exp, then p should not be returned, so we recurse on the tail of the stack using

rem (pop s). Otherwise, we store the tail as the new stack content, mark v as explored, and finally return

Just p.

2


