
Assignment 9

Sample Solutions

CSCI 3110 — Fall 2018

(a) Let us denote the sequence of dominoes by S = 〈d1, d2, . . . , dn〉; each domino di is a pair [x i : yi]. First, let
us try to come up with a recurrence for the length of a longest domino subsequence (LDS) of S. Let `(i)
denote the longest domino subsequence of S that ends in domino di , and let L be the length of the LDS of S.
Then, obviously, since the LDS has to end in some domino, we have

L = max
1≤i≤n

`(i).

So we have to compute only the values `(1),`(2), . . . ,`(n). Let Si be the LDS of S that ends in domino di . If
y j 6= x i , for all 1≤ j < i, then Si must have length one because there is no domino that can precede di in Si .
Otherwise, the domino d j that precedes di in Si must satisfy y j = x i .

Next observe that, for the domino d j that precedes di in Si , the prefix of Si that ends in d j must be S j (or
a domino sequence ending in d j of equal length). Indeed, if this was not the case, we could construct a
longer domino subsequence than Si that ends in di: Take S j , which ends in d j , and append di . So, now the
structure of Si is clear: It consists of a longest domino sequence S j that ends in the predecessor d j of di in Si ,
followed by di .

How do we choose the predecessor? Well, out of all dominoes d j with y j = x i , we obviously want to choose
the one whose sequence S j has maximal length. This gives the following recurrence:

`(i) = 1+max({0} ∪ {`(j) | 1≤ j < i and y j = x i}

Based on this recurrence, we can now compute an LDS of S using the following algorithm. The algorithm
constructs two tables ` and L such that `[i] stores the length of an LDS that ends in di an L[i] stores such an
LDS with the dominoes listed back to front, represented as a singly linked list. As we did for other problems
in class, many of the sequences L[1], . . . , L[n] share most of their representation. The input of the algorithm
is the sequence S of dominoes. The x- and y-fields of the ith domino are accessed as S[i].x and S[i].y .

LDS-DP(S)

1 for i← 1 to |S|
2 do `[i]← 1
3 L[i]← 〈S[i]〉
4 for j← 1 to i − 1
5 do if S[j].y = S[i].x and `[j] + 1> `[i]
6 then `[i]← `[j] + 1
7 L[i]← 〈S[i]〉 ◦ L[j]
8 return (`, L)

Given the output of LDS-DP, the final LDS can now be found using the following wrapper:

LDS(S)

1 (`, L)← LDS-DP(S)
2 m← 1
3 for i← 2 to |S|
4 do if `[i]> `[m]
5 then m← i
6 return REVERSE(L[m])

The correctness of this solution follows from the discussion we used to derive the recurrence for `(i). The
running time is O(n2). Clearly, lines 2–5 of procedure LDS take O(n) time. Since the sequence stored in
L[m], line 6 also takes O(n) time. Thus, we only need to argue that procedure LDS-DP, invoked in line 1
of procedure LDS takes O(n2) time. Procedure LDS-DP consists of a for-loop with n iterations in lines 1–7.
Each iteration of this loop takes constant time plus up to n iterations of the loop in lines 5–7, at a constant
cost per iteration. Thus, procedure LDS-DP takes O(n2) time.

(b) Now observe that procedure LDS would take o(n2) time if we could replace the loop in lines 5–7 of procedure
LDS-DP with something that takes o(n) time. Excluding the time spent in lines 5–7 of procedure LDS-DP,
procedure LDS takes only linear time. Let us revisit the problem that lines 5–7 solve: They decide whether
there exists an index j < i such that S[j].y = S[i].x and, among all such indices, picks the one that
maximizes `[j]. Since there are only n possible values S[i].x , we can support this operation in constant
time using a simple array m of size n. At the beginning of the ith iteration of the outer loop of procedure
LDS-DP, m[y] = 0 if there is no index 1 ≤ j < i such that S[j].y = y; if there exists such a sequence,
then m[y] = j > 0 such that S[j].y = y and `[j] ≥ `[j′] for all 1 ≤ j′ < i with S[j′].y = y. Then
`[i] = 1 if m[S[i].x] = 0 and `[i] = `[m[S[i].x]] + 1 if m[S[i].x]> 0. The constructed sequence ends with
S[i].y and as another candidate for a longest LDS that ends in S[i].y. Thus, we need to check whether
`[i]> `[m[S[i].y]]; if so, we set m[S[i].y] = i. This gives the following faster version of procedure LDS-DP:

LDS-DP(S)

1 for i← 1 to |S|
2 do m[i]← 0
3 for i← 1 to |S|
4 do if m[S[i].x]> 0
5 then `[i]← `[m[S[i].x]] + 1
6 L[i]← 〈S[i]〉 ◦ L[m[S[i].x]]
7 else `[i]← 1
8 L[i]← 〈S[i]〉
9 if `[i]> `[m[S[i].y]]

10 then m[S[i].y]← i
11 return (`, L)

This new version of procedure LDS-DP has two loops in lines 1–2 and in lines 3–10. Both loops have n
iterations and perform a constant amount of work per iteration. Thus, procedure LDS-DP now takes O(n)
time, that is, the total running time of procedure LDS is O(n).

2

