
CSCI 2132: Software Development

Shell Scripting

Norbert Zeh

Faculty of Computer Science
Dalhousie University

Winter 2019

Reading

Glass and Ables, Chapter 8: bash

Your Shell vs Your File Manager

File manager

• Easy and intuitive to use (point and click)

• Almost no need to understand how computers work

Shell

• Need to remember commands to achieve certain things

• Typing commands is more efficient than point and click

• Use utilities and pipelines to achieve complicated tasks beyond
selecting and copying files

• Shell scripts = programs built out of shell and utility commands to
automate complex work flows (create your own “custom commands”)

Shell Variables

• Your shell can store chunks of text in variables for later use.

• Some of these variables are special.  
(Do not mess with them unless you know what you are doing.)

• Set a variable: var=!!...

• Use a variable: $var

Example:

$ hello=‘Hello, world!’
$ echo $hello
Hello, world!

Customizing Program Behaviour  
via Shell Variables

• The path where your shell finds programs you try to run:

• The path to your shell:

• Your user name:

• The type of terminal you use:

$ env | grep PATH
PATH=/users/faculty/nzeh/bin:/local/bin:/bin:/usr/bin:!!...

$ env | grep SHELL
SHELL=/bin/bash

$ env | grep USER
USER=nzeh

$ env | grep TERM
TERM=xterm-256color

Customizing Program Behaviour  
via Shell Variables

• Your default editor:

• Your CSID (only on bluenose):

$ env | grep EDITOR
EDITOR=vi

$ env | grep CSID
CSID=nzeh

Capturing Output in Variables
program1 `program2`:

• Run program2 and pass its stdout as a command line
argument to program1.

Example:

Capture stdout in a variable:

$ echo `echo ‘Hello, world!’`
Hello, world!
$ cd `echo $PATH | cut -d: -f3`
Now I’m in directory /bin

$ hello=`echo ‘Hello, world!’`
$ echo $hello
Hello, world!

Repeating Command Sequences
Compile your Java program, run it, and verify the output:

What if I want to do this often during development?

$ javac HelloWorld.java
$ java HelloWorld > HelloWorld.out
$ less HelloWorld.out

!#!/bin/sh
javac HelloWorld.java
java HelloWorld > HelloWorld.out
less HelloWorld.out

compile-and-test.sh

$ chmod 700 compile-and-test.sh
$./compile-and-test.sh

Shell Scripts

A shell script is a text file containing a sequence of shell (built-in
commands or utility programs) commands.

Running a shell script:

• sh <script file name>

• chmod u+x <script file name>; ./<script file name>

• . <script file name> 
(may alter the behaviour of the current shell)

Command Line Arguments
Often, we want to pass arguments to a shell script as if it was a regular
program.

Arguments:

• $0 = program (script) name

• $1, $2, ... = arguments

• $# = number of command line arguments, not counting $0

Example:

!#!/bin/sh
javac $1.java
java $1 > $1.out
less $1.out

compile-and-test.sh

Arithmetic Operations
Arithmetic expressions to be evaluated must be enclosed in double
parentheses:

((expression))

Arithmetic operators:

• = (assignment), +, -, !++, !--, *, /, % (mod), !** (power)

Example:

!#!/bin/bash
((sum = $1 + $2))
echo the sum of $1 and $2 is $sum

Logical Expressions
In if-statements and while-loops (soon), we need to be able to test
logical conditions.

Arithmetic conditions: ((expression))

• Comparison operators: <=, >=, <, >, ==, !=

• Logical operators: ! (not), && (and), || (or)

String tests: [expression] (spaces necessary)

• Comparison operators: ==, !=

• Basic tests: -n (not empty), -z (empty)

• Logical operators !, &&, ||

Repeating Things: for Loops
Repeat a given sequence of commands for every element in a list:

Example: Rename every file <file> to my_<file>:

Example: Strip the suffix of all .hpp (C++ header) files:

for <var> in <list>; do <cmd> !!...; done

$ for file in *; do mv $file my-$file; done

$ for file in *.hpp; do \
 mv $file `echo $file; sed -e ’s/\.hpp$!//‘`; done

Adding Decisions: if Statements

Similar to Java but different syntax:

if condition1; then
 commands
elif condition2; then
 commands
else
 commands
fi

The elif and else parts are optional.

An Example

#!/bin/bash

if (($# != 2)); then
 echo usage: $0 num1 num2
 exit
fi

((sum = $1 + $2))
echo the sum of $1 and $2 is $sum

Java-Style Arithmetic for Loops

#!/bin/bash

if (($# != 1)); then
 echo usage: $0 num1
 exit
fi

for ((i = 1; $i <= $1; i = $i + 1)) do
 f=tmpfile-$i.txt
 echo “Appending to file $f”
 echo Updated on `date` >> $f
done

Multi-way Branching: case Statements

Similar to switch statement in Java:

case var in
 word{|word}*)
 commands
 !;;
 !!...
esac

Example of a case Statement

#!/bin/bash
day=`date | cut -f1 -d” “`

case “$day” in
 Mon|Wed|Fri)
 echo 2132 lectures
 ;;
 Tue|Thu)
 echo No 2132 lectures
 ;;
 Sat|Sun)
 echo Do 2132 homework
 ;;
esac

Repeating things: while and until

Repeat commands while a condition is true:

while condition; do
 command
 !!...
done

Repeat commands until a condition is true:

until condition; do
 command
 !!...
done

The Earlier for Loop Redone Using while

#!/bin/bash

if (($# != 1)); then
 echo usage: $0 num1
 exit
fi

i=1
while (($i <= $1)); do
 f=tmpfile-$i.txt
 echo “Appending to file $f”
 echo Updated on `date` >> $f
 ((i = $i + 1))
done

Conditional Expressions for Status of Files

[-e file] Does file exist?
[-f file] Is file a regular file?
[-d file] Is file a directory?
[-r file] Is file readable?
[-w file] Is file writable?
[-x file] Is file executable?

Again, the spaces after [and before] are required!

Exit Codes
How does the shell check whether a command you tried to run was
successful?

Every program returns an exit code that is 0 on success and 
some non-zero value on error.

This exit code is assigned to the special variable $? after the command
runs.

$ cp a b; echo $?
cp: a: No such file or directory
1
$ touch a; echo $?
0

Returning an Exit Code from a Shell Script

exit Exit the script with error code $?

exit num Exit the script with error code num

Example: A Backup Script

Specification:

• Script takes two arguments: 
a source directory and a destination directory

• Each file from the source directory is copied 
to the destination directory.

• Only regular files are copied (not directories).

• Files are copied if they do not already exist in he destination
directory.

• Print the name of each file being copied.

Example: A Backup Script

#!/bin/bash

if [! -d $1]; then
 echo Source directory does not exist
 exit 1
elif [! -d $2]; then
 echo Destination directory does not exist
 exit 1
fi

for filename in `ls $1`; do
 if [-f $1/$filename]; then
 if [! -e $2/$filename]; then
 cp $1/$filename $2/$filename
 echo $filename
 fi
 fi
done

