
Banner number: Name:

Final Exam
CSCI 3110: Design and Analysis of Algorithms

August 5, 2015

Question 1.1

Question 1.2

Question 1.3
∑

Question 2.1

Question 2.2

Question 2.3
∑

Question 3.1

Question 3.2

Question 3.3
∑

Group 1 Group 2 Group 3

∑

Instructions:

• The questions are divided into three groups: Group 1 (36%), Group 2 (40%), and Group 3 (24%).
You have to answer all questions in Groups 1 and 2 and exactly two questions in Group 3. In
the above table, put check marks in the small boxes beside the two questions in Group 3 you want
me to mark. If you select less than or more than two questions, I will randomly choose which two
to mark.

• Provide your answer in the box after each question. If you absolutely need extra space, use the
backs of the pages; but try to avoid it. Keey your answers short and to the point.

• You are not allowed to use a cheat sheet.

• Make sure your answers are clear and legible. If I can’t decipher an answer or follow your
train of thought with reasonable effort, you’ll receive 0 marks for your answer.

• If you are asked to design an algorithm and you cannot design one that achieves the desired running
time, design a slower algorithm that is correct. A correct and slow algorithm earns you 50% of the
marks for the algorithm. A fast and incorrect algorithm earns 0 marks.

• When designing an algorithm, you are allowed to use algorithms and data structures you learned
in class as black boxes, without explaining how they work, as long as these algorithms and data
structures do not directly answer the question.

• Read every question carefully before answering. In particular, do not waste time on an anal-
ysis if none is asked for, and do not forget to provide one if it is required.

• Do not forget to write your banner number and name on the top of this page.

• This exam has 15 pages, including this title page. Notify me immediately if your copy has
fewer than 15 pages.

1

Question 1.1 (Worst-case and average-case running time, randomization) 9 marks

(a) Define what the worst-case running time of a deterministic algorithm is.

The worst-case running time of a deterministic algorithm is a function T of the input size n such
that T (n) is the maximum running time over all possible inputs of size n.

(b) Define what the average-case running time of a deterministic algorithm is.

The average-case running time of a deterministic algorithm is a function T of the input size n such
that T (n) is the average running time over all possible inputs of size n.

(c) The average-case running time of a deterministic algorithm and the expected running time of a
randomized algorithm are both expectations. Explain the difference between the two. What do
these two performance measures say about the real performance of an algorithm in an application
where little is known about the distribution of possible inputs?

The average-case running time of a deterministic algorithm is an expectation over the probability
distribution of all posible inputs. The expected running time of a randomized algorithm is an ex-
pectation over the random choices the algorithm makes while it runs. In an application where the
input distribution is unknown, this distribution may differ greatly from the one assumed in the
average-case analysis. Thus, the average-case running time may be a poor predictor of the actual
running time observed on most inputs in the application. The expected running time of the random-
ized algorithm is based on a known distribution of the random choices the algorithm makes and
is completely independent of the input distribution. Thus, on average, the algorithm is expected to
exhibit this running time no matter what the input distribution is.

2

Question 1.2 (Asymptotic growth of functions) 9 marks

(a) Using the definitions of O, Ω, and Θ, prove that f (n) ∈ Θ(g(n)) if and only if f (n) ∈ O(g(n)) and
f (n) ∈ Ω(g(n)).

Here are the three definitions:

f (n) ∈ Ω(g(n))⇔∃c1 > 0, n1∀n≥ n1 : f (n)≥ c1 · g(n)
f (n) ∈ O(g(n))⇔∃c2 > 0, n2∀n≥ n2 : f (n)≤ c2 · g(n)
f (n) ∈ Θ(g(n))⇔∃c1 > 0, c2 > 0, n0∀n≥ n0 : c1 · g(n)≤ f (n)≤ c2 · g(n)

Thus, if f (n) ∈ Θ(g(n)), then f (n)≤ c2 · g(n) for all n≥ n0, that is, f (n) ∈ O(g(n)). Similarly, if
f (n) ∈ Θ(g(n)), then f (n)≥ c1 · g(n) for all n≥ n0, that is, f (n) ∈ Ω(g(n)).

Finally, if f (n) ∈ Ω(g(n)) and f (n) ∈ O(g(n)), then c1 · g(n) ≤ f (n) and f (n) ≤ c2 · g(n) for all
n≥max(n1, n2), that is, f (n) ∈ Θ(g(n)).

(b) If a function f (n) is not in Ω(g(n)), does that mean that f (n) ∈ o(g(n))? If so, prove it. If not,
provide two functions f (n) and g(n) such that f (n) is neither inΩ(g(n)) nor in o(g(n)) and prove
that this is the case.

Consider the functions

f (n) =

¨

n n is even
1 n is odd

and g(n) = n.

Then f (n) /∈ o(g(n)) because for c = 1/2, there exists no n0 such that f (n) ≤ n/2 for all n ≥ n0:
for all even n, we have f (n) = g(n).

Similarly, f (n) /∈ Ω(g(n)) because for any c > 0, and n0 =
1
c +1, we have f (n) = 1< cn= c · g(n)

for all odd n≥ n0.

3

(c) Using the definition of Θ-notation, prove that n3 + n2 lg n− 10n ∈ Θ(n3).

First the upper bound:

n3 + n2 lg n− 10n≤ n3 + n2 lg n for all n≥ 0

≤ n3 + n3 for all n because lg n< n for all n

= 2n3.

Thus, n3 + n2 lg n− 10n≤ 2n3 for all n≥ 0.

Next the lower bound:

n3 + n2 lg n− 10n≥ n3 − 10n for all n≥ 1 because n2 lg n≥ 0 in this case

≥ n3 −
n3

2
for all n2/2≥ 10, which holds for n≥ 5

=
n3

2
.

Thus, n3 + n2 lg n− 10n≥ n3/2 for all n≥ 5.

Putting both inequalities together, we have n3/2≤ n3+n2 lg n−10n≤ 2n3 for all n≥max(0, 5) =
5, that is, n3 + n2 lg n− 10n ∈ Θ(n3).

4

Question 1.3 (Complexity classes) 9 marks

(a) Formally define the complexity class P.

P is the class of all formal languages that can be decided in polynomial time. Formally, a language
L belongs to P if there exists a polynomial-time algorithm A such that A(x) answers “yes” for any
string x ∈ Σ∗ if and only if x ∈ L.

(b) Formally define the complexity class NP.

NP is the class of all formal languages that can be verified in polynomial time. Formally, a language
L belongs to NP if there exist a polynomial-time algorithm A and a constant c with the property
that any string x ∈ Σ∗ belongs to L if and only if there exists a string y ∈ Σ∗ of length |y| ∈ O(|x |c)
such that A(x , y) answers “yes”.

(c) Formally define what a polynomial-time reduction is.

A polynomial-time reduction from a language L1 to a language L2 is a polynomial-time algorithm
A whose output A(x) given input x belongs to L2 if and only if x belongs to L1.

(d) Formally define what it means for a language to be NP-hard.

A language L is NP-hard if L ∈ P implies that P= NP.

(e) Prove that, if there exists a polynomial-time reduction from an NP-hard language L1 to a language
L2, then L2 is also NP-hard.

First observe that a polynomial-time reduction R from L1 to L2 implies that L1 ∈ P if L2 ∈ P: Since
R runs in time O(|x |c) on any input x ∈ Σ∗, its output has size |x |+O(|x |c) ∈ O(|x |c). Since L2 ∈ P,
we have an algorithm D that takes time O(|y|d) on any input string y and decides whether y ∈ L2.
Since R(x) ∈ L2 if and only if x ∈ L1, we can thus decide whether x ∈ L1 by applying D to R(x).
This takes O(|R(x)|d) = O(|x |cd) time. The total cost of this decision algorithm for L1 is the cost of
running R plus the cost of running D on R(x), which is O(|x |c)+O(|x |cd) ∈ O(|x |cd). Thus, L1 ∈ P.

Now, since L2 ∈ P implies that L1 ∈ P and L1 ∈ P implies that P = NP because L1 is NP-hard, then
L2 ∈ P implies that P= NP, that is, L2 is NP-hard.

5

Question 2.1 (Recurrence relations) 10 marks

Given two integers a ≥ b, their greatest common divisor gcd(a, b) is the greatest integer c that divides
both a and b. Euclid’s algorithm computes gcd(a, b):

GCD(a, b)

1 if b = 0
2 then return a
3 else return GCD(b, a mod b)

Here, a mod b denotes the remainder that is left when dividing a by b: a mod b = a− b · ba/bc.

Prove that the running time of the algorithm is O(lg b), where lg x := max(1, log2 x). (Hint: First
prove that the running time is O(lg n), where n= a+ b; show that a+ b decreases by a constant factor
from one recursive call to the next. Then argue that the first recursive call made by the top-level
invocation GCD(a, b) satisfies n< 2b.)

First observe that, for n ≤ 2, the algorithm runs in constant time because either it returns immediately
because b = 0 or we have a = b = 1, in which case the recursive call GCD(1, 0) returns immediately.
Thus, T (n)≤ c lg n for c sufficiently large.

For n> 2, observe that the invocation GCD(a, b)makes at most one recursive call GCD(b, a mod b) and
apart from that takes constant time. Thus, T (n) = T (a+ b)≤ T (b+(a mod b))+ d. Now it suffices to
prove that b + (a mod b) ≤ 2(a + b)/3. To prove this, observe that b + (a mod b) ≤ a because a ≥ b.
Thus, if b ≥ a/2, then a + b ≥ 3

2 a ≥ 3
2(b + (a mod b)). If b ≤ a/2, then observe that a mod b < b,

so b + (a mod b) < 2b while a + b ≥ 2b + b = 3b, so again a + b ≥ 3
2(b + (a mod b)). This gives

T (n)≤ T (2n/3) + d.

Using the inductive hypothesis, we now obtain T (n) ≤ c lg(2n/3) + d = c log2(2n/3) + d = c log2 n−
c log2(3/2) + d ≤ c lg n as long as we choose c ≥ d/ lg(3/2).

Now, to finish the proof we already observed above that a mod b < b. That is, for the first recursive
call made by the top-level invocation GCD(a, b), we have n = b + (a mod b) < 2b. As we have just
shown, the running time of the call GCD(b, a mod b) is thus O(lg n) = O(lg(2b)) = O(lg b). Adding
the constant cost of the top-level call to this, we obtain a total running time of O(1)+O(lg b) = O(lg b).

6

Question 2.2 (Correctness proofs) 10 marks

Here’s your standard binary search algorithm for a sorted array A:

BINARYSEARCH(A, i, j, x)

1 if j < i
2 then return no
3 m← b i+ j

2 c
4 if A[m] = x
5 then return yes
6 else if A[m]> x
7 then return BINARYSEARCH(A, i, m− 1, x)
8 else return BINARYSEARCH(A, m+ 1, j, x)

To find an element x in array A, you’d call BINARYSEARCH(A, 1, n, x). Prove that BINARYSEARCH(A, 1, n, x)
returns yes if and only if x ∈ A.

We prove by induction on s = j − i + 1 that the invocation BINARYSEARCH(A, i, j, x) returns yes if and
only if x ∈ A[i . . j]. Applying this to i = 1 and j = n proves the claim.

For s = 0, the array A[i . . j] is empty, so x /∈ A[i . . j]. Since j < i in this case, the algorithm correctly
answers no.

For s > 1, observe that i ≤ b i+ j
2 c ≤ j, that is, i ≤ m ≤ j. Thus, if A[m] = x, then x ∈ A[i . . j], that is,

the algorithm correctly answers yes in this case.

If A[m] 6= x, then either A[m]> x or A[m]< x.

If A[m]> x, then x /∈ A[m . . j] because A is sorted. Thus, x ∈ A[i . . j] if and only if x ∈ A[i . . m−1], that
is, it suffices to decide whether x ∈ A[i . . m−1]. Since m≤ j and thus m−1< j, we have m−1− i+1<
j− i+1= s, that is, by the inductive hypothesis, the recursive call BINARYSEARCH(A, i, m−1, x) correctly
answers whether x ∈ A[i . . m− 1].

If A[m] < x, an analogous argument shows that x ∈ A[i . . j] if and only if x ∈ A[m + 1 . . j] because
x /∈ A[i . . m], and that the recursive call BINARYSEARCH(A, m + 1, j, x) correctly decides whether x ∈
A[m+ 1 . . j].

Thus, in each of these three cases, the invocation BINARYSEARCH(A, i, j, x) correctly decides whether
x ∈ A[i . . j].

7

Question 2.3 (Amortized analysis) 10 marks

Recall the trusty old queue data structure. ENQUEUE(Q, x) appends element x to the end of the queue.
DEQUEUE(Q) removes the frontmost element from Q and returns it. This structure is easy to imple-
ment using a doubly-linked list or a singly-linked list with an additional pointer to the tail of the list.
Both implementations support ENQUEUE and DEQUEUE operations in constant time but neither can be
implemented purely functionally. Doubly-linked lists are impossible to implement purely functionally.
Functional singly-linked lists support only the following operations: access the first element in the list,
prepend a new element to the list, remove the first element from the list, and query whether the list
is empty. Each such operation takes constant time. A simple functional queue implementation now
consists of two singly linked lists F and B: Q = (F, B). An ENQUEUE(Q, x) operation prepends x to B.
A DEQUEUE(Q) operation tests whether F is empty. If F is not empty, it removes the first element from
F and returns it. If F is empty, it tests whether B is empty. If B is also empty, no element is returned
because the queue is empty. If B is non-empty, then the DEQUEUE operation first reverses B, which is
easily done using the following pseudo-code:

REVERSE(L)

1 R← an empty list
2 while L is not empty
3 do Remove the first element from L and prepend it to R
4 return R

It then replaces F with this reversed copy of B, sets B to be the empty list, and finally continues as
in the case when F 6= ; (which is now the case). Prove that the amortized cost per ENQUEUE and
DEQUEUE operation on this data structure is constant.

It suffices to define a potential function that ensures that the potential of the queue is never negative and
that the actual cost of an operation plus the resulting change of the potential of the queue is constant.

A potential function that satisfies this property is the size of B. Since B’s length is non-negative, so is the
potential. Now consider the two operations.

An ENQUEUE(Q, x) operation has constant cost because all it does is prepend x to B, a constant-time
operation. It also increases the length of B by one, so the potential increases by one. The amortized cost
is thus constant (constant actual cost plus constant increase in potential).

For a DEQUEUE(Q) operation, we distinguish whether or not F is empty.

If F 6= ;, then the DEQUEUE operation takes constant time to remove the front element from F and it
does not change the potential because it does not alter B. Thus, its amortized cost is constant.

If F = ;, it first reverses B and then does the same as when F 6= ;. Reversing B has cost O(|B|). Since
the reversed B becomes the new F and B becomes empty, this also decreases the potential by B, so the
amortized cost of reversing B is 0! Adding the cost of removing the frontmost element from the new F,
we once again obtain constant amortized cost.

8

Question 3.1 (Divide and conquer) 9 marks

Consider an array A storing n numbers and consider the problem of finding the kth smallest element
in A. In this question, we measure the complexity of an algorithm not in terms of the number of
operations it performs but in terms of the number of comparisons it performs; we do not care about
the number of other operations it performs, such as additions, memory accesses, etc. To be precise,
even comparisons are counted only if at least one of the compared elements is an element of A;
comparisons between array indices, for example when evaluating loop conditions, are not counted.

Finding the minimum element in A using n− 1 comparisons is easy. We also showed in class that we
can find the kth smallest element in A in O(n) time and thus using O(n) comparisons. Now let’s care
about constant factors and let’s focus on finding the second-smallest element in A. This can easily be
done using 2n− 3 comparisons. This question asks you to do better by using divide and conquer. In
particular, you are asked to find the second-smallest element in A using only n+dlg ne−2 comparisons.
Argue briefly why your algorithm does indeed return the second-smallest element and why it performs
n+ dlg ne − 2 comparisons.

Hint: Think about how to find the minimum using divide and conquer rather than using a straight scan
of the array A. By keeping track of the outcomes of the comparisons performed by this algorithm, you
should be able to narrow down the search for the second-smallest element to a very small candidate
set.

First we use a divide-and-conquer algorithm to find the minimum. The minimum element in a subarray
A[i . . j] is of course the smaller of the minimum of the subarray A[i . . k] and the minimum of the subarray
A[k+1 . . j], for any i ≤ k < j. In order to aid finding the second-smallest element, we do not only return
the minimum m but a pair (m, l), where l is the list of elements m was compared to. As we’ll argue below,
l must contain the second-smallest element and |l| ≤ dlg ne, so we simply report the minimum of l as the
final result.

MINIMUM(A, i, j)

1 if i = j
2 then return (A[i],;)
3 else k← b i+ j

2 c
4 (m1, l1)←MINIMUM(A, i, k)
5 (m2, l2)←MINIMUM(A, k+ 1, j)
6 if m1 < m2

7 then return (m1, 〈m2〉 ◦ l1)
8 else return (m2, 〈m1〉 ◦ l2)

This algorithm performs n − 1 comparisons, which we prove by induction: For n = 1, we perform
0 = n − 1 comparisons because n = j − i + 1, that is, i = j, so the algorithm returns in line 2. For
n > 1, the two recursive calls perform k − i and j − (k + 1) comparisons, respectively, by the induction
hypothesis. The current invocation performs one additional comparison in line 6. So the total number
of comparisons is k− i + (j − (k+ 1)) + 1= j − i = n− 1.

To see that the list l contains the second smallest element in A, where (m, l) =MINIMUM(A, 1, n), we use
induction again. For n = 1, l = ; and contains the second-smallest element because there is no second-
smallest element. For n > 1, let (m1, l1) and (m2, l2) be the pairs returned by the two recursive calls
and assume w.l.o.g. that m1 < m2. Let m′1 be the second-smallest element in A[i . . k]. We observe that
the second smallest element m′ in A[i . . j] must be one of m′1 or m2: If m′ ∈ A[k+ 1 . . j] and m′ 6= m2,
then m′ > m2 > m1, so it is not the second smallest element in A[i . . j], a contradiction. Similarly,

9

Extra space for Question 3.1

if m′ ∈ A[i . . k] and m′ 6= m′1, then m′ > m′1 > m1, so again it is not the second smallest element in
A[i . . j]. Since m′1 ∈ l1, by the inductive hypothesis, this implies that m′ belongs to the list 〈m2〉 ◦ l1 we
return.

Since the second-smallest element of A is in l (and is easily seen to be the smallest element in l), we
run MINIMUM again on l. As we argued above, this takes |l| − 1 comparisons. In total, the algorithm
therefore performs n− 1+ |l| − 1= n+ |l| − 2 comparisons. It thus suffices to prove that |l| ≤ dlg ne.

We again use induction on n to prove this. For n = 1, we have |l| = 0 = dlg ne because i = j in
this case, so the result of the call MINIMUM(A, i, j) is returned in line 2. For n > 1, we have |l| ≤
1+max(|l1|, |l2|), where l1 and l2 are the lists returned by the two recursive calls the invocation makes.
The input sizes of these two recursive calls are n1 = dn/2e and n2 = bn/2c. Thus, by the inductive
hypothesis, |l| ≤ 1+ dlgdn/2ee. Now let n′ be the smallest power of 2 no less than n. Then dn/2e ≤ n′/2
and dlg ne= dlg n′e. Thus, 1+ dlgdn/2ee ≤ 1+ dlg(n′/2)e= 1+ dlg n′ − 1e= dlg n′e= dlg ne.

10

Question 3.2 (Dynamic programming) 9 marks

Let S be a sequence of m integer pairs 〈(x1, y1), (x2, y2), . . . , (xm, ym)〉. Each of the values x i and yi, for
all 1 ≤ i ≤ m, is an integer between 1 and n. A domino sequence is a subsequence 〈(x i1 , yi1), (x i2 , yi2),
. . . , (x it

, yit
)〉 such that 1 ≤ i1 < i2 < · · · < it ≤ n and, for all 1 ≤ j < t, yi j

= x i j+1
. Note that it

isn’t necessarily true that i j+1 = i j + 1, that is, the elements of the domino sequence don’t have to be
consecutive in S, but they have to appear in the right order.

Example: For S = 〈(1, 3), (4,2), (3, 5), (2, 3), (3,8)〉, both 〈(1,3), (3,5)〉 and 〈(4,2), (2, 3), (3, 8)〉 are
domino sequences.

Use dynamic programming to find a longest domino sequence of S in O(n + m) time. Argue briefly
that the running time of your algorithm is indeed O(n + m) and that its output is indeed a longest
domino sequence of S.

We build two tables L[1 . . n] and P[1 . . m]. L[y] is the length of the longest domino sequence whose
last domino (x j, y j) satisfies y j = y. P[i] is the predecessor of (x i, yi) in the longest domino sequence
that has (x i, yi) as its last domino.

We build these tables iteratively. Let Li denote the state of L after the ith iteration. In this case, we
want that Li[y] is the length of the longest domino sequence in 〈(x1, y1), (x2, y2), . . . , (x i, yi)〉 whose
last domino (x j, y j) satisfies y j = y.

Then we have L0[y] = 0 for all 1≤ y ≤ n, so we initialize all entries in L to 0, which takes O(n) time.

For i > 0, observe that

Li[y] =

¨

Li−1[y] if yi 6= y
max(Li−1[y], Li−1[x i] + 1) if yi = y

.

The two cases when Li[y] = Li−1[y] correspond to the case when the longest domino sequence ending
in y is completely contained in 〈(x1, y1), (x2, y2), . . . , (x i−1, yi−1)〉. If this sequence is not contained in
〈(x1, y1), (x2, y2), . . . , (x i−1, yi−1)〉, then its last domino must be (x i, yi), so yi = y and the subsequence
obtained by removing (x i, yi) must be a longest domino sequence in 〈(x1, y1), (x2, y2), . . . , (x i−1, yi−1)〉
ending in x i.

Computing Li from Li−1 takes constant time because the only entry that needs to be changed is L[yi].
Since computing the final table L = Lm requires m such iterations and each iteration takes constant
time, we can thus compute L in O(n+m) time.

To build the table P, we need to construct a third table F[1 . . n] along with L. F[y] is the index j of the
last domino (x j, y j) in the longest domino sequence ending in y. Again, we refer to the state of F after
the ith iteration as Fi. Then F0[y] = 0 for all 1 ≤ y ≤ n. For i > 0, we set Fi[y] = Fi−1[y] for all
y 6= yi. For y = yi, we set Fi[yi] = Fi−1[yi−1] if Li[yi] = Li−1[yi]. Otherwise, we set Fi[yi] = i. This
computation of F can be incorporated in the computation of L without increasing the cost by more than
a constant factor, so computing L and F takes O(n+m) time.

Now, given F, we can easily augment each iteration so it also computes P[i]: P[i] = F[x i]. Once again,
the cost of each iteration is increased by only a constant, so the total cost of computing L, F, and P is
O(n+m).

11

Extra space for Question 3.2

All that’s left now is extracting a longest domino sequence, in O(n+m) time.

First we scan L to find the index y such that L[y] = max1≤i≤n L[i]. This is the length of the longest
domino sequence because such a sequence must end in some domino. F[y] now stores the index j of the
last domino of this sequence. We produce our result sequence R using the following loop: Initially, we
set R = ;. While j ≥ 1, we prepend the domino (x j, y j) to R and set j = P[j]. The cost per iteration
is constant. The number of iterations is at most m because j decreases by at least one in each iteration.
Thus, reporting R takes O(n+m) time.

12

Question 3.3 (Application of data structures) 9 marks

Let R = {R1, R2, . . . , Rn} be a set of rectangles in the plane. We call R properly nested if (i) Ri ⊆ R1 for
all 1 < i ≤ n, that is R1 contains all rectangles in R and (ii) there are no two rectangles in R whose
boundaries intersect, that is, two rectangles are either disjoint or one is completely contained in the
other. A properly nested set of rectangles can be represented by a nesting tree whose nodes are the
rectangles of R and where Ri is the parent of R j if and only if R j ⊂ Ri and there is no rectangle Rh such
that R j ⊂ Rh ⊂ Ri.

Example of a properly nested set of rectangles and the corresponding nesting tree:

R1

R2

R8

R3 R4

R5

R6

R7
R1

R8R2 R5

R3

R4

R6 R7

Develop an O(n lg n)-time algorithm that tests whether a given set R of rectangles is properly nested.
If R is properly nested, the algorithm should output the nesting tree of R represented as a set of
pairs {(i, pi) | 1 < i ≤ n} such that Rpi

is the parent of Ri in the tree for all 1 < i ≤ n. If R is not
properly nested, the algorithm should output a pair of indices (i, j) such that the boundaries of Ri and
R j intersect or i = 1 and R1 and R j are disjoint. Argue briefly that your algorithm runs in O(n lg n)
time and that it produces the correct answer, both when R is properly nested and when it is not.

First assume that R is properly nested. Then any point p /∈ R1 is not contained in any rectangle; for
any point p ∈ R1, let the smallest enclosing rectangle be the rectangle Ri that contains p and such that
there is no other rectangle R j ⊂ Ri that also contains p. The parent Rpi

of Ri in the nesting tree of R is
the smallest enclosing rectangle of the bottom-left corner (or in fact any corner) of Ri.

Now consider the horizontal line ` through the bottom boundary of Ri. The intersections of ` with
rectangle boundaries partition ` into segments such that the points in each segment all have the same
smallest enclosing rectangle. Thus, all we have to do is find the segment that contains the bottom-left
corner of Ri and determine which is the smallest enclosing rectangle for the points on this segment.

Finding the segment is easy: We maintain an (a, b)-tree T over the left and right x-coordinates of all
rectangles that intersect `. The bottom-left corner p of Ri is then contained in the segment bounded by
the largest x-coordinate preceding p it and the successor of this x-coordinate in T .

To determine the smallest enclosing rectangle, we label every x-coordinate x in T with the smallest
enclosing rectangle of the points on the segment of ` that has this x-coordinate as its left endpoint. Thus,
to find the parent of Ri in the nesting tree, we search T for the largest x-coordinate x no greater than
the left x-coordinate of Ri and then report the index of the rectangle stored with x.

The tree T and the labelling of the x-coordinates it stores is easy to maintain as part of a bottom-up
plane sweep. Initially, T is empty. We sort the bottom and top y-coordinates of all rectangles in O(n lg n)
time and then process them in order, bottom to top.

13

Extra space for Question 3.3

When processing the bottom y-coordinate of Ri, we find the largest x-coordinate x in T no greater than
Ri ’s left x-coordinate and report the rectangle R j stored with x as Ri ’s parent. We then insert Ri ’s left and
right x-coordinates x l and x r immediately after x into T . Since R j is the smallest enclosing rectangle
of Ri, R j is the smallest enclosing rectangle of the segment with x r as its left endpoint. Ri is he smallest
enclosing rectangle of the segment between x l and x r .

When processing the top y-coordinate of Ri, we simply delete x l and x r from T because Ri no longer
intersects `.

The correctness of the algorithm follows from our discussion so far. Its cost is O(n lg n) because it sorts
the y-coordinates of all rectangles in O(n lg n) time and then perform a constant number of (a, b)-tree
operations, each with cost O(lg n) for each of the 2n y-coordinates.

Now, how can the algorithm fail if R is not properly nested? Let i be the index such that R1, R2, . . . , Ri−1

are properly nested and R1, R2, . . . , Ri are not, where the rectangles are numbered in order by their bottom
y-coordinates. Then either Ri ∩ R1 = ; or Ri ’s boundary intersects the boundary of some rectangle R j,
j < i.

If R1 ∩ Ri = ;, then either T is empty by the time we process Ri ’s bottom boundary (the y-ranges of
R1 and Ri are disjoint) or Ri ’s left x-coordinate is less than or greater than all x-coordinates in T (the
x-ranges of R1 and Ri are disjoint). Both conditions are easily checked as part of the query on T using
Ri ’s left boundary, so we can report (R1, Ri) in this case.

If the boundaries of Ri and R j intersect, we distinguish two cases: If the x-range of R j does not contain
the x-range of Ri, then the x-range of Ri must contain at least one x-coordinate of R j. We can test for
this condition by performing two searches on T when processing Ri ’s bottom boundary, one with x l and
one with x r . If both return the same x-coordinate x, then the x-range of Ri contains no x-coordinate of
any rectangle R j, j < i. If they return different x-coordinates, then let x ′ be the x-coordinate reported
by the search with x r , and let R j be the rectangle it belongs to. Since the x-range of Ri contains x ′ and
the y-range of R j contains the bottom boundary of Ri (because x ′ ∈ T), the boundaries of Ri and R j

intersect, so we report this pair.

If both searches with x l and x r return the same x-coordinate, let Rpi
be the smallest enclosing rectangle

stored with the x-coordinate x these searches return (that is, the rectangle we believe to be Ri ’s parent in
the nesting tree). Since R1, R2, . . . , Ri−1 are properly nested and Ri ’s x-range is either disjoint from the
x-range of any rectangle R j, j < i, or is completely contained in R j ’s x-range, Ri intersects the boundary
of some rectangle R j, j < i, if and only if it intersects the boundary of Rpi

. We can test this condition in
constant time after determining Rpi

.

In summary, testing whether R is properly nested and, if not, reporting a pair of rectangles that proves
this increases the cost of the algorithm for properly nested rectangles by only a constant factor, that is,
it is still O(n lg n).

14

Extra space for Question 3.3

15

