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Instructions:

• The questions are divided into three groups: Group 1 (36%), Group 2 (36%), and Group 3 (28%).
You have to answer all questions in Groups 1 and 2 and exactly two questions in Group 3. In
the above table, put a check mark in the small box beside the question in Group 3 you want me to
mark. If you select none or both questions, I will randomly choose which one to mark.

• Provide your answer in the box after each question. If you absolutely need extra space, use the backs
of the pages; but try to avoid it. Keep your answers short and to the point.

• You are not allowed to use a cheat sheet.

• Make sure your answers are clear and legible. If I can’t decipher an answer or follow your
train of thought with reasonable effort, you’ll receive 0 marks for your answer.

• If you are asked to design an algorithm and you cannot design one that achieves the desired running
time, design a slower algorithm that is correct. A correct and slow algorithm earns you 50% of the
marks for the algorithm. A fast and incorrect algorithm earns 0 marks.

• When designing an algorithm, you are allowed to use algorithms and data structures you learned
in class as black boxes, without explaining how they work, as long as these algorithms and data
structures do not directly answer the question.

• Read every question carefully before answering. In particular, do not waste time on an anal-
ysis if none is asked for, and do not forget to provide one if it is required.

• Do not forget to write your banner number and name on the top of this page.

• This exam has 12 pages, including this title page. Notify me immediately if your copy has
fewer than 12 pages.
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Question 1.1 (Asymptotic growth of functions) 10 marks

(a) Formally define the set o( f (n)).

o( f (n)) is a set of functions. A function g(n) belongs to o( f (n)) if, for all c > 0, there exists a
constant n0 ≥ 0 such that for all n≥ n0, g(n)≤ c · f (n).

(b) Formally define the set Ω( f (n)).

Ω( f (n)) is a set of functions. A function g(n) belongs to Ω( f (n)) if ther exist constants c > 0 and
n0 ≥ 0 such that for all n≥ n0, g(n)≥ c · f (n).

Question 1.2 (Average-case analysis and randomization) 6 marks

We studied three variants of Quick Sort in class. They differ in how they choose the pivot around
which they partition the input. Worst-Case Quick Sort uses the same strategy as worst-case linear-time
selection to find an approximate median as pivot. Simple Quick Sort uses the last input element as
pivot. Randomized Quick Sort randomly picks one of the input elements as pivot. Compare these
three algorithms according to the following three properties. Write your answers into the table. The
first column asks you to list the worst-case running times of the algorithms. The second column asks
you to list their expected running times. The final column asks, for each algorithm, whether it has a
worst-case input, that is, an input that forces it to achieve its worst-case running time.

Algorithm Worst-case running time Expected running time Worst-case input

Worst-Case Quick Sort O(n lg n) O(n lg n) yes

Simple Quick Sort O(n2) O(n lg n) yes

Randomized Quick Sort O(n2) O(n lg n) no
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Question 1.3 (Complexity classes) 9 marks

(a) Formally define the complexity class P.

P is the class of all formal languages that can be decided in polynomial time. Formally, a language
L ⊆ Σ∗ belongs to P if there exists an algorithm D which, for any string x ∈ Σ∗, answers yes if and
only if x ∈ L, and the running time of D on any string x ∈ Σ∗ is in O(|x |c), for some constant c.

(b) Formally define the complexity class NP.

NP is the class of all formal languages that can be verified in polynomial time. Formally, a language
L ⊆ Σ∗ belongs to NP if there exists a language L′ ⊆ Σ∗ ×Σ∗ such that L′ ∈ P and any string x ∈ Σ∗
belongs to L if and only if there exists a string y ∈ Σ∗ with |y| ∈ O(|x |c) and such that (x , y) ∈ L′.

(c) Formally define what an NP-hard language is.

A language L is NP-hard if L ∈ P implies that P= NP.
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Question 2.1 (What does it do?) 8 marks

Consider the following simple algorithm:

MAGIC(x , y)

1 if y = 0
2 then return 0
3 if y is even
4 then return MAGIC(2 · x , y div 2)
5 else return MAGIC(2 · x , y div 2) + x

The input consists of two non-negative integers x and y and the return value is another integer z.
div denotes integer division: x div y = bx/yc. State what the algorithm computes, that is, state the
relationship between x , y , and z. Prove that this is indeed what the algorithm computes.

The algorithm returns the product x · y.

To prove this, we use induction on y.

If y = 0, the algorithm returns 0, which is equal to x · y in this case.

If y > 0 and y is even, then the algorithm returns whatever MAGIC(2· x , by/2c) returns. Since by/2c< y
for y > 0, the inductive hypothesis states that this return value is (2 · x) · by/2c = (2 · x) · (y/2) = x · y.
The first equality follows because y is even, so by/2c= y/2.

If y > 0 and y is odd, then by the same argument as in the previous case, the algorithm returns
x+(2·x)·by/2c. Since y is odd, we have by/2c = (y−1)/2, so x+(2·x)·by/2c = x+(2·x)·(y−1)/2 =
x + x · (y − 1) = x + x · y − x = x · y.
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Question 2.2 (Algorithm analysis) 8 marks

Express the running time of the algorithm from Question 2.1 as a function of y. Prove that this is
indeed the algorithm’s running time by giving a recurrence for the running time and solving this
recurrence using the Master Theorem, substitution or a recursion tree. Whichever method you use,
show the steps you take to solve the recurrence.

If y = 0, the algorithm returns in constant time. Otherwise, it spends constant time and makes one
recursive call. The second argument of the recursive call is by/2c, so the running time of the algorithm is
given by the recurrence

T (y) = T (by/2c) +Θ(1).

Ignoring floors, as we agreed to do in this course, this becomes

T (y) = T (y/2) +Θ(1).

Now, y log2 1 = y0 = 1, so the second case of the Master Theorem applies to this recurrence and gives the
solution, T (y) ∈ Θ(lg y).
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Question 2.3 (Polynomial-time reductions) 9 marks

Let L1 ⊆ Σ∗ and L2 ⊆ Σ∗ be two formal languages. Assume L1 is NP-hard and there exists a polynomial-
time reduction R from L1 to L2. Prove that this implies that L2 is also NP-hard.

We need to prove that L2 ∈ P implies that P= NP. Since L1 ∈ P implies that P= NP, it suffices to prove
that L2 ∈ P implies that L1 ∈ P.

So assume L2 ∈ P, that is, there exists a decision algorithm D2 such that, for any x ∈ Σ∗, D2(x) = true if
and only if x ∈ L2; the running time of D2 on input x is in O(|x |c2) for some constant c2.

We construct a decision algorithm D1 for L1 as D1(x) = D2(R(x)), that is, we first apply R to the input
of D1, then pass the result R(x) to D2, and return the answer this invocation of D2 returns. Since
x ∈ L1⇔ R(x) ∈ L2 (R is a reduction from L1 to L2) and R(x) ∈ L2⇔ D2(R(x)) = true (D2 decides L2),
we have x ∈ L1⇔ D2(R(x)) = D1(x) = true, that is, D1 decides L1.

The running time of D1 on input x is the cost of running R on x plus the cost of running D2 on R(x).
Since R is a polynomial-time reduction, its running time on input x is in O(|x |c) for some constant c. In
time O(|x |c), R can produce an output of size at most O(|x |c), so |R(x)| ∈ O(|x |c). The running time
of D2 on R(x) is in O(|R(x)|c2) ⊆ O(|x |cc2). Thus, the total cost of D1 is in O(|x |c + |x |cc2), which is
polynomial in |x |.

Since D1 decides L1 and its running time on any input x is polynomial in |x |, L1 ∈ P, which is what we
had to show.
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Question 3.1 (Greedy algorithms) 10 marks

Consider a set of n jobs you want to run on a single computer. Let di be the duration of the ith job,
that is, the amount of time it takes to run this job to completion. If you choose some permutation π of
the jobs and you start each job immediately after the previous job in the permutation finishes, then the
finish time of job π(i) is tπ(π(i)) =

∑i
j=1 dπ(i). We call tπ(i) the completion time of job i. Your goal is

to find the permutation π that minimizes the average completion time t̄π =
1
n

∑n
i=1 tπ(i). Develop an

algorithm that solves this problem in O(n lg n) time, argue briefly that this is indeed the running time
of your algorithm, and prove that the permutation π it produces does indeed minimize t̄π.

The algorithm is ridiculously simple: We sort the jobs by increasing duration. This clearly takes O(n lg n)
time if we use an O(n lg n) sorting algorithm, such as Merge Sort.

To prove that this algorithm minimizes the average completion time t̄π, we consider a permutation π∗

such that t̄π∗ ≤ t̄π for all possible permutations π, that is, π∗ minimizes t̄π∗ .

If the ith job in π∗ is the ith shortest job for all 1≤ i ≤ n, then the jobs are sorted by increasing duration,
so π∗ is exactly the permutation we produce (modulo rearrangement of jobs of equal length, which has
no impact on the average completion time). In other words, the permutation π our algorithm produces
minimizes t̄π.

If there exists an index i such that job π∗(i) is not the ith shortest job, we consider the smallest such
index i. In other words, for 1≤ j < i, job π∗( j) is the jth shortest job. This implies that job π∗(i) is the
i′th shortest job for some i′ > i. In particular, job π∗(i) is at least as long as the ith shortest job. Now let
i′′ be the index such that π∗(i′′) is the ith shortest job. Again, since job π∗( j) is the jth shortest job for
all 1≤ j < i and job π∗(i) is not the ith shortest job, i′′ > i. Finally, we define a new permutation π′ as

π′( j) =







π∗(i) j = i′′

π∗(i′′) j = i
π∗( j) otherwise

.

In other words, π′ is obtained from π∗ by swapping jobs π∗(i) and π∗(i′′). We prove that t̄π′ < t̄π∗ , a
contradiction because t̄π∗ ≤ t̄π for every permutation π. Thus, there cannot be any index i such that job
π∗(i) is not the ith shortest job. As we argued above, this implies that the permutation π our algorithm
produces minimizes t̄π.

To prove that t̄π′ < t̄π∗ , observe that, for j < i or j ≥ i′′, the sets {π∗(1),π∗(2), . . . ,π∗( j)} and
{π′(1),π′(2), . . . ,π′( j)} are the same. Thus, tπ∗(π∗( j)) =

∑ j
h=1 dπ∗(h) =

∑ j
h=1 dπ′(h) = tπ′(π′( j)) for

each such value of j.

For i ≤ j < i′′, we have {π′(1),π′(2), . . . ,π′( j)} = {π∗(1),π∗(2), . . . ,π∗( j)} \ {π∗(i)} ∪ {π∗(i′′)}. Thus,
tπ′(π′( j)) =

∑ j
h=1 dπ′(h) =

∑ j
h=1 dπ∗(h) − dπ∗(i) + dπ∗(i′′) <

∑ j
h=1 dπ∗(h) = tπ∗(π∗( j)) because job π∗(i) is

longer than job π∗(i′′). This shows that
∑n

j=1 tπ′( j) =
∑n

j=1 tπ′(π′( j))<
∑n

j=1 tπ∗(π∗( j)) =
∑n

j=1 tπ∗( j)
and, hence, t̄π′ =

1
n

∑n
j=1 tπ′( j)<

1
n

∑n
j=1 tpi∗( j) = t̄π∗ , as claimed.
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Extra space for Question 3.1
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Question 3.2 (Dynamic programming) 10 marks

Recall the Subset Sum problem from class: Given a set S of n positive numbers and a target number t,
the problem asks us to decide whether there exists a subset S′ ⊆ S such that

∑

x∈S′ x = t. We also
proved in class that this problem is NP-hard, but the proof required that the numbers were exponentially
large (exponential numbers can be represented in a linear number of bits). This is not just a caveat of
the proof, as you will show here: Develop an algorithm that solves the Subset Sum problem in O(nt)
time (which is polynomial in n if t is polynomial in n). Argue briefly that your algorithm is correct and
that it achieves the desired running time.

First we preprocess S in linear time by removing all elements that are greater than t. Since all numbers
in S are positive, no element x > t can be part of a subset S′ ⊆ S such that

∑

x∈S′ x = t. From here on,
we can therefore assume that all elements in S are no greater than t.

Let us denote the elements in S by x1, x2, . . . , xn and let us define Si = {x1, x2, . . . , x i}. We build a Boolean
(n+ 1)× 2t table T with index range [0 . . n]× [−t + 1 . . t] such that T[i, v] = true if and only if there
exists a subset S′ ⊆ Si such that

∑

x∈S′ x = v. After constructing this table, we can then simply report
S[n, t] as the answer to the question whether there exists a subset S′ ⊆ S = Sn such that

∑

x∈S′ x = t.

To build the table, we need a recurrence: First observe that S[i, 0] = true for all 0≤ i ≤ n because ; ⊆ Si

and
∑

x∈; x = 0. Similarly, S[i, v] = false for all 0≤ i ≤ n and −t + 1≤ v < 0 because Si contains only
positive elements, so there is no subset S′ ⊆ Si such that

∑

x∈S′ x = v < 0. Finally, S[0, v] = false for
all 0 < v ≤ t because S0 = ;, so there is no subset of S0 whose elements sum to a positive value. Our
algorithm initializes these (n+ 2)× t values in O(nt) time because each can be computed in constant
time.

For i > 0 and v > 0, we observe that, if there exists a subset S′ ⊆ Si such that
∑

x∈S′ x = v, then
either S′ ⊆ Si−1 or x i ∈ S′ and

∑

x∈S′′ x = v − x i, where S′′ = S′ \ {x i}. Thus, T[i, v] = T[i − 1, v] ∨
T[i − 1, v − x i]. (Note that these are valid table indices because v > 0 and x i ≤ t, so v − x i ≥ −t + 1.
That’s why I chose to extend the index range of T to include negative values of v.) If we fill T in column by
column, then all T[i − 1, v′] values are computed before T[i, v], so T[i, v] can be computed in constant
time by looking up T[i − 1, v] and T[i − 1, v − x i] and taking the logical or. Thus, each of the n× t
values where i > 0 and v > 0 can also be computed in O(nt) time. In summary, we can fill in the entire
table T in constant time per entry, O(nt) time in total. Reporting the answer whether

∑

x∈S′ x = t for
some subset S′ ⊆ S then takes a single lookup of T[n, t] and thus takes constant time.
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Extra space for Question 3.2
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Question 3.3 (Data structures) 10 marks

Describe a data structure that stores a set S of n numbers and supports MINPAIR(S) queries. A
MINPAIR(S) query reports a pair (x , y) ∈

�S
2

�

such that |x − y| = min(u,v)∈(S2) |u − v|, where
�S

2

�

=
{(x , y) ∈ S × S | x 6= y}. In other words, a MINPAIR(S) query reports the two elements in S with the
smallest difference between them. If |S| < 2, MINPAIR(S) reports nil. The cost of a MINPAIR query
should be in O(1). The data structure should also support insertions of new elements into S and
deletions of elements from S. These update operations should take O(lg n) time. Argue briefly that
your implementations of INSERT, DELETE, and MINPAIR queries are correct and take O(lg n), O(lg n),
and O(1) time, respectively.

The data structure is an (a, b)-tree T augmented with some extra information stored at its nodes. For
every node v, let Sv denote the subset of S stored in the descendant leaves of v. Every node v of T already
stores the minimum element mv =min Sv as its search key. Now we also make it store Mv =max Sv as
well as a pair (xv, yv) =MINPAIR(Sv).

Let r be the root of T . Since Sr = S and r stores the answer (x r , yr) to a MINPAIR(Sr) query, answering
a MINPAIR(S) query takes constant time, just by reporting the pair (x r , yr). This is obviously correct.

To insert a new element into S, we perform a standard (a, b)-tree insertion and ensure that the information
associated with each node v (mv, Mv, and (xv, yv)) in the tree remains valid. Since an insertion adds
a single leaf to T and then performs up to lg n node splits, we have to show that leaf additions can be
supported in O(lg n) time and node splits can be supported in O(1) time.

Similarly, to delete an element from S, we perform a standard (a, b)-tree deletion and ensure that the
information associated with each node remains valid. Since a deletion removes a single leaf and then
performs up to lg n node fusions and possibly one node split, we have to show that leaf removal can be
supported in O(lg n) time and node splits and node fusions can be supported in O(1) time.

Bottom-up propagation. To maintain the information associated with the nodes of T as part of
leaf additions, leaf removals, node splits, and node fusions, we repeatedly apply the same primitive:
computing the information associated with a node v from the information associated with its children.
Let w1, w2, . . . , wk be the list of children of v ordered from left to right. If v is a leaf, then mv = Mv is the
element stored at v; (xv, yv) = nil because |Sv|= 1.

If v is not a leaf, then observe that mv = mw1
and Mv = mwk

, that is, they can be computed in constant time
from the information stored at w1 and wk. To determine (xv, yv), observe that xv and yv must be neigh-
bours in the sorted sequence of elements in Sv; otherwise, their difference couldn’t be minimal. Thus, either
(xv, yv) ∈ Swi

for some child wi of v or xv = Mwi
and yv = mwi+1

for some index 1≤ i < k. (xv, yv) thus is
the pair among (xw1

, yw1
), (xw2

, yw2
), . . . , (xwk

, ywk
), (Mw1

, mw2
), (Mw2

, mw3
), . . . , (Mwk−1

, mwk
) with the

least difference. There are at most 2b − 1 ∈ O(1) such candidate pairs and each can be accessed in
constant time. Thus, computing (xv, yv) also takes constant time, given the information associated with
v’s children.
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Extra space for Question 3.3

Leaf addition. After creating a new leaf ` storing some element x, observe that the set Sv has changed
only if v is an ancestor of `. We process these ancestors bottom-up from the ` to the root of T and, for
each, update mv, Mv, and (xv, yv) in constant time as described above. Since there are O(lg n) ancestors
of `, this takes O(lg n) time.

Leaf removal. After removing a leaf `, Sv once again changes only if v is an ancestor of `. Thus, we
update mv, Mv, (xv, yv) for each such ancestor as after a leaf addition. This takes O(lg n) time.

Node split. When splitting a node v into two nodes v1 and v2, note that Sv′ does not change for any node
v′ /∈ {v, v1, v2}. Thus, mv′ , Mv′ , and (xv′ , yv′) do not change. For v1 and v2, we can compute mv1

, Mv1
,

(xv1
, yv1
), mv2

, Mv2
, and (xv2

, yv2
) from the information stored at v1’s and v2’s children. Since this takes

constant time per node, the cost of a node split remains constant.

Node fusion. When fusing two nodes v1 and v2 into a single node v, Sv′ once again does not change for
any node v′ /∈ {v, v1, v2}. Thus, mv′ , Mv′ , and (xv′ , yv′) do not change. For v, we can compute mv, Mv,
and (xv, yv) from the information stored at v’s children. Since this takes constant time, the cost of a node
fusion remains constant.
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