Assignment 2

Sample Solutions

CSCI 3110 — Summer 2018

Question 1

The algorithm. The following is a simple algorithm that takes O(nm) time to decide whether a given connected graph G = (V, E) is 2-edge-connected: Compute a spanning tree T of G. For every edge $e \in T$, test whether $G_e = (V, E \setminus \{e\})$ is connected. If G_e is connected for all $e \in T$, then report that G is 2-edge connected; otherwise, report that G is not 2-edge connected.

Running time. Computing a spanning tree T of G takes O(n + m) time using BFS or DFS. For $n \ge 1$ and $m \ge 1$, this is in O(nm). Constructing G_e from G takes constant time for each edge $e \in T$ because removing an edge from a graph in adjacency list representation takes constant time. (In order to get ready for constructing $G_{e'}$ for the next edge $e' \in T$, we need to restore G to its original state by adding e to G_e again, but this also takes constant time.) To test whether G_e is connected, we can compute the connected components of G_e and count them. This takes O(n + m) time as discussed in class. Since G is connected, we have $m \ge n - 1$, so O(n + m) = O(m). Finally, observe that every tree T on n vertices has n - 1 edges. Thus, testing whether all graphs G_e with $e \in T$ are connected takes O(nm) time. In total, the running time of the algorithm is thus O(nm).

Correctness. If the algorithm identifies an edge $e \in T$ such that G_e is not connected, then its answer is clearly correct: it just identified an edge whose removal disconnects G. So assume that G_e is connected for every edge $e \in T$. Since G is 2-edge-connected exactly if G_e is connected for every edge $e \in G$, we have to show that G_e being connected for every edge $e \in T$ implies that G_e is connected for every edge $e \in G$. For every edge $e \in T$, the algorithm verifies explicitly that G_e is connected. If $e \notin T$, then observe that T itself is connected (because it is a spanning tree of G). Thus, there exists a path P_{uv} in T between every pair of vertices $u, v \in V$. Since $T \subseteq G$, this path also exists in G. Since $e \notin T$ and $P_{uv} \subseteq T$, P_{uv} is also a path in G_e . Since this is true for every pair of vertices $u, v \in V$, G_e is thus connected. This finishes the proof.

Question 2

The key observation. For every vertex $v \in F$, let $\alpha(v)$ be its preorder number and let $\beta(v)$ be its postorder number. The key claim is

Lemma 1 A vertex u is an ancestor of another vertex v if and only if $\alpha(u) \leq \alpha(v)$ and $\beta(u) \geq \beta(v)$.

Proof "Only if." If *u* is an ancestor of *v*, then the definition of a preorder numbering implies that $\alpha(u) \le \alpha(v)$ and the definition of a postorder numbering implies that $\beta(u) \ge \beta(v)$.

"If." Assume *u* is not an ancestor of *v* but $\alpha(u) \leq \alpha(v)$ and $\beta(u) \geq \beta(v)$. Since $\alpha(u) \leq \alpha(v)$, *u* cannot be a proper descendant of *v* because a preorder numbering numbers every vertex before all its descendants. Thus, neither *u* nor *v* is an ancestor of the other. Let *a* be the lowest common ancestor of *u* and *v* and let *u'* and *v'* be the children of *a* that are ancestors of *u* and *v*, respectively. Since $\alpha(u) \leq \alpha(v)$, the definition of a preorder numbering implies that $\alpha(u') < \alpha(v')$ and thus *u'* is to the left of *v'* in the list of *a*'s children. By the definition of a postorder numbering, this implies that $\beta(u') < \beta(v')$ and thus $\beta(u) < \beta(v)$, a contradiction. This shows that $\alpha(u) \leq \alpha(v)$ and $\beta(u) \geq \beta(v)$ implies that *u* is an ancestor of *v*.

The data structure. The data structure consists of two arrays *A* and *B* where $A[v] = \alpha(v)$ and $B[v] = \beta(v)$.

Cost of constructing the data structure. We compute a preorder numbering α of F and store $\alpha(\nu)$ in $A[\nu]$ for each vertex $\nu \in F$. This takes O(n) time. Similarly, constructing $B[\nu]$ takes O(n) time. Thus, the data structure can be constructed in O(n) time and clearly uses linear space because it consists of two arrays of size n.

The query procedure. Given a pair of vertices (u, v), we decide whether u is an ancestor of v by accessing A[u], A[v], B[u], and B[v] and testing whether $A[u] \le A[v]$ and $B[u] \ge B[v]$. If so, we answer yes; otherwise, we answer no. Since this procedure involves four memory accesses and two comparisons, it clearly takes constant time. Its correctness follows immediately from Lemma 1.