
Assignment 2

Sample Solutions

CSCI 3110 — Summer 2018

Question 1

The algorithm. The following is a simple algorithm that takes O(nm) time to decide whether a given
connected graph G = (V, E) is 2-edge-connected: Compute a spanning tree T of G. For every edge
e ∈ T , test whether Ge = (V, E \ {e}) is connected. If Ge is connected for all e ∈ T , then report that G is
2-edge connected; otherwise, report that G is not 2-edge connected.

Running time. Computing a spanning tree T of G takes O(n+m) time using BFS or DFS. For n ≥ 1
and m ≥ 1, this is in O(nm). Constructing Ge from G takes constant time for each edge e ∈ T because
removing an edge from a graph in adjacency list representation takes constant time. (In order to get
ready for constructing Ge′ for the next edge e′ ∈ T , we need to restore G to its original state by adding
e to Ge again, but this also takes constant time.) To test whether Ge is connected, we can compute the
connected components of Ge and count them. This takes O(n+m) time as discussed in class. Since G
is connected, we have m ≥ n− 1, so O(n+m) = O(m). Finally, observe that every tree T on n vertices
has n− 1 edges. Thus, testing whether all graphs Ge with e ∈ T are connected takes O(nm) time. In
total, the running time of the algorithm is thus O(nm).

Correctness. If the algorithm identifies an edge e ∈ T such that Ge is not connected, then its answer is
clearly correct: it just identified an edge whose removal disconnects G. So assume that Ge is connected
for every edge e ∈ T . Since G is 2-edge-connected exactly if Ge is connected for every edge e ∈ G, we
have to show that Ge being connected for every edge e ∈ T implies that Ge is connected for every edge
e ∈ G. For every edge e ∈ T , the algorithm verifies explicitly that Ge is connected. If e /∈ T , then observe
that T itself is connected (because it is a spanning tree of G). Thus, there exists a path Puv in T between
every pair of vertices u, v ∈ V . Since T ⊆ G, this path also exists in G. Since e /∈ T and Puv ⊆ T , Puv is
also a path in Ge. Since this is true for every pair of vertices u, v ∈ V , Ge is thus connected. This finishes
the proof.

Question 2

The key observation. For every vertex v ∈ F , let α(v) be its preorder number and let β(v) be its
postorder number. The key claim is

Lemma 1 A vertex u is an ancestor of another vertex v if and only if α(u)≤ α(v) and β(u)≥ β(v).

Proof “Only if.” If u is an ancestor of v, then the definition of a preorder numbering implies that α(u)≤
α(v) and the definition of a postorder numbering implies that β(u)≥ β(v).

1



“If.” Assume u is not an ancestor of v but α(u) ≤ α(v) and β(u) ≥ β(v). Since α(u) ≤ α(v), u
cannot be a proper descendant of v because a preorder numbering numbers every vertex before all its
descendants. Thus, neither u nor v is an ancestor of the other. Let a be the lowest common ancestor of u
and v and let u′ and v′ be the children of a that are ancestors of u and v, respectively. Since α(u)≤ α(v),
the definition of a preorder numbering implies that α(u′) < α(v′) and thus u′ is to the left of v′ in the
list of a’s children. By the definition of a postorder numbering, this implies that β(u′) < β(v′) and
thus β(u) < β(v), a contradiction. This shows that α(u) ≤ α(v) and β(u) ≥ β(v) implies that u is an
ancestor of v. �

The data structure. The data structure consists of two arrays A and B where A[v] = α(v) and B[v] =
β(v).

Cost of constructing the data structure. We compute a preorder numbering α of F and store α(v)
in A[v] for each vertex v ∈ F . This takes O(n) time. Similarly, constructing B[v] takes O(n) time. Thus,
the data structure can be constructed in O(n) time and clearly uses linear space because it consists of
two arrays of size n.

The query procedure. Given a pair of vertices (u, v), we decide whether u is an ancestor of v by
accessing A[u], A[v], B[u], and B[v] and testing whether A[u] ≤ A[v] and B[u] ≥ B[v]. If so, we
answer yes; otherwise, we answer no. Since this procedure involves four memory accesses and two
comparisons, it clearly takes constant time. Its correctness follows immediately from Lemma 1.

2


