
Part 10

—

Connected Components

CSCI 3110 Code

Summer 2015

Now that we have the two basic graph traversal procedures, DFS and BFS, at our disposal, we can solve

various basic graph problems following the approaches discussed in class. We start with connected

components. For most of these problems, we develop multiple functions that produce the output in

different forms because we cannot be sure how the result is to be used in a particular application. All of

them will be thin wrappers around a core function. In the case of connected components, it is natural to

offer a labelling of the vertices with component IDs. This is most useful if there is no need to physically

split the input graph into its connected components and offers the fastest way to decide whether two

vertices actually belong to the same connected component. The other alternative is to physically break

up the graph:

newtype CC = CC Int deriving (Eq, Ord, Ix)

ccLabelling :: AdjList v vl el→ V→ CC

ccPartition :: AdjList v vl el→ [AdjList v vl el]

First the labelling function. Since a DFS forest contains one tree for each connected component and

the nodes of each tree are just the vertices of the corresponding connected component, computing the

connected components of a graph reduces to collecting the nodes of each tree:

ccLabelling g= componentLabelling (gNumVertices (adjGraph g)) CC (dfs g)

componentLabelling :: Int→ (Int→ a)→ Forest V E→ V→ a

componentLabelling n l f v= array (1, n) cls ! (vIx v)

where cvs=map (map vIx) (componentVertices f)

cls = concat $ zipWith zip cvs (map (repeat ◦ l) [1 . .])

componentVertices :: Forest V E→ [[V ]]
componentVertices=map preOrder ◦ trees

We use preOrder to collect the vertices of each tree. componentVertices applies this function to all trees

of the given forest and returns the resulting list of lists. Now ccLabelling g applies the helper function

1



componentLabelling to a DFS forest of g. componentLabelling collects the component vertices of the

given forest and extracts their indices because that’s what we’ll have to use as array indices. It then

creates a list of lists of component labels of the form [[CC 1, CC 1 . .], [CC 2, CC 2 . .] . .]. This is what

map (repeat◦ l) [1 . .] does, given that we pass CC as argument l to componentVertices. Then it annotates

each vertex with its component label using zipWith zip cvs (map (repeat ◦ l) [1 . .]) and flattens the list

using concat. What we have now is a list of pairs of vertex IDs annotated with component IDs. We now

build an array mapping vertex IDs to component IDs. The function componenLabelling n l vs is now

implemented as looking up vertex indices in this array. The reason we factored componentLabelling into

a separate function is that we will reuse this function using a different forest partition sccForest to obtain

a labelling function sccLabelling labelling the strongly connected components of g. We’ll apply the same

factoring to ccPartition.

Partitioning the graph into adjacency lists of its subgraphs is impossible using the representation

we’ve chosen here without building the new adjacency lists completely from scratch. This takes linear

time but is non-trivial, one of the reasons we offer a labelling function for situations where this is

enough and thus allows us to avoid the cost of building new adjacency lists. Since we build adjacency

lists from scratch anyway, we can do this rather elegantly by first collecting a Graph representation of

each connected component and then converting each graph back to an AdjList. One complication is that

we want deconstruction/construction to take linear time no matter the type of the vertex labels. So

we have to build intermediate adjacency lists first where we know the graph labels are of an Ix type;

at the end, we convert this back to the original labels. This in itself is not sufficient; if we want the

conversion of each graph to an adjacency list representation to take linear time in the size of the graph,

we need to ensure the vertex IDs aren’t only taken from an Ix type but form a contiguous range. The

array we allocate to do the conversion has size linear in the range from the smallest vertex ID to the

largest vertex ID. So here’s the strategy we use: First we set up an array that maps every vertex index to

a new vertex index such that the vertices in each connected component have contiguous labels. Then

we collect the vertices and edges of each connected component, temporarily labelling every vertex with

a pair consisting of its ID and its label and using the index in the connected component as vertex ID.

Finally, we convert back to every vertex having its ID as ID and its label as its only label:

ccPartition g= componentPartition g (dfs g)

2



componentPartition :: AdjList v vl el→ Forest V E→ [AdjList v vl el]

componentPartition g f = adjs

where cvs= componentVertices f

ces =map (filter sameComponent ◦ concatMap vOutEdges) cvs

sameComponent e= cIx (eTail e)≡ cIx (eHead e)

n= gNumVertices (adjGraph g)

vIxs′ = concat $ zipWith (λvs i→ zipWith (λv j→ (vIx v, (j, i))) vs [1 . .]) cvs [1 . .]

vIxA′ = array (1, n) vIxs′

vIx′ v= fst (vIxA′ ! vIx v)

cIx v= snd (vIxA′ ! vIx v)

cvsi=map (map mkVertex) cvs

cesi =map (map mkEdge) ces

gs= zipWith Graph cvsi cesi

adjsi=map makeDirAdjListIx gs

adjs =map dropVertexIndices adjsi

mkVertex v= Vertex (vIx′ v) (adjVertexId g v, adjVertexLabel g v)

mkEdge e = Edge (vIx′ (eTail e)) (vIx′ (eHead e)) (adjEdgeLabel g e)

dropVertexIndices g′ = g′ {adjVertexId =makeVAttr ids

, adjVertexLabel=makeVAttr labs

}
where ids =map (λv→ (vIx v, fst $ adjVertexLabel g′ v)) (gVertices (adjGraph g′))

labs=map (λv→ (vIx v, snd $ adjVertexLabel g′ v)) (gVertices (adjGraph g′))

3


