
Assignment 3

Sample Solutions

CSCI 3110 — Summer 2018

1 The Algorithm

We represent every person Pi by two vertices bi and di representing their times of
birth and death, respectively. Since it is better for Pi to be born before he or she
dies, we also require that bi < di; we represent this requirement by a directed edge
from bi to di .

The two types of constraints in the question can be represented using additional
edges as follows:

• If Pi died before Pj was born, we must have di < b j; we represent this by
adding an edge from di to b j to the graph.

• If the life spans of Pi and Pj overlapped, it must be true that Pi was born before
Pj died and vice versa. We represent this by adding two directed edges to G,
one from bi to d j and one from b j to di .

The question we are now asking is whether there is some way to arrange the
events of birth and death represented by the vertices in the graph in some order so
that all the constraints represented by the edges are satisfied. But this is simply the
problem of topological ordering, which we can solve in time linear in the size of the
graph.

If the algorithm succeeds in finding a topological ordering, we can now inspect
the nodes in topological order and assign increasing dates to them, so all constraints
in the input are satisfied by these dates.

If the algorithm fails to find a topological ordering, we need to find a directed
cycle that shows that the facts are not internally consistent. The DFS-based topo-
logical sorting algorithm is easily augmented to report such a cycle: The algorithm
computes a postorder numbering of the vertices and arranges them in reverse pos-
torder. If there exists an edge (u, v) such that u < v in postorder (that is, u comes
after v in the ordering the algorithm outputs), then observe that (u, v) cannot be a
backward cross edge, a tree edge or a forward edge because all these edges satisfy
u > v, as discussed in class. Since a DFS-forest does not contain any forward cross
edges, (u, v) is thus a back edge, that is, v is an ancestor of u in the DFS forest and
the path from v to u in the forest plus the edge (u, v) form a cycle. We find this
cycle by following the path from u to the root of its tree and collecting the visited
vertices until we reach v.

1



2 Correctness

The correctness of the algorithm is fairly obvious. If we successfully compute a
topological ordering of the vertices of the graph and then assign increasing dates to
the different vertices in topologically sorted order, then

• Every person Pi is born before he or she dies (because of the edge bidi),

• If one of our facts said that Pi died before Pj was born, then our dates confirm
this because of the edge di b j , and

• If one of our facts said that the life spans of Pi and Pj overlapped, then bi < d j
and b j < di because of the edges bid j and b jdi , which implies that the dates
again confirm this fact.

Thus, the output of our algorithm is a set of dates that confirms that all the con-
straints imposed by the facts can be satisfied simultaneously, that is, the given set
of facts is internally consistent.

Now assume that there exists an assignment of dates that satisfies all the facts
we have learned. Then we claim that sorting the vertices by their associated dates,
breaking ties arbitrarily, produces a topological ordering of the graph. This is true
because:

• For every person Pi , bi < di and, hence, bi precedes di in the vertex ordering,

• For every person Pi that is known to have died before Pj was born, we have
di < b j , that is, the constraint of the edge di b j is satisfied, and

• For every two persons Pi and Pj whose life spans have overlapped, we have
bi < d j and b j < di , that is, the constraints of the edges bid j and b jdi are
satisfied.

Since these are all the edges in the graph, the ordering is topological ordering. Since
the graph dose not have a topological ordering if our algorithm reports a directed
cycle in the graph, this shows that the set of facts we have learned are not internally
consistent in this case.

3 Running Time

Once we have constructed the graph, the running time of the algorithm is easily
seen to be O(n+m). Indeed, if n′ and m′ denote the number of vertices and edges
of the graph, then topological sorting and testing for cycles takes O(n′ +m′) time.
Since n′ = 2n and m′ ≤ n+ 2m, the claim follows.

For the construction of the graph, the running time is a little harder to determine
because it partially depends on the representation of the input. We assume here
that every person is represented by a unique ID (a name) and that every fact is
represented by a value that tells us the type of the fact and the names of the two
people this fact concerns. Then we need a way to translate the facts into graph

2



edges and, more importantly, recognize when two facts talk about the same person
and, thus, should be translated into edges incident to the same vertices.

The easiest way to do this translation is to scan the set of facts and maintain
a dictionary of people we already know from previous facts. For every person Pi ,
the dictionary entry also stores pointers to the corresponding graph nodes bi and
di that have been added to G.

Now, when we encounter a fact involving persons Pi and Pj , we first perform
a lookup on the dictionary to see whether we have already created vertices bi , di ,
b j , and d j and retrieve these vertices if we have. If we do not find Pi (or Pj) in the
dictionary, we add two vertices bi and di (or b j and d j) to the graph and insert the
record (Pi , bi , di) into the dictionary. Once we have vertices bi , di , b j , and d j in our
hands, adding the correct edges to G is a constant-time operation per edge.

The number of dictionary operations we perform is O(m), O(1) per fact. The
cost of this depends on the dictionary. If we use a deterministic comparison-based
dictionary such as a red-black tree, the cost per operation is O(log n) (because the
dictionary never stores more than n entries, one per person). Thus, the total cost
of constructing the graph is O(m log n). If we use a hash table to represent the
dictionary, every operation has expected constant cost, and the graph construction
has expected cost O(m) (but O(mn) cost in the worst case).

3


