CSCI 2132: Software Development | NorbertZen

Faculty of Computer Science
Dalhousie University

Introduction to C

The C Programming Language

Originally invented for writing OS and other system software
Inventor: Dennis Ritchie

Characteristics:

* Optimized for speed and programming close to machine
* Manual memory management, no garbage collection

* 0-overhead rule: What you don't write doesn’'t happen
« No safety checks:
E.g.: No out of bounds checks

- You need to know what you are doing

A Simple C Program

#include <stdio.h>

int main() {
printf(“Hello, world!\n");
return 0;

}

Compiling a C Program

$ gcc hello.c

$ 1s -1

~rwWX--—-—-—- 1 nzeh staff
-rw--—-—-—-—-- 1 nzeh staff
$./a.out

Hello, world!

$ gcc -0 hello hello.c

$ 1s -1

—rwWX-——-——- 1 nzeh staff
-rw--—-—--—-—- 1 nzeh staff
$./hello

Hello, world!

8432
30

8432
30

/7 Feb 23:02 a.out
7 Feb 23:02 hello.c

/7 Feb 23:02 hello
7 Feb 23:02 hello.c

The Compilation Process

Preprocessor:
- Modify source code

- E.g, expand macros

Compiler:

« Translate source into
object code

Linker:

« Combine one or
more object files
INto executable code

. . .
sourcel.c source2.c source3.c

Preprocessor Preprocessor Preprocessor
Modified— Bl Modified— Bl Modified—
sourcel.c source2.c source3.c
Compiler Compiler Compiler

e S e Sy

Linker

Y

Executable prog

General Form of a Simple Program

preprocessor directives

NO

arguments preprocessor

directive

Return
type = Int

stdio.h>

int main() {
printf(“Hello, world!\n");
return 0;

J

Functions

= building blocks from which C programs are constructed
Function = named group of statements (for now)

“Special” kinds of functions:

* Main function = entry point of the program, called when the
program Is started

* Library functions = functions provided as part of the standard
Library

Nesting of functions is not allowed.

Statements

= commands to be executed

 Must end with a semicolon

Examples:

printf(“Hello, world!\n");

return 0;

Printing Strings: printf

printf can be used to print string literals

String literal = sequence of characters and escape sequences enclosed by

1} ”
e o0

Escape sequences (similar to Java):

+ \n = newline

- \t =tab

« \xHH = character code in hexadecimal
- \000 = character code in octal

+ \\ = literal backslash

- \" = literal

« Others: \r, \a, \b, \f, \v, \’, \?

printf Examples

printf(“Hello, world!\n");
printf(“Hello, world!"”);

printf(“Hello, \nworld!\n");

//

Comments

This 1s a one-1line comment =*/

This 1s a
multi-line
comment */

C99 also allows this style of comments

Variables

Variable = name for a memory location where data can be stored

Variables in C are statically typed:
- Type declared as part of program text
- Only values of this type can be assigned to variable
- Type casting allows us to cheat (use with care, as a last resort)

- Contrast with Python (anything can be stored in a variable)

Common types:
« 1nt = Integer
- char = character
- float = single-precision floating point number

« double = double-precision floating point number

Variable Declarations

1nt number of lines;

\ A\

Type name Variable name

(before variable name) (after type name)

/ e

double length 1n_1nches;

Before C99, declarations must precede statements in function code.
C99 lifts this restriction. (It's still good practice.)

Operators

A rich and powerful set of operators was one of the innovations in C

Some operators (by decreasing precedence):
« Unary (2): +, -, ++, --, |, ~
« Arithmetic (3): *, /, %
« Arithmetic (4): +, -
. Bitwise shifts (5): <<, >>
- Comparison (6): <, >, <=, >=
- Equality (7):
- Bitwise operations: & (8), | (10)
- Logical operations: §& (11), | | (12)
 Assignment (14); =
« Update (14); +=, =, >>=, <<=, §=, ...

— l —
?

Precedence can (of course) be overruled using parentheses.

Printing Variables: printf

printf allows us to print also variables by including placeholders in the
string

Placeholders:
« %d = print an integer
« %T = print a single-precision float
« %L =printa double-precision float
« %S = print a string
« %C = print a character

« %.2T = print single-precision float with 2 digits after decimal point

Printing Variables: printf

printf(“Height: %d\n”, height);

printf(“%s: %.2f\n"”, “Profit”, profit);

Initializing Variables

Variables may have random variables If not initialized.

Declaration and initialization can happen in one step:

1nt height = 8;

double profit = 1030.56;
float profit = 1030.56f;
char c ‘AT

char c ‘An’ ;

Reading Input: scanf

Reading an 1nt value:
scanf(“%d”, &height);
Reading a f Loat value:
scanf(“%f"”, &a float);
Reading a double value:
scanf(“%Lf", &a _double);
Reading a char value:
scanf(“%c”, &ch);

The & Is very important. You'll learn later why.

Defining Names for Constants

Macro:

#define NAME <some text>

* Preprocessor replaces every occurrence of NAME with <some text>
« NAME Is not a variable!

* No checks whether the replacement of NAME with <some text>
results in valid code.

* <some text> can be any sequence of tokens.

Example:

#define PI 3.14159

Defining Expressions as Macros

The value of a macro can be an expression:

#define RECIPROCAL OF PI (1.0 / 3.14159)

Be generous with parentheses:

* What would happen without parentheses in this example?

double pi = 1.0 / RECIPROCAL OF PI;

ldentifiers

= names for variables, functions, user-defined types, macros, etc.

« May contain letters, underscores, and digits
« Must start with a letter or underscore

» (For now, avoid using underscore as the first letter)

Conventions:

« Functions, variables, types: transpose _matrix, vector, ..
 Macros: PI, NUM_ROWS, ...

A Simple Example

Write a program to help your Walmart cashier:

Inputs:
 Price of product before HST

» Payment made by customer

Output:

+ Change due to customer = payment - price * (1 + HST)

#include <stdio.h>

#define HST 15

int main() A
double price, payment, balance;

printf(“Enter price: “);
scanf(“%1f"”, &price);

printf(“Enter payment: “);
scanf(“%1lf", &payment);

balance = payment - prince * (1.0 + HST / 100);
printf(“Change due: %.21f\n“, balance);
return 0;

