
CSCI 2132: Software Development

Structs, Unions, 
and Enums

Norbert Zeh

Faculty of Computer Science
Dalhousie University

Winter 2019

Structs

Combine constant number of values of possibly different types into a record

Contrast with arrays:

• Arbitrary number of values

• All the same type

Important uses:

• Representing records in data collections

• Building block for data structures

struct student {
 unsigned int number;
 char name[32];
 char username[9];
};

Elements are called
members

Members referred
to by name

Dot Operator
Struct members are accessed using dot notation, similar to Java:

struct student {
 unsigned int number;
 char name[32];
 char username[9];
};

int main() {
 struct student s;
 s.number = 321459;
 strcpy(s.name, “A Student”);
 strcpy(s.username, “astudent”);
 printf(“Student number: %8d\n”, s.number);
 printf(“Name: %s\n”, s.name);
 printf(“Username: %s\n”, s.username);
 return 0;
}

Need to write struct here.
(A tad annoying.)

Arrow Operator
Arrow operator (->) combines pointer dereferencing and member
access:

struct student {
 unsigned int number;
 char name[32];
 char username[9];
};

void print_name(struct student *s) {
 printf(“%s\n”, (*s).name);
}

int main() {
 struct student s;
 ...
 print_name(&s);
}

Arrow Operator
Arrow operator (->) combines pointer dereferencing and member
access:

struct student {
 unsigned int number;
 char name[32];
 char username[9];
};

void print_name(struct student *s) {
 printf(“%s\n”, s->name);
}

int main() {
 struct student s;
 ...
 print_name(&s);
}

struct student {
 unsigned int number;
 char name[32];
 char username[9];
};

void print_name(struct student *s) {
 printf(“%s\n”, s->name);
}

int main() {
 struct student s;
 ...
 print_name(&s);
}

A Common Idiom to Avoid Typing

typedef struct {
 unsigned int number;
 char name[32];
 char username[9];
} student;

void print_name(student *s) {
 printf(“%s\n”, s->name);
}

int main() {
 student s;
 ...
 print_name(&s);
}

A Common Idiom to Avoid Typing

Unions
Struct stores all its members at the same time.
Union stores only one of its members at a time.
Size = maximum size of its members.

struct foo {
 int x;
 double y;
};

union bar {
 int x;
 double y;
};

y
x

x

y

or

Uses of Unions
Saving space:

struct student {
 int banner;
 char name[32];
 char faculty[32];
 char major[32];
 struct ac_record *record;
}

struct employee {
 int banner;
 char name[32];
 char faculty[32];
 int salary;
 struct emp_hist *history;
}struct banner_record {

 int banner;
 char name[32];
 char faculty[32];
 char major[32];
 int salary;
 struct ac_record *record;
 struct emp_hist *history;
}

Uses of Unions
Saving space:

struct student_details {
 char major[32];
 struct ac_record *record;
};

struct employee_details {
 int salary;
 struct emp_hist *history;
};

Uses of Unions
Saving space:

struct student_details {
 char major[32];
 struct ac_record *record;
};

struct employee_details {
 int salary;
 struct emp_hist *history;
};

union details {
 struct student_details;
 struct employee_details;
};

Uses of Unions
Saving space:

struct student_details {
 char major[32];
 struct ac_record *record;
};

struct employee_details {
 int salary;
 struct emp_hist *history;
};

union details {
 struct student_details;
 struct employee_details;
};

struct student {
 int banner;
 char name[32];
 char faculty[32];
 int type;
 union details dtls;
}

Need a way to figure
out the record type.

Uses of Unions

Re-interpreting bit content:

union converter {
 double d;
 unsigned long int bits;
};

int main() {
 union converter c;
 c.d = 5.312e2;
 printf(“%lx\n”, c.bits);
 return 0;
}

Enums
Are very similar to their use in Java:

enum color {
 RED,
 GREEN,
 BLUE
};

int main() {
 enum color col = BLUE;
 printf(“%d\n”, col);
 return 0;
}

enum flags {
 READABLE = 0x04,
 WRITABLE = 0x02,
 EXECUTABLE = 0x01
};

int main() {
 enum flags fs =
 READABLE | WRITABLE;
 printf(“%d\n”, fs);
 return 0;
}

They are just integers in disguise in C.

