
CSCI 2132: Software Development

Introduction to C

Norbert Zeh

Faculty of Computer Science
Dalhousie University

Winter 2019

The C Programming Language

Originally invented for writing OS and other system software

Inventor: Dennis Ritchie

Characteristics:

• Optimized for speed and programming close to machine

• Manual memory management, no garbage collection

• 0-overhead rule: What you don’t write doesn’t happen

• No safety checks:
• E.g.: No out of bounds checks
• You need to know what you are doing

A Simple C Program

#include <stdio.h>

int main() {
 printf(“Hello, world!\n”);
 return 0;
}

hello.c

Compiling a C Program

$ gcc hello.c
$ ls -l
-rwx------ 1 nzeh staff 8432 7 Feb 23:02 a.out
-rw------- 1 nzeh staff 80 7 Feb 23:02 hello.c
$./a.out
Hello, world!

$ gcc -o hello hello.c
$ ls -l
-rwx------ 1 nzeh staff 8432 7 Feb 23:02 hello
-rw------- 1 nzeh staff 80 7 Feb 23:02 hello.c
$./hello
Hello, world!

The Compilation Process
Preprocessor:

• Modify source code

• E.g., expand macros

Compiler:

• Translate source into
object code

Linker:

• Combine one or
more object files
into executable code

source1.c source2.c source3.c

Preprocessor

Compiler

Linker

Executable program

Modified
source1.c

Modified
source2.c

Modified
source3.c

source1.o source2.o source3.o

CompilerCompiler

Preprocessor Preprocessor

General Form of a Simple Program

preprocessor directives

int main() {
 statements
}

#include <stdio.h>

int main() {
 printf(“Hello, world!\n”);
 return 0;
}

statements

preprocessor
directive

main
function

No
arguments

Return
type = int

Functions

= building blocks from which C programs are constructed

Function = named group of statements (for now)

“Special” kinds of functions:

• Main function = entry point of the program, called when the
program is started

• Library functions = functions provided as part of the standard
library

Nesting of functions is not allowed.

Statements

= commands to be executed

• Must end with a semicolon

Examples:

printf(“Hello, world!\n”);

return 0;

Printing Strings: printf
printf can be used to print string literals

String literal = sequence of characters and escape sequences enclosed by
“##...”

Escape sequences (similar to Java):

• \n = newline

• \t = tab

• \xHH = character code in hexadecimal

• \ooo = character code in octal

• #\\ = literal backslash

• \” = literal “

• Others: \r, \a, \b, \f, \v, \’, \?

printf Examples

printf(“Hello,\nworld!\n”);

printf(“Hello, world!”);

printf(“Hello, world!\n”);

Comments

#/* This is a one-line comment #*/

#/* This is a
 multi-line
 comment #*/

#// C99 also allows this style of comments

Variables

Variable = name for a memory location where data can be stored

Variables in C are statically typed:

• Type declared as part of program text

• Only values of this type can be assigned to variable

• Type casting allows us to cheat (use with care, as a last resort)

• Contrast with Python (anything can be stored in a variable)

Common types:

• int = integer

• char = character

• float = single-precision floating point number

• double = double-precision floating point number

Variable Declarations

Before C99, declarations must precede statements in function code.
C99 lifts this restriction. (It’s still good practice.)

int number_of_lines;

double length_in_inches;

Type name
(before variable name)

Variable name
(after type name)

Operators
A rich and powerful set of operators was one of the innovations in C

Some operators (by decreasing precedence):

• Unary (2): +, -, ++, --, !, ~

• Arithmetic (3): *, /, %

• Arithmetic (4): +, -

• Bitwise shifts (5): <<, >>

• Comparison (6): <, >, <=, >=

• Equality (7): ==, !=

• Bitwise operations: & (8), | (10)

• Logical operations: && (11), || (12)

• Assignment (14): =

• Update (14): +=, *=, >>=, <<=, &=, ...

Precedence can (of course) be overruled using parentheses.

Printing Variables: printf

printf allows us to print also variables by including placeholders in the
string

Placeholders:

• %d = print an integer

• %f = print a single-precision float

• %lf = print a double-precision float

• %s = print a string

• %c = print a character

• %.2f = print single-precision float with 2 digits after decimal point

Printing Variables: printf

printf(“Height: %d\n”, height);

printf(“%s: %.2f\n”, “Profit”, profit);

Initializing Variables

Variables may have random variables if not initialized.

Declaration and initialization can happen in one step:

int height = 8;
double profit = 1030.56;
float profit = 1030.56f;
char c = ‘A’;
char c = ‘\n’;

Reading Input: scanf

Reading an int value:

Reading a float value:

Reading a double value:

Reading a char value:

The & is very important. You’ll learn later why.

scanf(“%d”, &height);

scanf(“%f”, &a_float);

scanf(“%c”, &ch);

scanf(“%lf”, &a_double);

Defining Names for Constants

Macro:

• Preprocessor replaces every occurrence of NAME with <some text>

• NAME is not a variable!

• No checks whether the replacement of NAME with <some text>
results in valid code.

• <some text> can be any sequence of tokens.

Example:

#define NAME <some text>

#define PI 3.14159

Defining Expressions as Macros

The value of a macro can be an expression:

Be generous with parentheses:

• What would happen without parentheses in this example?

#define RECIPROCAL_OF_PI (1.0 / 3.14159)

double pi = 1.0 / RECIPROCAL_OF_PI;

Identifiers

= names for variables, functions, user-defined types, macros, etc.

• May contain letters, underscores, and digits

• Must start with a letter or underscore

• (For now, avoid using underscore as the first letter)

Conventions:

• Functions, variables, types: transpose_matrix, vector, ...

• Macros: PI, NUM_ROWS, ...

A Simple Example

Write a program to help your Walmart cashier:

Inputs:

• Price of product before HST

• Payment made by customer

Output:

• Change due to customer = payment - price * (1 + HST)

#include <stdio.h>

#define HST 15

int main() {
 double price, payment, balance;

 printf(“Enter price: “);
 scanf(“%lf”, &price);

 printf(“Enter payment: “);
 scanf(“%lf”, &payment);

 balance = payment - prince * (1.0 + HST / 100);
 printf(“Change due: %.2lf\n“, balance);
 return 0;
}

hst.c

