
Sample Solution

Assignment 4

CSCI 3110 — Summer 2018

Analysis

Finding E1. Finding the cheapest edge incident to each vertex v ∈ G requires us to inspect all edges
incident to v, remembering the cheapest one seen so far, and finally adding the cheapest edge at the
end of the scan to E1. Given an adjacency-list representation of G, we can scan the list of edges in-
cident to each vertex v ∈ G in O(deg(v)) time. Summing this cost over all vertices gives a cost of
O(
∑

v∈G deg(v)) = O(m) for the total cost of constructing E1 (because
∑

v∈G deg(v) = 2m).
A small detail to take care of is the fact that an edge may be the cheapest edge incident to both its

endpoints (in fact, this is true for at least one edge). We need to ensure that each such edge is added
to E1 by at most one of its endpoints. There are several ways to do this:

1. The first option is to assume that our adjacency list representation has room for a constant amount
of auxiliary information to be associated with each edge (by allocating additional space for each
edge record in the edge list that can be used whichever way the user sees fit). In this case, we
store with every edge a flag that indicates whether it has been added to E1 already. We start by
scanning the edge list in O(m) time and setting this flag to false for every edge. This takes O(m)
time. Then we run the above algorithm. When a vertex v is about to add its cheapest incident
edge to E1, it first checks the edge’s flag to see whether it has already been added to E1. If so, v
does nothing; otherwise, it adds the edge to E1 and sets its flag.

2. If we cannot associate arbitrary information with the edges directly in the adjacency list, then it
is reasonable to assume that each edge has a unique ID between 0 and m−1. In this case, we can
simulate the previous strategy by creating a bit vector of length m whose bits are all 0 initially.
Initializing this vector takes O(m) time. Then, when we are about to add an edge with ID e, we
inspect the eth bit in the bit vector. If it is 0, we set it to 1 and add the edge to E1; otherwise, we
do nothing because the edge has already been added to E1.

3. If edges do not have IDs but every vertex has an ID between 0 and n − 1 (something we have
to assume for the construction of G′ anyway), then we can initially just add edges to E1 without
checking whether they have already been added to E1. This potentially adds each edge to E1
twice. We use the integer sorting algorithm mentioned in my email to sort the edges in E1 by their
endpoints in O(|E1|) = O(m) time. This stores multiple copies of the same edge consecutively, so
a single scan of this sorted edge list suffices to discard all but one copy of each edge.

Constructing G′. To construct G′, we need to first compute the connected components of H, which
takes O(n+m) = O(m) time. Here we opt for a representation of the connected components H1, . . . , Hk
that labels the vertices of G so that every vertex in Hi receives the label i − 1. Constructing the vertex

1

set of G′ then amounts to adding k vertices in O(k) = O(m) time and storing a pointer to the ith vertex
in the ith slot of a lookup array V .

Next we scan the edge set of G. For each edge (u, v) such that u and v have different component
labels, we retrieve the vertices u′ and v′ corresponding to these components from the lookup table and
add the corresponding edge (u′, v′) with orig((u′, v′)) = (u, v) to G′. This takes constant time per edge
of G, O(m) time in total, because identifying u′ and v′ requires two accesses into V and adding the edge
(u′, v′) to G′, given u′ and v′, takes constant time.

At this point, G′ may have multiple edges connecting the same endpoints u′ and v′, one per edge
in G whose endpoints belong to the connected components of H represented by u′ and v′. We need to
eliminate these duplicate edges and keep only the cheapest one among them. To do this, we use the
integer sorting algorithm to sort the edges of G′ by their endpoints in O(m) time. This stores all edges
with the same endpoint consecutively, so a single scan of this sorted edge list suffices to discard all but
the cheapest edge between every pair of endpoints. This scan also takes O(m) time.

Constructing E2. Given the edge set E′′ of an MST of G′, we only need to scan this edge list and add
orig(e) to E2 for each edge e ∈ E′′. This takes constant time per edge in E′′, O(|E′′|) = O(m) time in
total, because accessing orig(e) for each edge e ∈ E′′ amounts to dereferencing a pointer.

The number of vertices in G′. Since G is connected, every vertex of G has at least one incident edge
in G and thus chooses one of these edges to be added to E1. Thus, every vertex of H also has an incident
edge in H, which shows that every connected component of H has at least two vertices. Let H1, . . . , Hk
be the connected components of H, and let ni be the number of vertices in Hi . Since these components
are vertex-disjoint and H has the same vertex set as G, we have

∑k
i=1 ni = n. Since ni ≥ 2 for all

1≤ i ≤ k, this gives

k
∑

i=1

2≤
k
∑

i=1

ni

2k ≤ n

k ≤
n
2

,

that is, H has at most n/2 connected components. Since G′ has one vertex per connected component
of H, this shows that G′ has at most n/2 vertices.

In the analysis below, we need to apply this argument inductively, that is, if Gi is the input graph
to the ith recursive call the algorithm makes, then we need to show that Gi has at most half as many
vertices as the input Gi−1 of the previous recursive call. Since our proof that G′ has at most n/2 vertices
uses the fact that G is connected, we can apply this proof inductively only if G′ is also connected. This
is what we show next. Assume for the sake of contradiction that G′ is not connected. Then there exists
a cut (U ′, W ′) of G′ (that is, ; ⊂ U ′ ⊂ V (G′) and W ′ = V (G′) \ U ′) such that no edge in G′ has one
endpoint in U ′ and one endpoint in W ′. Each vertex v ∈ V (G′) represents a connected component of H;
let Vv be the set of vertices in this component. Then define U =

⋃

v∈U ′ Vv and W =
⋃

v∈W ′ Vv . (U , W)
is a cut of G. Since G is connected, there exists an edge (u, w) ∈ G such that u ∈ U and w ∈ W . Let
Hu be the connected component of H that contains u and let Hw be the connected component of H that
contains w. Let u′ be the vertex of G′ that represents Hu and let w′ be the vertex of G′ that represents Hw.
Then u′ ∈ U ′ and w′ ∈W ′ and, by the definition of G′, the edge (u′, w′) is an edge of G′, a contradiction.
This shows that G′ is connected.

2

The total running time. Each recursive call constructs E1 and G′ and, from an MST of G′, E2. Thus,
each recursive call takes O(m) time. Let G = G1, . . . , Gt be the input graphs of the recursive calls the
algorithm makes. Then G1 has n vertices. We also proved that, for i > 1, Gi has at most half as
many vertices as Gi−1. Thus, by induction, Gi has at most n/2i−1 vertices. Since the algorithm returns
without making any further recursive calls when the input graph has only one vertex, Gt−1 has at least
two vertices, that is 2≤ |V (Gt−1)| ≤ n/2t−2. This gives

n
2t−1

≥ 1

n≥ 2t−1

1+ lg n≥ t,

that is, the algorithm makes at most 1+ lg n recursive calls. Since the running time per recursive call is
O(m), the total running time of the algorithm is thus O(m lg n).

Correctness

As stated in the assignment question, if no two edges of G have the same weight, G has exactly one
minimum spanning tree T . We do not prove this here but use this fact.

Edges in E1 belong to T . Every edge (u, v) ∈ E1 is the cheapest edge incident to at least one of its
endpoints, say v. Thus, it is the cheapest edge that crosses the cut ({v}, V (G) \ {v}). Therefore, by the
Cut Theorem, there exists a minimum spanning tree T ′ that includes the edge (u, v). However, T is the
only MST of G, so T ′ = T and (u, v) ∈ T .

Edges in E2 belong to T . Consider an edge (u, v) ∈ E2. Then there exists an edge (u′, v′) ∈ E′′ such
that (u, v) = orig((u′, v′)) (see Figure 1). As illustrated in the figure, the removal of this edge splits the
MST T ′ of G′ computed by the recursive call on G′ into two subtrees T ′1 and T ′2 such that u′ ∈ T ′1 and
v′ ∈ T ′2. Let (U , W) be the cut of G such that v ∈ U if and only if v belongs to a connected component of
H whose corresponding vertex belongs to T ′1; otherwise, v ∈W . Again, this cut is illustrated in Figure 1.
We prove that (u, v) is the cheapest edge that crosses this cut. This implies once again that there exists
an MST of G that contains (u, v) and, since T is the only MST of G, that (u, v) ∈ T .

So assume there exists a cheaper edge (x , y) that crosses the cut (U , W). Let Hx and H y be the
components of H that contain x and y , respectively, and let x ′ and y ′ be the vertices of G′ that represent
these components. Again, see Figure 1 for an illustration. Then w.l.o.g. x ′ ∈ T ′1 and y ′ ∈ T ′2. Moreover,
since x ∈ Hx and y ∈ H y , we have w((x ′, y ′)) ≤ w((x , y)) < w((u, v)) = w((u′, v′)). Thus, by adding
the edge (x ′, y ′) to T ′ and removing the edge (u′, v′) from the resulting cycle, we obtain a spanning
tree T ′′ of G′ with w(T ′′) = w(T ′) + w((x ′, y ′))− w((u′, v′)) < w(T ′), a contradiction because T ′ is an
MST of G′. This finishes the proof.

E1 and E2 are disjoint and have total size n − 1. To show that E1 ∩ E2 = ;, observe that, by the
definition of H, every edge in E1 has both its endpoints in the same component of H and, by the defi-
nition of E2, every edge in E2 has its endpoints in different components of H. Since no edge of G can
simultaneously satisfy both conditions, this shows that every edge of G belongs to at most one of the
two sets E1 and E2, that is, E1 ∩ E2 = ;.

To bound the size of E1 ∪ E2, we first need to show that H contains no cycles. Assume that H does
contain some cycle C . Then let e = (u, v) be the heaviest edge in C and let eu and ev be the other two

3

WU
x y

u v

Hu Hv

Hx
H y

(a) The cut (U , W) in G

u′ v′

x ′ y ′
T ′2T ′1

(b) The partition of T ′ into T ′1 and T ′2

Figure 1: Illustration of the proof that every edge in E2 belongs to T .

edges in C incident to u and v, respectively (see Figure 2). Since w(e) ≥ w(eu), w(e) ≥ w(ev), and no
two edges of G have the same weight, we have w(e) > w(eu) and w(e) > w(ev). Thus, both u and v
have a cheaper incident edge than e, that is, e /∈ E1, a contradiction.

u v
eu

e
ev

C

Figure 2: Illustation of the proof that H has no cycle.

Now let m1 = |E1|. Since H contains no cycles, this implies that H has n−m1 connected components,
that is, G′ has n−m1 vertices. The MST T ′ of G′ thus has n−m1 − 1 edges. For each edge of T ′, we
add one edge to E2. Moreover, for two edges e1 = (u, v) ∈ T ′ and e2 = (x , y) ∈ T ′ with e1 6= e2, we
cannot have u= x and v = y (because then they would be the same edge). This implies that orig(e1) and
orig(e2) cannot have their endpoints in the same connected components of H, that is, orig(e1) 6= orig(e2).
Therefore, |E2|= n−m1−1. This shows that |E1 ∪ E2|= |E1|+ |E2|= m1+ n−m1−1= n−1 (because
E1 ∩ E2 = ;).

(V, E1∪E2) is an MST of G. We have shown that every edge in E1∪ E2 belongs to the MST T of G and
that |E1∪ E2|= n−1. Since T has n−1 edges, this implies that E1∪ E2 is exactly the edge set of T , that
is, the tree (V, E1 ∪ E2) computed by the algorithm is T .

A final note. This algorithm is called Borůvka’s algorithm.

4

