
Sample Solution

Assignment 10

CSCI 3110 — Summer 2018

The key observation is the following: If we store the elements in S in sorted order, then the minimum
difference between two elements in S is realized by a pair of consecutive elements in this sorted order.
This suggests the following data structure:

We store the elements of S in an (a, b)-tree T . Every leaf storing an element x in S also stores the
difference δx between x and the next-larger element y in S as well as the pair px = (x , y). For the
maximum element x in S, δx =∞. Every internal node v stores a value δv that is the minimum of all
values δx associated with v’s descendant leaves and the pair pv of elements that realize this difference.
In other words, if δv = δx , then pv = px .

Closest pair query: Given that the root r of T stores the minimum difference δr between all pairs of
consecutive elements in S and the corresponding pair pr that realizes this difference, a closest pair query
amounts to reporting pr . Thus, it takes O(1) time.

Insertion: To insert a new element x into S, we insert x into S as into a standard (a, b)-tree. The two
leaves whose δ-values need to be recomputed are x and its predecessor. To do so, we need to find x ’s
predecessor y and x ’s successor z. Given these two nodes, we have py = (y, x), δy = x − y , px = (x , z)
and δx = z − x . Note that y or z may not exist. If y does not exist, then δy and py do not need to be
updated. If z does not exist, then δx =∞. To find y, we follow the path from x to the root until we
reach a node v that is not the leftmost child of its parent. We then locate v’s left sibling u and follow the
path from u to its rightmost descendant leaf, which is y . z can be found analogously.

After updating δy , δx , py , and px , the internal nodes whose δ and p-values may change are ancestors
of x and y . Thus, we traverse the paths from x and y to the root and recompute the δ and p-values of
all nodes on these paths bottom-up. Since δv and pv can be computed in constant time from the δ and
p-values of v’s descendants, this takes constant time per node.

Overall, we spend O(lg n) time to insert x , O(lg n) time to locate y and z and update δy , δx , py ,
and px , and O(lg n) time to update the δ and p-values of all ancestors of x and y. The insertion may
also trigger up to O(lg n) node splits to rebalance the tree. We argue below that each node split takes
constant time. Thus, an insertion takes O(lg n) time.

Deletion: We delete the element x from T as from a standard (a, b)-tree. Before removing the leaf
storing x , however, we locate x ’s predecessor y and successor z as we did for an insertion. If y does
not exist, the deletion of x does not affect the δ-value of any leaf. If y exists but z does not exist, then
δy =∞ and all other δ-values associated with leaves remain unchanged. If y and z both exist, then
δy = z − y and py = (y, z). Now, as after an insertion, the internal nodes whose δ and p-values may
have to be updated are ancestors of x and y . Thus, as for an insertion, we traverse the paths from x and
y to the root and recompute the δ and p-values of the nodes on these paths from the δ and p-values of
their children. Excluding the cost of rebalancing, a deletion thus takes O(lg n) time. Since a deletion

1



triggers at most one node split and up to O(lg n) node fusions, and we show below that each node split
or node fusion takes constant time, rebalancing after a deletion also takes O(lg n) time. Thus, the total
cost of a deletion is O(lg n).

Node split: After a node split, we need to compute the δ and p-values associated with the two nodes
created by the split. Since these values can easily be computed in constant time from the δ and p-values
associated with the nodes’ children, this takes constant time.

Node fusion: After a node fusion, we need to compute the δ and p-values associated with the node
created by the fusion. Since these values can easily be computed in constant time from the δ and p-values
associated with the node’s children, this takes constant time.

2


