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The C Programming Language

Originally invented for writing OS and other system software 

Inventor: Dennis Ritchie 

Characteristics: 

• Optimized for speed and programming close to machine 

• Manual memory management, no garbage collection 

• 0-overhead rule: What you don’t write doesn’t happen 

• No safety checks: 
• E.g.: No out of bounds checks 
• You need to know what you are doing



A Simple C Program

#include <stdio.h> 

int main() { 
  printf(“Hello, world!\n”); 
  return 0; 
}

hello.c



Compiling a C Program

$ gcc hello.c 
$ ls -l 
-rwx------  1 nzeh  staff  8432  7 Feb 23:02 a.out 
-rw-------  1 nzeh  staff    80  7 Feb 23:02 hello.c 
$ ./a.out 
Hello, world!

$ gcc -o hello hello.c 
$ ls -l 
-rwx------  1 nzeh  staff  8432  7 Feb 23:02 hello 
-rw-------  1 nzeh  staff    80  7 Feb 23:02 hello.c 
$ ./hello 
Hello, world!



The Compilation Process
Preprocessor: 

• Modify source code 

• E.g., expand macros 

Compiler: 

• Translate source into 
object code 

Linker: 

• Combine one or 
more object files 
into executable code

source1.c source2.c source3.c
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General Form of a Simple Program

preprocessor directives 

int main() { 
  statements 
}

#include <stdio.h> 

int main() { 
  printf(“Hello, world!\n”); 
  return 0; 
}

statements

preprocessor 
directive

main 
function

No 
arguments

Return 
type = int



Functions

= building blocks from which C programs are constructed 

Function = named group of statements (for now) 

“Special” kinds of functions: 

• Main function = entry point of the program, called when the 
program is started 

• Library functions = functions provided as part of the standard 
library 

Nesting of functions is not allowed.



Statements

= commands to be executed 

• Must end with a semicolon 

Examples:

printf(“Hello, world!\n”);

return 0;



Printing Strings: printf
printf can be used to print string literals 

String literal = sequence of characters and escape sequences enclosed by 
“##...” 

Escape sequences (similar to Java): 

• \n = newline 

• \t = tab 

• \xHH = character code in hexadecimal 

• \ooo = character code in octal 

• #\\ = literal backslash 

• \” = literal “ 

• Others: \r, \a, \b, \f, \v, \’, \?



printf Examples

printf(“Hello,\nworld!\n”);

printf(“Hello, world!”);

printf(“Hello, world!\n”);



Comments

#/* This is a one-line comment #*/

#/* This is a 
   multi-line 
   comment #*/

#// C99 also allows this style of comments



Variables

Variable = name for a memory location where data can be stored 

Variables in C are statically typed: 

• Type declared as part of program text 

• Only values of this type can be assigned to variable 

• Type casting allows us to cheat (use with care, as a last resort) 

• Contrast with Python (anything can be stored in a variable) 

Common types: 

• int = integer 

• char = character 

• float = single-precision floating point number 

• double = double-precision floating point number



Variable Declarations

Before C99, declarations must precede statements in function code. 
C99 lifts this restriction.  (It’s still good practice.)

int number_of_lines;

double length_in_inches;

Type name 
(before variable name)

Variable name 
(after type name)



Operators
A rich and powerful set of operators was one of the innovations in C 

Some operators (by decreasing precedence): 

• Unary (2): +, -, ++, --, !, ~ 

• Arithmetic (3): *, /, % 

• Arithmetic (4): +, - 

• Bitwise shifts (5): <<, >> 

• Comparison (6): <, >, <=, >= 

• Equality (7): ==, != 

• Bitwise operations: & (8), | (10) 

• Logical operations: && (11), || (12) 

• Assignment (14): = 

• Update (14): +=, *=, >>=, <<=, &=, ... 

Precedence can (of course) be overruled using parentheses.



Printing Variables: printf

printf allows us to print also variables by including placeholders in the 
string 

Placeholders: 

• %d = print an integer 

• %f = print a single-precision float 

• %lf = print a double-precision float 

• %s = print a string 

• %c = print a character 

• %.2f = print single-precision float with 2 digits after decimal point



Printing Variables: printf

printf(“Height: %d\n”, height);

printf(“%s: %.2f\n”, “Profit”, profit);



Initializing Variables

Variables may have random variables if not initialized. 

Declaration and initialization can happen in one step:

int height = 8; 
double profit = 1030.56; 
float profit = 1030.56f; 
char c = ‘A’; 
char c = ‘\n’;



Reading Input: scanf

Reading an int value: 

Reading a float value: 

Reading a double value: 

Reading a char value: 

The & is very important.  You’ll learn later why.

scanf(“%d”, &height);

scanf(“%f”, &a_float);

scanf(“%c”, &ch);

scanf(“%lf”, &a_double);



Defining Names for Constants

Macro: 

• Preprocessor replaces every occurrence of NAME with <some text> 

• NAME is not a variable! 

• No checks whether the replacement of NAME with <some text> 
results in valid code. 

• <some text> can be any sequence of tokens. 

Example:

#define NAME <some text>

#define PI 3.14159



Defining Expressions as Macros

The value of a macro can be an expression: 

Be generous with parentheses: 

• What would happen without parentheses in this example?

#define RECIPROCAL_OF_PI (1.0 / 3.14159)

double pi = 1.0 / RECIPROCAL_OF_PI;



Identifiers

= names for variables, functions, user-defined types, macros, etc. 

• May contain letters, underscores, and digits 

• Must start with a letter or underscore 

• (For now, avoid using underscore as the first letter) 

Conventions: 

• Functions, variables, types: transpose_matrix, vector, ... 

• Macros: PI, NUM_ROWS, ...



A Simple Example

Write a program to help your Walmart cashier: 

Inputs: 

• Price of product before HST 

• Payment made by customer 

Output: 

• Change due to customer = payment - price * (1 + HST)



#include <stdio.h> 

#define HST 15 

int main() { 
  double price, payment, balance; 

  printf(“Enter price: “); 
  scanf(“%lf”, &price); 

  printf(“Enter payment: “); 
  scanf(“%lf”, &payment); 

  balance = payment - prince * (1.0 + HST / 100); 
  printf(“Change due: %.2lf\n“, balance); 
  return 0; 
}

hst.c


