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Abstract

We present an external-memory algorithm to compute a well-separated pair decom-
position (WSPD) of a given point set S in R

d in O(sort(N)) I/Os, where N is the
number of points in S and sort(N) denotes the I/O-complexity of sorting N items.
(Throughout this paper, we assume that the dimension d is fixed). As applications
of the WSPD, we show how to compute a linear-size t-spanner for S within the same
I/O-bound and how to solve the K-nearest-neighbour and K-closest-pair problems in
O(sort(KN)) and O(sort(N + K)) I/Os, respectively.

Keywords: External-memory algorithms, computational geometry, well-separated pair de-
composition, spanners, closest-pair problem, proximity problems.

1 Introduction

Many geometric applications require computations that involve the set of all distinct pairs
of points (and their distances) in a set S of N points in d-dimensional Euclidean space. One
such problem is computing, for every point in S, its nearest neighbour in S—the all-nearest-
neighbour problem. Voronoi diagrams and multi-dimensional divide-and-conquer are the
traditional techniques used for solving several distance-based geometric problems, especially
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in two and three dimensions. Callahan and Kosaraju [15] introduced the well-separated
pair decomposition (WSPD) as a data structure to cope with higher-dimensional geometric
problems. It consists of a binary tree T and a list of “well-separated” pairs of subsets of S.
The leaves of T represent the points in S; every internal node represents the subset of points
corresponding to its descendent leaves. For every well-separated pair {A,B}, both A and B
are sets represented by nodes in T . Intuitively, a pair {A,B} is well-separated if the distance
between A and B is significantly greater than the distance between any two points within
A or B. It turns out that, for many problems, it is sufficient to perform only a constant
number of operations on every pair {A,B} instead of performing |A||B| operations on the
corresponding pairs of points. Moreover, for fixed d, a WSPD of O(N) pairs of subsets can
be constructed in O(N logN) time. This results in fast sequential, parallel, and dynamic
algorithms for a number of problems on point sets (e.g., see [5, 10, 11, 13, 14, 15]). Here we
extend these results to external memory.

1.1 Previous Work

1.1.1 The I/O-Model

In the I/O-model [1], a computer is equipped with a two-level memory consisting of internal
memory (RAM) and external memory (disk). The internal memory is assumed to be capable
of holding M data items. The disk is divided into blocks of B consecutive data items. All
computation has to happen in internal memory. Data is transferred between internal memory
and disk by means of I/O-operations (I/Os); each such operation transfers one block of data
between internal memory and disk. The complexity of an algorithm in the I/O-model is the
number of I/Os it performs. Surveys of relevant work in the external-memory setting are
given in papers by Arge [2] and Vitter [48] and in [33]. It has been shown that sorting an
array of size N takes sort(N) = Θ

(
N
B

logM/B
N
B

)
I/Os [1]. Scanning an array of size N takes

scan(N) = Θ(N/B) I/Os. Since the scanning bound can be seen as the equivalent of the
linear time bound required to perform the same operation in internal memory, we refer to
O(N/B) I/Os as a linear number of I/Os.

1.1.2 Spanners and Proximity Problems

Proximity problems and the construction of geometric spanners—problems whose solutions
are among the applications of the WSPD—have a rich history. Before the study of the I/O-
complexities of these problems, much research has focused on the development of efficient
internal-memory algorithms for these problems. This work is reviewed in [24, 34, 46]. We re-
call the most important internal-memory results in this area and then discuss the state of the
art in external memory. For a comprehensive discussion of the WSPD and its applications,
we refer the reader to [11].

Closest pair. The closest-pair problem is that of finding the distance between the clos-
est two points in a point set in R

d. A trivial O(N2) time solution to this problem is to
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examine all possible point pairs and report the shortest distance. But this leaves a gap
to the Ω(N logN) lower bound provable in the algebraic computation tree model [7]. The
first optimal algorithms solving this problem in two dimensions are due to Shamos [43] and
Shamos and Hoey [44]. Lenhof and Smid [31] present a simple and practical algorithm that
solves the problem in O(N logN) time. Their algorithm uses the floor function and indirect
addressing and, thus, does not conform with the algebraic model of computation. Rabin [38],
Khuller and Matias [30], and Seidel [42] present randomized closest-pair algorithms that take

expected linear time. The algorithm of [42] takes O
(

N log N
log log N

)

time with high probability.

Dynamic closest pair. Data structures for maintaining the closest pair in a point set that
changes dynamically under insertions and deletions have been discussed in [9, 12, 14, 26, 41],
culminating in the optimal structure of [9], which uses linear space and maintains the closest
pair under point insertions and deletions in O(logN) time. This structure dynamically
maintains a fair split tree (see Section 2) of the point set and extracts the new closest pair
from the updated tree after every update.

K closest pairs. An obvious extension of the closest-pair problem is that of reporting
the K closest pairs instead of only the closest pair. For this problem, the first two al-

gorithms, due to Smid [45], take O
(

N logN +N
√
K logK

)

time in two dimensions and

O
(

N4/3 logN +N
√
K logK

)

time in d dimensions, where d > 2. Dickerson, Drysdale, and

Sack [22] propose a simple O(N logN +K logK) time algorithm for the planar case. In [23],
Dickerson and Eppstein extend the result of [22] to higher dimensions, achieving the same
running time as the algorithm of [22] for the planar case. If the distances do not need to
be reported in sorted order, improved O(N logN + K) time algorithms are presented in
[23, 40]. Lenhof and Smid [31] give a much simpler algorithm achieving the same running
time; but they use indirect addressing, thereby leaving the algebraic model of computation.
An O(N logN +K) time K-closest-pair algorithm based on the WSPD is presented in [11].

All nearest neighbours. Another extension of the closest-pair problem is that of com-
puting the nearest neighbour for every point in the set. This problem is also known as the
all-nearest-neighbour problem. The algorithms of [44] can easily be extended to compute all
nearest neighbours in two dimensions in optimal O(N logN) time. Bentley [8] shows how
to extend his closest-pair algorithm for the d-dimensional case so that it can solve the all-
nearest-neighbour problem in O(N logd−1N) time. The first O(N logN) time algorithm to
solve the all-nearest-neighbour problem in higher dimensions is due to Clarkson [18]. The al-
gorithm is randomized; hence, the running time is expected. Vaidya [47] gives the first deter-
ministic O(N logN) time algorithm for this problem. Callahan and Kosaraju [15] show that
the WSPD can also be used to solve the all-nearest-neighbour problem in O(N logN) time.
In fact, they show that the more general problem of computing the K nearest neighbours
for every point in the point set can be solved in O(N logN +KN) time.
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Spanners. The concept of spanner graphs was introduced by Chew [16]. A geometric t-
spanner is a subgraph of the complete Euclidean graph of a point set that has O(N) edges
and approximates inter-point distances to within a multiplicative factor of t > 1, called
the spanning ratio of the graph. Keil and Gutwin [29] prove that the spanning ratio of
the Delaunay triangulation is no more than 2π

3 cos(π/6)
≈ 2.42. Unfortunately, by a result

of [16], the Delaunay triangulation cannot be used when a spanning ratio arbitrarily close
to 1 is desired. In fact, it is easy to show that there are point sets such that no planar
graph over such a point set has spanning ratio less than

√
2 in the worst case. The first

to show how to construct a t-spanner in the plane, for t arbitrarily close to one, were Keil
and Gutwin [29]. Independently, Clarkson [19] discovered the same construction for d = 2
and d = 3. Ruppert and Seidel [39] generalize the result to higher dimensions, using the
construction of a θ-frame due to Yao [49]; the algorithm takes O

(
N logd−1N

)
time. Arya,

Mount, and Smid [5] combine the θ-graph of Ruppert and Seidel with skip lists [37] to obtain
a t-spanner of spanner diameter O(logN), with high probability; that is, for any two points
p and q, there exists a path consisting of O(logN) edges whose length is within a factor
of t of the Euclidean distance between p and q. The WSPD [15] can be used to obtain
an O(N logN) time algorithm for constructing a t-spanner [13]. In [5], it is shown that
the spanner obtained in this way can be constructed more carefully to guarantee that the
spanner diameter is O(logN).

Results in external memory. A number of external-memory algorithms for proxim-
ity problems and problems related to spanner construction have been proposed in the last
decade. See [2, 48] for surveys. Randomized external-memory algorithms for constructing
Voronoi diagrams in two and three dimensions have been proposed in [21]. Using these algo-
rithms, one can compute the Delaunay triangulation of a point set in R

2 and scan its edge
list to identify the closest pair. This takes O(sort(N)) I/Os. External-memory algorithms
for finding all nearest neighbours for a set of N points in the plane and for other geometric
problems in the plane are discussed in [27]; the all-nearest-neighbour algorithm of [27] takes
O(sort(N)) I/Os. An I/O-efficient data structure for dynamically maintaining the closest
pair in a point set is described in [12]. The data structure can be updated in O(logB N)
I/Os per point insertion or deletion. For Ω(sort(N)) I/O lower bounds for computational
geometry problems in external memory, including the closest-pair problem, see [4]. We are
not aware of any previous results on solving these problems I/O-efficiently in higher dimen-
sions, nor of any results relating to the I/O-efficient construction of spanner graphs, except
for the algorithm of [21] for constructing the Delaunay triangulation.

1.2 New Results

In this paper, we present external-memory algorithms for a number of proximity problems
on a point set S in d-dimensional Euclidean space. The basic tool is an algorithm that con-
structs the WSPD of S in O(sort(N)) I/Os. Given the WSPD, we show that the K-nearest-
neighbour and K-closest-pair problems can be solved in O(sort(KN)) and O(sort(N +K))
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I/Os, respectively. We also argue that a t-spanner of spanner diameter O(logN) can be
derived from the WSPD in O(sort(N)) I/Os.

All our algorithms follow the strategies of algorithms by Callahan and Kosaraju for
these problems [10, 13, 15]. However, the original algorithms are not I/O-efficient or, in
the case of the parallel algorithms for computing the WSPD [10] and for computing nearest
neighbours [10], lead to suboptimal results when translated into I/O-efficient algorithms
using the PRAM-simulation technique of [17]. Our contribution is to provide non-trivial I/O-
efficient implementations of the high-level steps in the algorithms by Callahan and Kosaraju,
which lead to the I/O-complexities stated above.

To the best of our knowledge, our results are the first I/O-efficient algorithms obtained
for problems in higher-dimensional computational geometry. No I/O-efficient algorithms for
computing a fair split tree or a WSPD were known. For the K-nearest-neighbour and K-
closest-pair problems, optimal algorithms were presented in [27] for the case where d = 2
and K = 1. In [4], it is shown that computing the closest pair of a point set requires
Ω(sort(N)) I/Os, which implies the same lower bound for the more general problems we
consider in this paper. Other I/O-efficient algorithms for constructing t-spanners and for
solving the K-nearest-neighbour problem in higher dimensions are presented in [32]. In
particular, it is shown that a K-th order θ-graph for a given point set in R

d can be computed

in O
(

sort(N) + KN
B

logd−1
M/B

N
B

)

I/Os. A new construction based on an O(
√
K)-th order θ-

graph is then used to compute the K closest pairs in O
(

sort(N) + N
√

K
B

logd−1
M/B

N
B

)

I/Os.

2 The Well-Separated Pair Decomposition

In this section, we recall the definition of a well-separated pair decomposition and related
concepts.

For a given point set S ⊂ R
d, the bounding rectangle R(S) is the smallest rectangle

containing all points in S, where a rectangle R is the Cartesian product [x1, x
′
1]× [x2, x

′
2]×

· · · × [xd, x
′
d] of a set of closed intervals. The length of R in dimension i is ℓi(R) = x′i − xi.

The minimum and maximum lengths of R are ℓmin(R) = min{ℓi(R) : 1 ≤ i ≤ d} and
ℓmax(R) = max{ℓi(R) : 1 ≤ i ≤ d}, respectively. We call R a box if ℓmax(R) ≤ 3ℓmin(R).
If all lengths of R are equal, R is a cube. We denote its side length by ℓ(R) = ℓmin(R) =
ℓmax(R). Let imin(R) be a dimension such that ℓimin(R)(R) = ℓmin(R), and let imax(R) be a
dimension such that ℓimax(R)(R) = ℓmax(R). For a point set S, let ℓi(S) = ℓi(R(S)), ℓmin(S) =
ℓmin(R(S)), ℓmax(S) = ℓmax(R(S)), imin(S) = imin(R(S)), and imax(S) = imax(R(S)). We use
dist2(p, q) to denote the Euclidean distance between two points p and q. This generalizes to
point sets by defining dist2(P,Q) = inf{dist2(p, q) : p ∈ P and q ∈ Q}.

A ball of radius r and with center c is the point set B = {p ∈ R
d : dist2(c, p) ≤ r}.

Given a separation constant s > 0, we say that two point sets A and B are well-separated if
R(A) and R(B) can be enclosed in two balls of radius r such that the distance between the
two balls is at least sr (see Figure 1).

We define the interaction product of two point sets A and B as A ⊗ B = {{a, b} : a ∈
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r

r≥ sr
︷ ︸︸ ︷

Figure 1. Two well-separated point sets A (black dots) and B (white dots).

A∧ b ∈ B ∧ a 6= b}. A realization R of A ⊗ B is a set {{A1, B1}, . . . , {Ak, Bk}} with the
following properties:

(R1) Ai ⊆ A and Bi ⊆ B, for 1 ≤ i ≤ k,

(R2) Ai ∩Bi = ∅, for 1 ≤ i ≤ k,

(R3) (Ai ⊗Bi) ∩ (Aj ⊗Bj) = ∅, for 1 ≤ i < j ≤ k, and

(R4) A⊗ B =
⋃k

i=1Ai ⊗ Bi.

Intuitively, this means that, for every pair {a, b} of distinct points a ∈ A and b ∈ B, there is
a unique pair {Ai, Bi} such that a ∈ Ai and b ∈ Bi. A realization is well-separated if it has
the following additional property:

(R5) Sets Ai and Bi are well-separated, for 1 ≤ i ≤ k.

A binary tree T over the points in S defines a recursive partition of S into subsets in
a natural manner: the leaves of T are in one-to-one correspondence to the points in S; an
internal node v of T represents the set of points in S corresponding to the leaves of T that
are descendants of v. We refer to a node that represents a subset A ⊆ S as node A. A leaf
that represents a point a ∈ S is referred to as leaf a or node {a}, depending on the context.
We define the size of a node A ∈ T as the cardinality of set A. A realization of A ⊗ B
uses a tree T if all sets Ai and Bi in the realization are nodes of T . A well-separated pair
decomposition (WSPD) D = (T,R) of a point set S consists of a binary tree T over S and
a well-separated realization R of S ⊗ S that uses T .

Two concepts that are useful when computing well-separated pair decompositions of point
sets are those of fair splits and split trees. A split of a point set S is a partition of S into
two non-empty point sets lying on either side of a hyperplane perpendicular to one of the
coordinate axes and not intersecting any point in S. A split tree T of S is a binary tree
over S defined as follows: If S = {x}, T consists of a single node {x}. Otherwise, consider
a split that partitions S into two non-empty subsets S1 and S2; tree T then consists of a
node S and two split trees T1 and T2 for S1 and S2, respectively, whose roots are children
of S. For a node A in T , the outer rectangle R̂(A) is defined as follows: For the root S,
let R̂(S) be a cube with side length ℓ(R̂(S)) = ℓmax(S) and centered at the center of R(S).
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Figure 2. A partition of a given point set using fair splits and the corresponding fair split tree.

For all other nodes A, the hyperplane used for the split of A’s parent, p(A), divides R̂(p(A))
into two rectangles. Let R̂(A) be the one that contains A. A fair split of A is a split of A
where the hyperplane splitting A is at distance at least ℓmax(A)/3 from each of the two
sides of R̂(A) parallel to it. A split tree formed using only fair splits is called a fair split
tree (see Figure 2). A partial fair split tree T is a subtree of a fair split tree T ′ that contains
the root of T ′; that is, the leaves of T may represent subsets of S instead of single points.
Callahan and Kosaraju [15] use fair split trees to develop sequential and parallel algorithms
for constructing a well-separated realization of S ⊗ S that consists of O(N) pairs of subsets
of S.

The following are alternative, more restrictive, definitions of outer rectangles and fair
splits that ensure in particular that all outer rectangles are boxes. Our algorithm for con-
structing a fair split tree makes sure that the splits satisfy these more restrictive conditions.
For the root S of T , the outer rectangle R̂(S) is defined as above. Given the outer rectan-
gle R̂(A) of a node, a split is fair if it splits R̂(A) perpendicular to its longest side and the
splitting hyperplane has distance at least 1

3
ℓmax(R̂(A)) from the two sides of R̂(A) parallel

to it.1 Let R1 and R2 be the two rectangles produced by this split. The following proce-
dure defines R̂(Ai), for i ∈ {1, 2}: If Ri can be split fairly, let R̂(Ai) = Ri. Otherwise,
split Ri perpendicular to its longest side so that the splitting hyperplane has distance at
least 1

3
ℓmax(Ri) from each of the two sides of Ri parallel to it. Only one of the two resulting

rectangles contains points in Ai. Repeat the process after replacing Ri with this non-empty
rectangle. Effectively, R̂(Ai) is obtained by shrinking Ri.

3 Techniques

In this section, we discuss a number of techniques that will be used in our algorithms in
subsequent sections. These techniques include the buffer tree [3], time-forward processing
[17], and a buffered version of the topology tree [25].

1In [14], this type of split is called a fair cut to emphasize the difference to a regular fair split; every fair
cut is a fair split.
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3.1 The Buffer Tree

The buffer tree [3] is an extension of the well-known B-tree data structure [6]; it outper-
forms the B-tree in applications where a large number of updates (insertions and deletions)
and queries need to be performed and immediate query responses are not required. Using
the buffer tree, processing a sequence of N updates and queries takes O

(
N
B

logM/B
N
B

)
=

O(sort(N)) I/Os. In [3], a priority queue based on the buffer tree is described. This prior-
ity queue can process any sequence of N Insert, Delete, and DeleteMin operations in
O(sort(N)) I/Os.

3.2 Time-Forward Processing

Time-forward processing is a very elegant technique for solving graph problems that has been
proposed in [17]. A more generally applicable and simpler implementation of this technique
has later been provided in [3]. The following problem can be solved using this technique:
Let G be a topologically sorted directed acyclic graph; that is, its vertices are arranged so
that, for every edge (u, v) in G, vertex u precedes vertex v. Every vertex v of G has a
priority, which is equal to its position in the sorted order, and a label φ(v). The goal is to
compute a new label ψ(v), for every vertex v, by applying a function f to φ(v) and the labels
ψ(u1), . . . , ψ(uk) of the in-neighbours u1, . . . , uk of v: ψ(v) = f(φ(v), ψ(u1), . . . , ψ(uk)). To
achieve this, the vertices of G are evaluated in topologically sorted order; after evaluating a
vertex v, its label ψ(v) is sent to all its out-neighbours, to ensure that they have v’s label at
their disposal when it is their turn to be evaluated. The implementation of this technique due
to Arge [3] is simple and elegant: The “sending” of information is realized using a priority
queue Q. When a vertex v wants to send its label ψ(v) to another vertex w, it inserts ψ(v)
into priority queue Q and gives it priority w. When vertex w is being evaluated, it removes
all entries with priority w from Q. Since every in-neighbour of w has sent its output to w
by queueing it with priority w, this provides w with the required inputs. Moreover, every
vertex removes its inputs from the priority queue before it is evaluated, and all vertices with
smaller priorities are evaluated before w. Thus, the entries with priority w in Q are those
with lowest priority at the time when w is evaluated and can therefore be removed using a
sequence of DeleteMin operations. Using the buffer tree as priority queue, graph G can
be evaluated in O(sort(V + E + I)) I/Os, where I is the total amount of information sent
along the edges of G. (I may be ω(V + E) if labels φ(v) and ψ(v) are allowed to be of
non-constant size.)

3.3 The Topology Buffer Tree

The topology tree, introduced by Frederickson [25], is a data structure to represent dynami-
cally changing, possibly unbalanced binary trees so that updates and queries of the tree can
be performed in O(logN) time. The topology tree T of a rooted binary tree T is defined
as follows: A cluster C in T is the vertex set of a connected subgraph T ′ of T . The root of
cluster C is the same as the root of tree T ′. Two disjoint clusters C1 and C2 are adjacent
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if there exist two vertices v ∈ C1 and w ∈ C2 that are adjacent in T . Cluster C1 is a child
of cluster C2 if the parent of the root r1 of C1 is a node of C2. A restricted cluster partition
of T is a partition of the vertex set of T into disjoint clusters so that the following conditions
hold:

(i) No cluster contains more than two vertices,

(ii) A cluster containing two vertices has at most one child, and

(iii) No two adjacent clusters can be combined without violating Condition (i) or (ii).

Given a binary tree T , a multi-level cluster partition of T is defined as a sequence T =
T0, T1, . . . , Tr of binary trees such that, for all 1 ≤ i ≤ r, tree Ti is obtained from tree Ti−1

by contracting every cluster in a restricted cluster partition of Ti−1 into a single vertex, and
tree Tr has a single vertex. A topology tree T of tree T is obtained from a multi-level cluster
partition of T as follows: The vertex set of T is the disjoint union of the vertex sets of
trees T0, . . . , Tr. The vertices of tree Ti are at level i in T , where level 0 is the level of the
leaves of T and level r is the level of the root of T . A vertex v ∈ Ti is the parent of a
vertex w ∈ Ti−1 in T if the cluster in the cluster partition of Ti−1 represented by v contains
vertex w. Since no cluster has size greater than two, T is a binary tree.

Lemma 1 (Frederickson [25]) For all 1 ≤ i ≤ r, |Ti| ≤ 5
6
|Ti−1|.

Lemma 1 implies that r = O(logN) and |T | = O(N). Next we characterize the kind of
search queries that can be answered efficiently on a binary tree T using its topology tree T .
We call a query q oblivious w.r.t. T if the information stored at every node v ∈ T is sufficient
to conclude that either T (v) or T \ T (v) does not contain an answer to query q. Figure 3
illustrates that standard search queries on binary search trees are not oblivious. The next
lemma shows that oblivious queries can be answered using a topology tree.

Lemma 2 Given a topology tree T for a binary tree T , an oblivious query on T can be
answered in O(logN) time.

Proof. For a node v ∈ T , let Desc0(v) be the set of vertices in T0 that are descendants of v
in T , let Tv be the subgraph of T induced by the vertices in Desc0(v), and let rv be the root
of Tv. We assume that every node v ∈ T stores the same information as rv in T .

The query procedure is a simple extension of binary search: Consider the root u of T ,
and let its two children be v and w. Then one of rv and rw, say rv, is the root of T ; trees
Tv and Tw are obtained by removing the edge (rw, p(rw)) from T . The subtrees T (v) and
T (w) of T rooted at v and w represent trees Tv and Tw, respectively. Since the query we
ask is oblivious w.r.t. T , the information stored at rw—that is, at w—is sufficient to decide
whether Tw or T \ Tw = Tv does not contain an answer to the query. In the former case, we
look for an answer in Tv, by recursing on v. In the latter case, we look for an answer in Tw,
by recursing on w.
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Figure 3. Two standard binary search trees. In the left tree, the answer to a search query for element
7 is stored in T (v); in the right tree, the answer is stored in T \ T (v). The information stored at node
v is insufficient to distinguish between these two cases, because node v stores the same information in
both trees. Hence, standard search queries are not oblivious w.r.t. standard binary search trees.

The correctness of this procedure is obvious. The running time is O(logN) because
we spend constant time per level of the topology tree, and there are O(logN) levels, by
Lemma 1.

In [50], Zeh introduces a buffered version of the topology tree, which can be used to
answer a batch of oblivious search queries I/O-efficiently. He builds a topology tree T for T
and cuts it into layers of height log(M/B). The topology buffer tree B of T is obtained by
contracting every subtree in such a layer into a single node. Tree B can be used to simulate
searching T : Filter all queries in the given set Q of queries through B, from the root towards
the leaves. For every node v ∈ B, load the subtree Tv of T represented by v into internal
memory and filter the queries in the set Qv of queries assigned to v through Tv to determine
for every query, the child of v to which this query is assigned next. By ensuring that the
bottom-most trees in the partition of T have height log(M/B), it is guaranteed that B
has size O(N/B) and height O(logM/B(N/B)). The standard procedure for filtering queries
through a buffer tree [3] then leads to the following result.

Theorem 1 (Zeh [50]) A topology buffer tree B representing a binary tree T of size N can
be constructed in O(sort(N)) I/Os. A batch of K oblivious search queries on T can then be
answered in O(sort(N +K)) I/Os.

In [50], a more complicated two-level data structure is used to achieve optimal perfor-
mance on multiple disks. The problem in the multi-disk case is that the fan-out of the
distribution procedure of [36] is only O(

√

M/B). This would increase the number of nodes
in B and thus the overhead I/Os involved in the distribution process. This problem is solved
using the two-level scheme.
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3.4 Querying a Hierarchy of Rectangles

We show how to use the topology buffer tree introduced in Section 3.3 to answer deepest
containment queries on a hierarchy of nested rectangles represented by a binary tree T . Such
queries need to be answered as part of our algorithm for constructing a fair split tree.

Let S ⊂ R
d be a point set, and let T be a binary tree with the following properties:

(i) Every node v ∈ T has an associated rectangle R(v),

(ii) For the root r of T , R(r) contains all points in S,

(iii) For every node v 6= r in T with parent p(v), R(v) ⊆ R(p(v)), and

(iv) If R(v) ∩R(w) 6= ∅, then w.l.o.g. R(v) ⊆ R(w) and w is an ancestor of v.

A deepest containment query on T is the following: Given a point p ∈ S, find the node v ∈ T
such that p ∈ R(v) and there is no descendant of v that satisfies this condition. We show
how to answer these queries for all points in S I/O-efficiently.

Lemma 3 Given a set S ⊂ R
d of N points and a tree T with Properties (i)–(iv) above,

deepest containment queries on T can be answered for all points p ∈ S in O(sort(N + |T |))
I/Os.

Proof. Since the answer v to a query with a point p ∈ S is stored in T (w) if and only
if p ∈ R(w), deepest containment queries are oblivious w.r.t. tree T . Hence, we can apply
Theorem 1 to answer deepest containment queries for all points in S in O(sort(N+|T |)) I/Os.

4 Constructing a Fair Split Tree

Our algorithm for computing a WSPD of a point set S is based on the algorithm of [15]. This
algorithm uses the information provided by a fair split tree of S to derive the desired WSPD
of S. Next we present an I/O-efficient algorithm to compute a fair split tree. We follow the
framework of the parallel algorithm of [10]; but we do not simulate the PRAM algorithm, as
this would lead to a higher I/O-complexity. First we outline the algorithm. Then we show
that each of its steps can be carried out I/O-efficiently. Since we follow the framework of [10],
the correctness of our algorithm follows from [10], provided that the presented I/O-efficient
implementations of the different steps of the framework are correct.

To compute a fair split tree T of a point set S, we use Algorithm 1 and provide it with the
set S and a cube R0 that contains S. The side length of R0 is ℓ(R0) = ℓmax(S). The centers
of R0 and R(S) coincide. The algorithm computes the split tree T recursively. First it
computes a partial fair split tree T ′ of S. Then it recursively computes fair split trees for the
leaves of T ′. In the rest of this section, we show that T ′ can be computed in O(sort(N)) I/Os.
As we show next, the leaves of T ′ are small enough to ensure that the total I/O-complexity
of Algorithm 1 is O(sort(N)).
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Procedure FairSplitTree

Input: A point set S ⊂ R
d and a box R0 that contains all points in S.

Output: A fair split tree T of S.

1: if |S| ≤M then
2: Load point set S into internal memory and use the algorithm of [15] to compute T .
3: else
4: Apply procedure PartialFairSplitTree (Algorithm 2) to compute a partial fair

split tree T ′ of S. The leaves of T ′ have size at most Nα.
5: Let S1, . . . , Sk be the leaves of T ′.
6: for i = 1, . . . , k do
7: Apply procedure FairSplitTree recursively to point set Si and the outer rectan-

gle R̂(Si) of Si in T ′, to compute a fair split tree Ti of Si.
8: end for
9: T = T ′ ∪ T1 ∪ · · · ∪ Tk.

10: end if

Algorithm 1. Computing a fair split tree of a point set.

Theorem 2 Given a set S of N points in R
d, Algorithm 1 computes a fair split tree T of S

in O(sort(N)) I/Os.

Proof. By Lemma 4 below, procedure PartialFairSplitTree correctly computes a partial
fair split tree T ′ of S. This implies that Algorithm 1 computes a fair split tree of S because
it recursively augments T ′ with fair split trees of its leaves.

By Lemma 4, Line 4 of Algorithm 1 takes O(sort(N)) I/Os. Thus, we obtain the following
recurrence for the I/O-complexity of Algorithm 1:

I(N) ≤ c · sort(N) +

k∑

i=1

I(Ni),

where c is an appropriate constant such that Algorithm 2 takes at most c · sort(N) I/Os and
Ni is the size of set Si. Since Ni ≤ Nα and

∑k
i=1Ni = N , this can be expanded to

I(N) ≤ c · sort(N)
∞∑

i=0

αi,

whose solution is I(N) ≤ c
1−α

sort(N) = O(sort(N)). Hence, Algorithm 1 takes O(sort(N))
I/Os.

In the rest of this section, we present the details of procedure PartialFairSplitTree

(Algorithm 2) and prove the following lemma.
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Procedure PartialFairSplitTree

Input: A point set S ⊂ R
d and a box R0 that contains all points in S.

Output: A partial fair split tree T ′ of S whose leaves have size at most |S|α.

1: Compute a compressed pseudo split tree Tc of S such that none of the leaves of Tc has
size more than |S|α.

2: Expand tree Tc to obtain a pseudo split tree T ′′ of S whose leaves have size at most |S|α.
3: Remove all nodes of T ′′ that do not represent any points in S. Compress every resulting

path of degree-2 vertices into a single edge. The resulting tree is T ′.

Algorithm 2. Computing a partial fair split tree of a point set S.

Lemma 4 Given a set S of N points in R
d, Algorithm 2 takes O(sort(N)) I/Os to compute

a partial fair split tree T ′ of S each of whose leaves represents a subset of at most Nα points
in S, where α = 1− 1

2d
.

Algorithm 2 computes the desired partial fair split tree T ′ in three phases. The first
two phases produce a tree T ′′ that is almost a partial fair split tree, except that some of its
leaves may represent boxes that are empty. We call T ′′ a pseudo split tree. The third phase
removes these empty leaves and contracts T ′′ to obtain T ′.

To construct T ′′, the first phase constructs a tree Tc that is a compressed version of T ′′.
In particular, some leaves of T ′′ are missing in Tc and some edges of Tc have to be expanded
to a tree that can be obtained through a sequence of fair splits. As we will see, attaching
the missing leaves is easy; the compressed edges represent particularly nice sequences of fair
splits that can be constructed I/O-efficiently. Next we provide the details of the three phases
of Algorithm 2.

4.1 Constructing T c

To construct tree Tc, we partition each dimension of rectangle R0 into slabs such that each
slab contains at most Nα points. We ensure that every leaf of Tc is contained in a single slab
in at least one dimension. This guarantees that every leaf of Tc contains at most Nα points.
The construction of these slabs is the only place where the construction of Tc depends on the
point set S. Once the slabs are given, we consider the nodes of Tc to be rectangles produced
from rectangle R0 using fair splits.2 The slabs are bounded by ⌈N1−α⌉ + 1 axes-parallel
hyperplanes. We use these slab boundaries to guide the splits in the construction of Tc,
thus limiting the number of rectangles that can appear as nodes of Tc. This is important
for the following reason: Conceptually, we construct Tc by recursively splitting smaller and
smaller rectangles, but we cannot afford to apply this sequential approach because it is not
I/O-efficient. Instead, we generate all rectangles that might be nodes of Tc and construct a

2The splits are not fair in the exact sense of the definition because it is not guaranteed that there is at
least one point on each side of the splitting hyperplane. All other conditions of a fair split are satisfied.
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graph that has Tc as a subgraph. Then we extract Tc from this graph. The bounded number
of nodes guarantees that the constructed graph has linear size and, thus, that Tc can be
extracted efficiently.

Now consider a node R ∈ Tc that needs to be split. Let R′ denote the largest rectangle
that is contained in R and whose sides lie on slab boundaries. To bound the number of
rectangles we have to consider as candidates to be nodes of Tc, we maintain the following
invariants for all rectangles R generated by the algorithm:

(i) In each dimension, at least one side of R lies on a slab boundary,

(ii) For all i ∈ [1, d], either ℓi(R
′) = ℓi(R) or ℓi(R

′) ≤ 2
3
ℓi(R), and

(iii) ℓmin(R) ≥ 1
3
ℓmax(R), that is, R is a box.

Invariants (i) and (ii) hold for rectangle R0 by definition. Invariant (iii) also holds for R0

because R0 is either a cube or a rectangle computed by a previous invocation of the algorithm.
Given a rectangle R that satisfies Invariants (i)–(iii), we apply one of the following cases (see
Figure 4) to split it into two rectangles using a hyperplane perpendicular to dimension
imax(R). Each of these cases is said to “produce” one or two rectangles, which are the
children of R in Tc and are subject to recursive splitting if necessary. The three cases ensure
that the rectangles they produce satisfy Invariants (i)–(iii).

Case 1. ℓmax(R) = ℓimax(R)(R
′), that is, both sides of R in dimension imax(R) lie on slab

boundaries. We find the slab boundary in this dimension that comes closest to splitting R
into equal halves. If this boundary is at distance at least 1

3
ℓmax(R) from both sides of R

in dimension imax(R) (Case 1a), we split rectangle R along this slab boundary. Otherwise
(Case 1b), we split rectangle R into two equal halves in dimension imax(R). This case
produces the two rectangles on both sides of the split.

If rectangle R does not satisfy Case 1, then ℓimax(R)(R
′) ≤ 2

3
ℓmax(R), that is, only one side

of R in dimension imax(R) lies on a slab boundary. We call this slab boundary H .

Case 2. ℓmax(R
′) ≥ 4

27
ℓmax(R). If ℓimax(R)(R

′) ≥ 1
3
ℓmax(R) (Case 2a), we split rectangle R

along the hyperplane that contains the side of R′ opposite to the one contained in H . Oth-

erwise (Case 2b), we split rectangle R along a hyperplane at distance y = 2
3

(
4
3

)j
ℓmax(R

′)

from H , where j is the unique integer such that 1
2
ℓmax(R) < 2

3

(
4
3

)j
ℓmax(R

′) ≤ 2
3
ℓmax(R).

Note that 0 ≤ j ≤ −⌊log 4
27
/ log 4

3
⌋, that is, there are only O(1) choices for j. This case

produces only the rectangle containing R′. The reason for not including this second rectangle
as a node of Tc is that it violates Invariant (i) in Case 2b. However, the second rectangle
contains at most Nα points, as it is contained in a single slab of rectangle R0. Hence, we
can attach it as a leaf of T ′′ in the second phase without violating the constraint that no leaf
of T ′′ contains more than Nα points.
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Case 1: (a) (b)

Case 2: (a) (b)

ℓ
m

a
x
(R

′ )
2
3(4

3)3ℓmax(R
′)

Case 3:

ℓ
m

a
x
(R

′ )

3
2ℓmax(R

′)

Figure 4. The different cases of the rectangle splitting rule. The thick rectangle is R. In Cases 1 and
2, the thick vertical line is the line where R is split. Slab boundaries are shown as dashed lines. Where
shown, R′ is shown as a thin solid rectangle. In Cases 1 and 2, the middle third of R is shaded. If there
is a slab boundary passing through this region, we have Case 1a or Case 2a, respectively. In Case 2b,
the splitting line is chosen so that it is in the darker right half of the shaded region. The shaded square
in the bottom left corner in Cases 2 and 3 has side length 4

27ℓmax(R). If there is a slab boundary that
passes through R, but not through this region, we have Case 2. Otherwise, we have Case 3.
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Case 3. ℓmax(R
′) < 4

27
ℓmax(R). Then R′ shares a unique corner with R. We construct

a cube C that contains R′, shares the same corner with R and R′, and has side length
ℓ(C) = 3

2
ℓmax(R

′). This case produces the rectangle C. The edge between R and C is a
compressed edge, which has to be expanded during the construction of T ′′ to obtain a sequence
of fair splits that produce C from R. Again, the reason for introducing this compressed edge
is that the rectangles produced by this sequence of fair splits would violate Invariant (i).

It is shown in [10] that each of the rectangles produced by these three cases satisfies
Invariants (i)–(iii). Callahan also observes that each rectangle side produced by a split can
be uniquely described using a constant number of slab boundaries in this dimension plus
a constant amount of extra information. Since this is also true for the initial rectangle R0

(because it has all its sides on slab boundaries), any rectangle that can be obtained from
R0 through a sequence of applications of the above rules can be described using two slab
boundaries and a constant amount of information per dimension. The converse may not
be true; that is, there may be rectangles that can be described in this way, but cannot be
obtained from R0 through a sequence of splits as defined in the above rules. The idea of
Callahan’s parallel algorithm for constructing Tc, which is also the basis for our I/O-efficient
construction, is to construct the set of all rectangles that can be described in this fashion—
Callahan calls these constructible—and then to extract the set of rectangles that can be
produced from R0. The key to the efficiency of the construction is the following lemma,
which gives a bound on the total number of constructible rectangles. We note that a slightly
looser bound is proved in [10].

Lemma 5 There are O
(
N2d(1−α)

)
constructible rectangles.

Proof sketch. Following the argument in [10], we prove that every dimension of a con-
structible rectangle can be represented using at most two slab boundary and an integer
that is upper-bounded by a constant. Since there are only O(N1−α) slab boundaries in each
dimension, the lemma follows.

As in [10], we prove our claim for Case 2b because this is the case that can produce the
largest number of rectangles. So consider splitting a rectangle R by applying Case 2b to its
maximal dimension imax. Then the rectangle produced by this case is uniquely described
by the slab boundary H that contains one of the two sides of R perpendicular to dimension
imax, the length ℓimax

(R′) of R′ in this dimension, and the integer j. The length ℓimax
(R′) is

uniquely described by the two slab boundaries that contain the sides of R′ perpendicular to
dimension imax. Callahan concludes from this that 3 slab boundaries and the value of j are
sufficient to describe the sides of the produced rectangle perpendicular to imax. To improve
the bound to 2 slab boundaries, we observe that one of the slab boundaries defining ℓimax

(R′)
is H . Thus, we can describe the produced rectangle using 2 slab boundaries, the integer j,
and a bit that indicates which of the two slab boundaries is H .

We apply the above splitting rules to obtain tree Tc as follows: The root of Tc is rect-
angle R0. This node has two children, as rectangle R0 always satisfies Case 1. For each
of the children, we recursively construct a compressed pseudo split tree until all rectangles
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have been split into rectangles that are not intersected by any slab boundary in at least one
dimension. These rectangles are the leaves of Tc. Since a rectangle completely contained in
a slab contains at most Nα points, it is guaranteed that no leaf in Tc has size more than Nα.

As mentioned above, constructing tree Tc using repeated fair splits does not lead to an
I/O-efficient algorithm for constructing Tc. Hence, we extract tree Tc from a graph G whose
nodes are all the constructible rectangles and which contains Tc as a subgraph. Graph G
is defined as follows: There is a directed edge (R1, R2) in G, where R1 and R2 are two
constructible rectangles, if rectangle R2 is produced from rectangle R1 by applying the above
rectangle splitting rules. This implies that Tc is the subgraph of G containing all nodes R
that can be reached from R0 in G.

It is not hard to see that graph G is a DAG and that R0 is one of its sources. Every
vertex in G has out-degree at most two, which guarantees that the total size of graph G is
linear in the number of constructible rectangles. If we choose α = 1− 1

2d
, Lemma 5 ensures

that G has size O(N). In order to be able to extract Tc from G using the time-forward
processing technique, we need an I/O-efficient procedure to topologically sort G. This is less
trivial than it seems because no generally I/O-efficient algorithm for topologically sorting
sparse DAGs is known. The solution we propose is based on the following observation.

Observation 1 Let R1 and R2 be the two rectangles produced by splitting a rectangle R.
Then

∑d
j=1 ℓj(Ri) <

∑d
j=1 ℓj(R), for i ∈ {1, 2}.

Since graph G contains an edge (R1, R2) only if rectangle R2 is one of the rectangles
produced by a split of R1 or it is contained in one of the rectangles produced by a split
of R1, Observation 1 implies that G can be topologically sorted by sorting its vertices by the
sums of their side lengths, in decreasing order. We are now ready to present the algorithm
for computing Tc. The algorithm consists of three steps: Step 1 computes the slabs into
which rectangle R0 is partitioned. Step 2 constructs graph G from these slab boundaries.
Step 3 extracts tree Tc.

Step 1—Constructing the slabs. To compute the slabs, we iterate over all d dimensions.
For each dimension, we sort the points in S by their coordinates in this dimension. We
scan the sorted list of points and place a slab boundary between the (jNα)-th and (jNα +
1)-st point, for 1 ≤ j ≤ ⌊N1−α⌋. In addition, we place slab boundaries that coincide
with the sides of R0 perpendicular to the current dimension. Since we scan and sort set S
once per dimension, the construction of the slabs in all dimensions takes O(d · sort(N)) =
O(sort(N)) I/Os.

Step 2—Constructing graph G. As mentioned before, every constructible rectangle can
be encoded using two slab boundaries plus a constant amount of information per dimension.
For instance, the i-th dimension of a rectangle produced by a type-1b split can be fully
represented by the two slab boundaries of the original rectangle plus two flags saying that
the rectangle is the result of a type-1b split and which of the two produced rectangles this
is. Given that rectangles can be represented in this manner, we construct the vertex set of
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graphG using O(d) nested scans. In particular, every vertex (that is, constructible rectangle)
is a 3d-tuple, storing 2 slab boundaries and a constant amount of information per dimension.
Assume that every tuple is of the form (s1, s

′
1, α1, s2, s

′
2, α2, . . . , sd, s

′
d, αd), where si, s

′
i, and αi

are the two slab boundaries and the extra information defining the corresponding rectangle
in dimension i. To generate these tuples in lexicographically sorted order, we first create a
list containing the right number of tuples with their entries uninitialized. A first scan over
this list of tuples and the list of slab boundaries in the first dimension allows us to fill in the
s1-values of all tuples. In a second scan, we fill in the s′1-values. More precisely, the second
time around, we scan the list of tuples once, while we scan the list of slab boundaries once
per slab boundary in the s1-dimension of the tuples. The α1-values can be filled in in another
scan of the list of tuples without requiring a scan of slab lists. To fill in the s2-values, we
scan the list of tuples and the list of slab boundaries in the second dimension, where we scan
the list of tuples once and the list of slab boundaries once per unique tuple (s1, s

′
1, α1) in the

list of partially defined tuples. We continue this until we have filled in all 3d dimensions of
all tuples. Note that filling in one dimension of the tuples costs one scan of the tuple list and
multiple scans of the corresponding slab list. However, the total number of items read from
the slab list is equal to the number of tuples, so that the cost of filling in one dimension is
equivalent to scanning the list of tuples twice. Since there are O(N) tuples and d is assumed
to be constant, the total cost of constructing all rectangles is O(scan(N)).

Every node of G now stores a complete representation of the rectangle R it represents.
Before constructing the edge set of G, we augment every node with a complete description
of the largest rectangle R′ that is contained in R and is bounded by slab boundaries. To
do this, we iterate over all dimensions and compute the boundaries of all rectangles R′ in
this dimension. To do the latter, we build a buffer tree over the slab boundaries in this
dimension. Finding the boundary of the rectangle R′ contained in rectangle R now amounts
to answering standard search queries on the constructed tree. Since there are O (N1−α) slab
boundaries and O(N) rectangles R, these queries can be answered in O(sort(N)) I/Os per
dimension. Since we assume that d is constant, the construction of rectangles R′ takes
O(d · sort(N)) = O(sort(N)) I/Os in total.

To construct the edge set of G, we need to find at most two out-edges for each rectangle R.
Since the dimensions of rectangles R and R′ are stored locally with R, we can distinguish
between Cases 1, 2, and 3 based only on the information stored with node R. The information
is also sufficient to distinguish between Cases 2a and 2b, so that in Cases 2 and 3, we
can construct the out-edge of rectangle R only from the information stored with R. To
distinguish between Cases 1a and 1b, we need to find the slab boundary that comes closest
to splitting R in half in dimension imax(R). To do this, we apply the same approach as for
computing rectangles R′: We build a buffer tree over the slab boundaries in each dimension.
Then we query this buffer tree with the position of the hyperplane H ′ that splits rectangle R
in half. This query produces the positions of the two slab boundaries on each side of the
hyperplane; it is easy to select the one that is closer to H ′. Again, this involves answering
O(N) queries on buffer trees of size O (N1−α). Hence, the edge set of G can be constructed
in O(sort(N)) I/Os.
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Instead of adding edges as separate records, it is more convenient to represent the edges
implicitly by storing all vertices as triples (R,R1, R2), where R1 and R2 are the two rectangles
produced by the split of R. If the split of R produces only one rectangle R1, we represent R
as the triple (R,R1,null). If R is a leaf, we represent R as the triple (R,null,null).

Step 3—Extracting Tc. Given graph G, as constructed in Step 2 of the algorithm, the
extraction of Tc is rather straightforward. In particular, graph G can be topologically sorted
in O(sort(N)) I/Os, using Observation 1. Then we label every node except R0 as inactive.
Node R0 is labelled as active. We apply time-forward processing to relabel the nodes of G.
In particular, every active node remains active and sends “activate” messages to its out-
neighbours. An inactive node that receives an “activate” message along one of its in-edges
becomes active and forwards the “activate” message along its out-edges. Since graph G has
size O(N), this application of time-forward processing takes O(sort(N)) I/Os. Once the
algorithm finishes, every node reachable from R0 is active, while all other nodes are inactive.
However, we have observed above that a node is in Tc if and only if it is reachable from R0

in G. Hence, a final scan of the vertex set of G suffices to extract the vertices of tree Tc.
This takes another O(scan(N)) I/Os.

We have shown that each of the three steps of the construction of Tc can be carried out
in O(sort(N)) I/Os. Hence, we obtain the following lemma.

Lemma 6 Given a point set S ⊂ R
d and a rectangle R0 that encloses S, a compressed

pseudo split tree of S with root R0 can be constructed in O(sort(N)) I/Os.

4.2 Constructing T
′′

The goal of the second phase of Algorithm 2 is to construct a pseudo split tree T ′′ of S from
the compressed pseudo split tree Tc constructed in Phase 1. Tree T ′′ may have some leaves
that do not correspond to any point in S; but, apart from that, it is a partial fair split tree
whose leaves represent point sets of size at most Nα. In order to obtain T ′′ from Tc, we need
to do the following:

(1) Attach the leaves that were discarded in Case 2 because they violate Invariant (i). It is
easy to see that every such leaf is completely contained in a slab. Hence, it contains at
most Nα points and just attaching it is sufficient; no splits are required.

(2) Replace every compressed edge (R,C) of Tc produced by an application of Case 3 with
a sequence of fair splits that produce the shrunk cube C from rectangle R. Note that
such a sequence of fair splits exists because ℓ(C) = 3

2
ℓmax(R

′) < 2
9
ℓmax(R) ≤ 2

3
ℓmin(R)

(see the discussion of Step 2 below).

(3) Distribute the points of S to the leaves of T ′′ that contain them. This is necessary to
recognize and discard empty leaves in Phase 3 of Algorithm 2. The recursive construction
of fair split trees for the leaves of the partial fair split tree we compute also requires the
point set contained in each leaf.
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Next we show how to carry out these tasks in an I/O-efficient manner.

Step 1—Attaching missing leaves. Recall that every node R in Tc stores a full descrip-
tion of rectangles R and R′. As we argued in Section 4.1, this is sufficient to distinguish
between Cases 1, 2, and 3 and to compute the rectangle produced by a type-2 split. Given
a type-2 rectangle R and the rectangle R1 produced by the type-2 split, the discarded
rectangle is R2 = R \ R1. Since the information stored with every such rectangle R is
sufficient to compute R2, a single scan of the vertex set of Tc suffices to produce all dis-
carded nodes. In particular, for every type-2 node R represented by the triple (R,R1,null),
we change its triple to (R,R1, R2) and add node R2 to the vertex set of Tc. This takes
O(scan(|Tc|)) = O(scan(N)) I/Os. We call the resulting tree T+

c .

Step 2—Distributing the points of S and expanding compressed edges. As a
result of the previous step, every point in S is contained either in some box that is a leaf
of tree Tc or in a region R \ C, where (R,C) is a compressed edge produced by Case 3.
Before expanding all compressed edges, we need to determine the region that contains each
of the points in S. This is equivalent to answering deepest containment queries on T+

c , for
all points in S. By Lemma 3, this takes O(sort(N)) I/Os.

To replace every compressed edge (R,C) produced by Case 3, we simulate one phase
of the internal memory algorithm of [15] for constructing a fair split tree. This produces a
tree T (R,C) whose leaves form a partition of R into boxes. One of these leaves is C. All
internal nodes of T (R,C) are ancestors of C; that is, tree T (R,C) is a path from R to C
with an extra leaf attached to every node on this path except C. Note that every leaf R′ 6= C
of T (R,C) contains at most Nα points because it is completely contained between two slab
boundaries in dimension imax(p(R

′)). Hence, replacing every edge (R,C) in T+
c with its

corresponding tree T (R,C) produces a pseudo split tree T ′′ of S. It remains to show how to
construct tree T (R,C) I/O-efficiently.

We iterate the following procedure, starting with R′ = R, until R′ = C: If ℓmax(R
′) >

3ℓ(C), we apply a split in dimension imax(R
′) to produce two rectangles R1 and R2 of equal

size. Otherwise, observe that R′ and C share one side that is perpendicular to dimen-
sion imax(R

′). Let H be the hyperplane that contains the other side of C perpendicular to
dimension imax(R

′), and let R1 and R2 be the two rectangles produced by splitting R′ along
hyperplane H . In both cases, let R1 be the rectangle that contains C. It is not hard to
verify that both R1 and R2 are boxes and that either ℓi(R1) = ℓ(C) or ℓi(R1) ≥ 3

2
ℓ(C),

for every dimension 1 ≤ i ≤ d. The latter condition guarantees that the procedure can
be applied iteratively to rectangle R1. If rectangle R2 contains at least one point, we dis-
tribute the points in R′ \ C to rectangles R1 and R2, make rectangles R1 and R2 children
of rectangle R′, and repeat the process with R′ = R1. Otherwise, we simply replace rect-
angle R′ with R1, essentially shrinking rectangle R′, and repeat. This guarantees that only
O(N) splits are performed for all compressed edges (R,C) in T+

c . Also observe that all
performed splits are fair: this is obvious if we split R′ in half; if we do not split R′ in half,
we have 1

3
ℓmax(R

′) ≤ ℓ(C) ≤ 2
3
ℓmax(R

′), which makes a split along C’s side fair.
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To carry out this procedure, we use d sorted lists L1, . . . , Ld, where list Li stores the
points in R \ C sorted by their i-th coordinates. When splitting rectangle R′ in dimension
imax = imax(R

′), we scan list Limax
from the appropriate end until we find the first point

in R1. If this is the first point in Limax
, we perform a shrink operation, since rectangle R2 is

empty. Otherwise, we remove the scanned points from list Limax
and add them to the point

set of leaf R2. Before applying the algorithm to R1, we have to remove the points in R2 from
all lists Li, i 6= imax. Unfortunately, this may be expensive, because there is no guarantee
that these points are stored consecutively in these lists. Hence, we do not modify lists Li,
i 6= imax, at this point. Instead, when using such a list Li to perform a subsequent split, we
augment the scan as follows: For every scanned point, we test whether it is contained in R2.
If this is the case, we append it to the point set of leaf R2 as above. Otherwise, this point
is contained in R \R′ and, hence, has been written to the point set of some leaf of T (R,C)
that has been produced before. Thus, we remove the point from Li without further action.
In total, every list is scanned at most once, so that O(scan(|S ∩ (R\C)|)) I/Os are sufficient
to compute tree T (R,C). In total, the replacement of all edges (R,C) with trees T (R,C)
takes O(sort(N)) I/Os.

Observe that the resulting tree T ′′ has size O(N): Tree Tc has size O(N). In the first
step of the construction of T ′′ from Tc, we add at most one child to every node of Tc. The
second step adds two nodes per split performed during the construction of a tree T (R,C). As
argued above, we perform only O(N) splits; the claim follows. We have shown the following
lemma.

Lemma 7 Given a compressed pseudo split tree Tc of a set S of N points in R
d, a pseudo

split tree T ′′ of S such that every leaf represents at most Nα points in S can be computed in
O(sort(N)) I/Os.

While the procedure we have described is I/O-efficient, there is no bound on the number
of shrink operations (which incur no I/Os) we perform; that is, the procedure, as described
above, may spend too much computation time in internal memory. To rectify this, we briefly
sketch how to avoid performing more than a linear number of shrink operations: When we
are about to perform a shrink operation in dimension i, we scan lists L1, . . . , Ld, to identify
the first point in R′ in each dimension. Denote these points by p1, . . . , pd. Let R∗ be the
smallest rectangle that shares the corner shared by R and C and contains points p1, . . . , pd

as well as cube C. Let ℓ′i = ℓi(R
∗) if ℓi(R

∗) ≤ 2
3
ℓi(R

′). Otherwise, let ℓ′i = ℓi(R
′). Let

ℓ′max = max{ℓ′i : 1 ≤ i ≤ d}. We shrink R′ to the following rectangle R′′: Rectangle R′′

shares the same corner with R and C as R′. We define ℓj(R
′′) = ℓ(C) if ℓ′max ≤ 3ℓ(C) and

ℓ′j = ℓ(C). Otherwise, let ℓj(R
′′) = max(ℓ′j,

3
2
ℓ(C), 1

3
ℓ′max). It is easy to see that R′′ is a box

and that, in each dimension j, either ℓj(R
′′) = ℓ(C) or ℓj(R

′′) ≥ 3
2
ℓ(C). Hence, C can be

obtained from R′′ through a sequence of fair splits. Moreover, if R′′ 6= C, then the next split
of R′′ in dimension imax(R

′′) is an actual split of R′′, that is, it will leave at least one point
on the side that does not contain C. Hence, we perform at most one shrink operation per
split.
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4.3 Constructing T
′

Given a pseudo split tree T ′′ of S, we obtain a partial fair split tree T ′ from T ′′ by removing
all nodes R from T ′′ such that R∩S = ∅ and compressing all paths of degree-2 nodes in the
resulting tree. Given the list of pairs (p, R), R ∈ T ′′ and p ∈ S∩R, produced by the previous
two phases, we sort the pairs in this list by their second components. We sort the vertex
set of T ′′. Now a single scan of these two sorted lists suffices to mark every leaf R of T ′′

such that R ∩ S = ∅ as “remove” and all remaining leaves as “keep”. Using time-forward
processing, we process T ′′ from the leaves towards the root to mark every internal node as
“keep”, “contract”, or “remove”, depending on whether none, one, or both of its children
are marked as “remove”. In addition to these marks, we label every node R with its closest
descendant K(R) that is labelled “keep”. In particular, K(R) = R if R is itself labelled
“keep”, and K(R) = K(R′) if R is labelled “contract”, where R′ is the child of R that is not
labelled “remove”. Finally, for every node labelled “keep”, we replace both of its children
R1 and R2 with their corresponding descendants K(R1) and K(R2). At the end of this
labelling procedure, the tree induced by all nodes labelled “keep” is tree T ′. We scan the
vertex set of T ′′ one more time to remove all nodes marked as either “remove” or “contract”.
All the techniques used in this procedure take O(sort(N)) I/Os. Hence, this third phase of
Algorithm 2 takes O(sort(N)) I/Os. We have shown the following lemma, which completes
the proof of Lemma 4.

Lemma 8 Given a pseudo split tree T ′′ of a set S ⊂ R
d of N points, a partial fair split tree

T ′ of S such that every leaf in T ′ represents at most Nα points in S can be computed in
O(sort(N)) I/Os.

5 Constructing a WSPD

In this section, we describe an I/O-efficient algorithm to extract a WSPD of a point set S from
a fair split tree T of S. We assume that every leaf p of T is labelled with the coordinates
of point p. Every internal node A is labelled with its bounding rectangle R(A). Every
pair {Ai, Bi} in the computed WSPD is represented as the pair of nodes in T rather than
using a full representation of both sets because, otherwise, the output may have size Ω(N2).

Our algorithm simulates the internal memory algorithm of [15], which uses the fair split
tree to drive the generation of pairs. We show that this computation can be translated into a
traversal of a DAG G of size O(N). This traversal can be performed using the time-forward
processing technique. The difficulty is that we are not able to generateG beforehand, because
the presence of edges in G is decided only while the algorithm runs. We could generate a
supergraph of G that contains all edges that are potentially in G; but there are Ω(N2) such
edges in the worst case, so that this does not lead to an efficient algorithm. Next we define
the DAG G and show that it can be generated efficiently while traversing it.

In order to define G, we need to consider the internal memory algorithm of [15] for
computing a well-separated realization of a point set S from its fair split tree T . We call
this procedure ComputeWSR; its pseudo-code is shown in Algorithm 3. In this algorithm,
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Procedure ComputeWSR

Input: A point set S ⊂ R
d and a fair split tree T of S.

Output: A well-separated realization R = {{A1, B1}, . . . , {Ak, Bk}} of S ⊗ S that consists
of k = O(|S|) pairs and uses T .

1: For every internal node of T with children A and B, add a pair {A,B} to a set R.
2: R← ∅
3: for every pair {A,B} ∈ R do
4: Remove pair {A,B} from R.
5: R← R∪ FindPairs({A,B}, T )
6: end for

Procedure FindPairs

Input: A fair-split tree T and a pair {A,B} of siblings in T .
Output: A well-separated realization R′ of A⊗B.

1: R′ ← {{A,B}}
2: R′ ← ∅
3: while R′ is not empty do
4: Remove a pair {A,B} from R′.
5: {Assume w.l.o.g. that B ≺ A.}
6: if A and B are well-separated then
7: Add the pair {A,B} to R′.
8: else
9: Let A1 and A2 be the two children of A in T .

10: Add pairs {A1, B} and {A2, B} to R′.
11: end if
12: end while

Algorithm 3. Computing a well-separated realization from a fair split tree.

we define A ≺ B if either ℓmax(A) < ℓmax(B) or ℓmax(A) = ℓmax(B) and ν(A) < ν(B), for an
arbitrary, but fixed, postorder numbering ν of T .

It is not hard to see that the set R constructed in Line 1 of procedure ComputeWSR

is a realization of S ⊗ S. However, in general, this realization is not well-separated. To
obtain a well-separated realization of S ⊗ S, the algorithm iterates over all pairs in R and
tests whether they are well-separated. If a pair {A,B} is well-separated, it is added to
realization R. Otherwise, it is replaced by a well-separated realization of A⊗B. Hence, the
algorithm maintains the invariant that R∪R is a realization of S⊗S and all pairs in R are
well-separated. Since set R is empty when the algorithm terminates, the final set R is a well-
separated realization of S ⊗ S. Using packing arguments, Callahan and Kosaraju [15] show
that the computed realization has size O(|S|). To show that the algorithm takes O(|S|) time
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to produce realization R, they introduce the concept of a computation tree. Each such tree
represents the pairs {A,B} produced in one invocation of procedure FindPairs.

Formally, a computation tree is defined as follows: Let {A,B}, B ≺ A, be a pair of nodes
in T . If A and B are well-separated, the computation tree T ({A,B}) has a single node (A,B).
Otherwise, let A1 andA2 be the two children of A in the fair split tree T . Then tree T ({A,B})
consists of a root node (A,B) and two computation trees T ({A1, B}) and T ({A2, B}) whose
roots are children of (A,B). The size of a computation tree is proportional to the number
of its leaves. Each of these leaves corresponds to a pair in the computed well-separated
realization. Thus, the total size of all computation trees T ({A,B}), {A,B} ∈ R, is O(|S|).

We are now ready to describe the DAG G whose traversal we use to simulate the com-
putation of procedure ComputeWSR. The vertex set of G is the same as that of the given
fair split tree T . There is an edge from a node A1 to a node A2 in G if there are two nodes
(A1, B1) and (A2, B2) in a computation tree T ({A,B}), {A,B} ∈ R, such that (A1, B1) is
the parent of (A2, B2) in this tree. Next we show that G is a DAG and that the computation
of procedure ComputeWSR can be simulated using a traversal of G.

Lemma 9 Graph G is a DAG.

Proof. We show that, for every edge (A1, A2) in G, A2 ≺ A1. Moreover, it is easy to verify
that “≺” is a total order. This implies that G is acyclic. To see that A2 ≺ A1, observe that
edge (A1, A2) is in G only because there is an edge ((A1, B1), (A2, B2)) in a computation
tree. This, however, implies that either A2 = B1 or A2 is a child of A1 in T . In the former
case, A2 ≺ A1, by definition. In the latter case, ℓmax(A2) ≤ ℓmax(A1) and ν(A2) < ν(A1), so
that again A2 ≺ A1.

The computation of procedure ComputeWSR can be simulated by a traversal of G as
follows: Initially, we store every pair {A,B} ∈ R, B ≺ A, with node A ∈ G. Then we process
the nodes of G in topologically sorted order. For every node A ∈ G, we process the pairs
stored with node A one by one. For every pair {A,B}, B ≺ A, we check whether A and B
are well-separated. If so, we add the pair to the well-separated realization. Otherwise,
let (A′, B′) and (A′′, B′′) be the children of node (A,B) in the computation tree containing
node (A,B). We “send” pair {A′, B′} along edge (A,A′) and pair {A′′, B′′} along edge (A,A′′)
to add these pairs to the sets of pairs stored with nodes A′ and A′′. By the definition of G,
edges (A,A′) and (A,A′′) exist in G because edges ((A,B), (A′, B′)) and ((A,B), (A′′, B′′))
exist in the computation tree.

Next we argue that the edge set of graph G does not have to be known in advance,
in order to perform the above traversal of G using time-forward processing. To prepare
graph G, we compute a postorder numbering of the nodes of T . We sort the nodes of T by
the relation “≺” defined by this postorder numbering and assign a number η(A) to every
node A ∈ T , which represents the position of node A in the sorted sequence of nodes. We
store with every node A of T the labels η(A1) and η(A2) of its two children A1 and A2 in T .
Finally, we sort the nodes of T by decreasing numbers η(A). This preprocessing can be
carried out in O(sort(|S|)) I/Os, since computing a postorder numbering and copying the
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label η(A) of each node to its parent can be realized using time-forward processing. Besides
that, we sort the vertex set of T twice.

To initiate the processing of G, we scan the list of nodes. For every internal node of T
with children A and B, B ≺ A, we insert the pair (A,B) into a priority queue Q and
give it priority η(A). Now we process the nodes of G in their order of appearance. For
every node A, we retrieve all pairs (A,B) from Q, one by one. For every pair (A,B), we
test whether A and B are well-separated. If so, we add pair {A,B} to the realization.
Otherwise, let A1 and A2 be the two children of A. (Recall that numbers η(A1) and η(A2)
are stored with node A.) If η(A1) > η(B), we insert a pair (A1, B) into priority queue Q and
give it priority η(A1). Otherwise, we insert a pair (B,A1) into priority queue Q and give it
priority η(B). We do the same for the other child A2. This is equivalent to sending pairs
{A1, B} and {A2, B} along the corresponding edges of G. Then we proceed to the next pair.

The procedure just described is the same as standard time-forward processing with the
exception that every node constructs its out-neighbourhood depending on the data it receives
from its in-neighbours. The crucial fact is that the constructed out-neighbourhood of a
node A contains only nodes B with η(B) < η(A); hence, every node sending a pair to
node B does so before node B is processed by the above procedure.

We have to bound the number of priority queue operations performed. Note that we
queue and dequeue only pairs (A,B) that correspond to nodes in the computation trees
and that every such pair is queued and dequeued at most once. Hence, the total number
of priority queue operations is at most twice the total size of all computation trees, which
is O(|S|). This implies that our simulation of procedure ComputeWSR using a traversal
of graph G takes O(sort(|S|)) I/Os. By Theorem 2, a fair split tree of a point set S can be
computed in O(sort(N)) I/Os. Thus, we obtain the following result.

Theorem 3 Given a set S of N points in R
d, a well-separated pair decomposition of S

consisting of O(N) pairs can be computed in O(sort(N)) I/Os.

6 Applications of the WSPD

6.1 t-Spanners

Given a set S consisting of N points in R
d and a real number t > 1, a t-spanner for S is a

graph G with vertex set S such that any two vertices u and v are connected by a path in G
whose length is at most t ·dist2(u, v). In [15], it is shown that the following graph G = (S,E)
is a t-spanner of linear size for a point set S ⊂ R

d: Given a WSPD D = (T,R) of S with
separation factor s = 4 t+1

t−1
and consisting of O(|S|) pairs, choose a representative r(A) ∈ A,

for every node A in the fair split tree T . For every pair {Ai, Bi} in the realization R, add
an edge {r(Ai), r(Bi)} to E.

To choose representatives for all nodes A ∈ T , we use time-forward processing to process
T from the leaves towards the root. Every leaf has itself as a representative. Every internal
node chooses one of the representatives of its two children as a representative. Hence, the
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representatives for all nodes A ∈ T can be computed in O(sort(|S|)) I/Os. In order to create
the edge set of the spanner G, we create a list L that contains a pair (A, r(A)) for every
node A of T . We sort the pairs in L by their first components and do the same for all
pairs in R. Now we scan lists L and R simultaneously to replace the first component A of
every pair {A,B} with the representative r(A) of A. We sort the pairs in R by their second
components and repeat the scan of lists L and R to replace the second component B of
every pair {A,B} with its representative r(B). This involves sorting and scanning two lists
of size O(|S|) a constant number of times and, hence, takes O(sort(|S|)) I/Os.

In [5], it is shown that one can construct a spanner of spanner diameter at most 2 logN by
choosing the representatives r(A) above more carefully; that is, for any two points p and q,
the resulting graph contains a t-spanner path from p to q consisting of at most 2 logN edges.
In particular, given the representatives r(A1) and r(A2) for the children A1 and A2 of A, we
choose r(A) to be the representative r(Ai) of the heavier subtree T (Ai), where the weight of
a tree is the number of leaves in the tree. This modified rule for choosing representatives can
easily be incorporated in the time-forward processing step used to compute representatives.
Hence, we obtain the following result.

Theorem 4 Given a set S of N points in R
d, a t-spanner of linear size and spanner diameter

at most 2 logN for S can be computed in O(sort(N)) I/Os.

Finally, the following result shows that Theorem 4 is optimal.

Theorem 5 It takes Ω(sort(N)) I/Os to compute a t-spanner of linear size for a set S of N
points in R

d and any constant t > 1.

Proof. Given a set S = {p1, . . . , pN} of points in R
d, a t-spanner G of S has to contain

an edge {pi, pj}, for every pair of points pi = pj, i 6= j. Hence, a single scan of the edge
set of G is sufficient to decide whether all points in S are distinct. If G has linear size,
this takes O(scan(N)) I/Os. Thus, if G can be constructed in o(sort(N)) I/Os, the element
uniqueness problem can be solved in o(sort(N)) I/Os, which contradicts the Ω(sort(N)) I/O
lower bound shown for this problem in [4].

Note that the proof of Theorem 5 applies only if it is not known whether there are two
identical points in S. If this is known, we observe that, for spanning ratios t ≤ 2, a t-spanner
must contain an edge between the closest pair. Since an Ω(sort(N)) lower bound is shown
for this problem in [4], this implies that Theorem 5 holds for sets of distinct points as long
as t ≤ 2.

6.2 K Nearest Neighbours

In this section, we show how to compute the K nearest neighbours for every point p of a
point set S ⊂ R

d, that is, the K points in S \ {p} that are closest to p. Our construction
follows the internal-memory algorithm of [15] for this problem.
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Lemma 10 (Callahan/Kosaraju [15]) Let {A,B} be a pair in a well-separated realiza-
tion of S ⊗ S with separation s > 2. If there is a point b ∈ B that is among the K nearest
neighbours of a point a ∈ A, then |A| ≤ K.

Given a point set B, let OB be the center of its bounding rectangle R(B). We divide
the space around OB into a constant number of cones with apex OB such that, for any two
points a and a′ in the same cone, the angle ∠aOBa

′ between segments OBa and OBa′ is less
than α = s

s+1
. The existence of such a set of cones has been shown by Yao [49], who calls it

an α-frame.

Lemma 11 (Callahan/Kosaraju [15]) Let X and B be point sets such that, for every
point x ∈ X, the pair {{x}, B} is well-separated; let C be a cone with apex OB such that,
for any two points a and a′ in C, ∠aOBa

′ < s
s+1

; and let X ∩ C = (x1, . . . , xl) be the set of
points in X that lie in C, sorted by their distances from OB. For i > K, no point in B can
be among the K nearest neighbours of xi.

Based on Lemma 10, the algorithm of [15] first extracts all pairs {Ai, Bi} with |Ai| ≤ K.
For a node B in T , let {A′

1, B}, . . . , {A′
q, B} be the set of pairs in the WSPD that contain B

and such that |A′
i| ≤ K. Note that the sets A′

1, . . . , A
′
q are pairwise disjoint. The algorithm

constructs a candidate set X(B) =
⋃q

i=1A
′
i, for every node B ∈ T . Now the nodes of T are

processed from the root toward the leaves. For every node B ∈ T , the algorithm creates an
α-frame C around OB, partitions the points in X(B) into cone sets XC = X(B)∩C, C ∈ C,
and extracts the set X ′

C of the K points in XC that are closest to OB. Let N(B) =
⋃

C∈C X
′
C .

From the two lemmas above, it follows that N(B) contains all points p ∈ S that have one
of their K nearest neighbours in B. Now the candidate sets X(B1) and X(B2) of the two
children B1 and B2 of B in T are augmented with the points in N(B). Then the algorithm
proceeds to the next node. Eventually, the procedure produces sets N(b), b ∈ S, such
that the points having b as one of their K nearest neighbours are contained in N(b). The
algorithm produces sets N ′(a), a ∈ S, such that b ∈ N ′(a) if and only if a ∈ N(b). Finally,
the K nearest neighbours of every point a are extracted from N ′(a) using K-selection.

The crucial observation used in [15] to show that this algorithm takes O(KN) time is
the following: Initially, the candidate sets X(B), B ∈ T , have total size O(KN) because
there are only O(N) pairs in the given WSPD and every pair contributes at most K points
to some set X(B). When processing T top-down, each of the O(N) sets X(B) is augmented
with the O(K) points in N(p(B)), which adds another O(KN) points to the total size of all
candidate sets X(B). Hence, during the construction of sets N(b), K-selection is applied to
candidate sets of total sizeO(KN), which takesO(KN) time. In internal memory, setsN ′(a)
are readily constructed in O

(∑

b∈S |N(b)|
)

= O(KN) time, and the final application of K-
selection to these sets takes O(KN) time again.

Once the initial candidate sets X(B), B ∈ T , have been computed, the rest of the
algorithm can easily be carried out in O(sort(KN)) I/Os. In particular, we realize the
augmentation of every set X(B) with the points in N(p(B)) using time-forward processing,
sending the contents of set N(p(B)) from p(B) to B. When processing node B, we append
the received points to X(B), partition the resulting set into the cone sets XC , and apply an

27



I/O-efficient K-selection algorithm to each of the sets XC ; this takes O(sort(|X(B)|)) I/Os.3

Hence, the total number of I/Os spent on constructing sets N(b), for all leaves b of T , is
O(sort(KN)): O(sort(KN)) I/Os to send sets N(p(B)) along the edges of T using time-
forward processing, and O(scan(KN)) I/Os for all applications of K-selection.

If we represent every setN(b) as a collection of pairs {(a, b) : a ∈ N(b)}, where b is a leaf of
T , sets N ′(a), a ∈ S, can be constructed by sorting the union of these sets lexicographically.
Then we apply K-selection to each of these sets N ′(a) to extract the K nearest neighbours
of point a. This takes another O(sort(KN)) I/Os. It remains to show how to construct the
initial candidate sets X(B), B ∈ T , I/O-efficiently.

First we compute a postorder numbering ν of the nodes of T and a labelling of every
node A ∈ T with the number λ(A) of leaves that are descendants of A in T . Similar to
the conversion of the pairs {Ai, Bi} in R into spanner edges {r(Ai), r(Bi)}, described in the
previous section, we can generate a list Y with pairs (A, ν(A)), A ∈ T , and then sort and scan
Y and R a constant number of times to inform every pair {A,B} in R about the postorder
numbers ν(A) and ν(B) of its endpoints. Then we create two copies of every pair {A,B} in
the given WSPD, representing one as the ordered pair (A,B) and the other as the ordered
pair (B,A). We sort the nodes of T according to the above postorder numbering and the
ordered pairs (A,B) and (B,A) by the postorder numbers of their first components. We scan
the sorted list of nodes and create a list L containing all leaves of T , sorted by increasing
postorder numbers. Now we scan the list of nodes of T , the list of pairs in the WSPD, and
the list of leaves of T . The scans of the latter two lists are driven by the information found
in the node list as follows: For every node A ∈ T , we continue the scan of list L until a
leaf a with ν(a) > ν(A) is found. If λ(A) > K, we skip over all pairs (A,B) in the list of
pairs. If λ(A) ≤ K, we repeat the following for every pair (A,B) in the list of pairs: We
scan backward from the current position in L to read the last λ = λ(A) leaves v1, . . . , vλ

in L and append pairs (ν(B), v1), . . . , (ν(B), vλ) to a list X . Once all nodes of T have been
processed, we sort the pairs in list X by their first components, thereby transforming list X
into a concatenation of lists X(B), for all B ∈ T .

The computation of labels ν(A) and λ(A), for all nodes A ∈ T , can be carried out
in O(sort(N)) I/Os, using time-forward processing. Informing all pairs in R about the
postorder numbers of their endpoints requires sorting and scanning lists of size O(N) a
constant number of times and, hence, takes O(sort(N)) I/Os. Then the algorithm sorts
three lists of size O(N), which takes O(sort(N)) I/Os. The scans used to produce list X
scan a total of O(KN) data items, so that this takes O(scan(KN)) I/Os. The final sorting
of list X takes O(sort(KN)) I/Os because list X has size O(KN). Hence, we obtain the
following result.

Theorem 6 Given a set S of N points in R
d, the K nearest neighbours of every point in S

can be computed in O(sort(KN)) I/Os.

3It is easy to verify that the standard K-selection algorithm of [20] takes O(scan(N)) I/Os when applied
to a set of size N .
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6.3 K Closest Pairs

In this section, we show how to enumerate the K smallest inter-point distances in a point
set S ⊂ R

d. In [13], the following approach has been proposed to solve this problem:
Given a WSPD D of S, let 〈{A1, B1}, . . . , {Aq, Bq}〉 be the list of pairs in D, sorted by
increasing distances dist2(R(Ai), R(Bi)). Find the smallest index i such that

∑i
j=1 |Aj||Bj| ≥

K and retrieve all pairs {A,B} such that dist2(R(A), R(B)) ≤ (1 + 4/s)r, where r =
dist2(R(Ai), R(Bi)). Then generate the set C of all pairs {a, b} such that a ∈ A and b ∈ B,
for some pair {A,B} with dist2(R(A), R(B)) ≤ (1+4/s)r. Now apply K-selection to find the
set X of K pairs such that dist2(a, b) ≤ dist2(a

′, b′), for any {a, b} ∈ X and {a′, b′} ∈ C \X.
The correctness of this solution has been shown in [13]. It is also shown in [13] that

the set C has size O(N +K). Thus, once the set C has been produced, the application of
K-selection to C takes O(scan(N +K)) I/Os. We show that the set C can be computed in
O(sort(N +K)) I/Os.

First we use time-forward processing to process T from the leaves toward the root, com-
puting for every node A ∈ T , the size |A| of point set A. Using the same technique as in
the previous two sections, we inform every pair {A,B} about the cardinalities and bound-
ing rectangles of sets A and B. We sort these pairs by their distances dist2(R(A), R(B))
and scan the list of pairs by increasing distances and sum the cardinalities |A||B| of the
scanned pairs {A,B}. We stop as soon as this sum is at least K. Let {Ai, Bi} be the
pair where the scan stopped. We continue the scan until we find the first pair {A,B}
with dist2(R(A), R(B)) > (1 + 4/s)dist2(R(Ai), R(Bi)). We discard this pair as well as all
remaining pairs in the list.

Now we make two copies of each remaining pair {A,B}, representing one as the ordered
pair (A,B) and the other as the ordered pair (B,A). We sort these ordered pairs by their first
components, thereby producing, for every node A ∈ T , the list of pairs (A,B1), . . . , (A,Bρ(A))
among the remaining pairs. We use a similar procedure as the one described in Section 6.2
to extract, for every node A with ρ(A) > 0, the list of points in set A. For every pair (A,Bi),
we make a copy of point set A, representing every point a ∈ A as the triple ({A,Bi}, A, a).
We sort the resulting list of triples lexicographically. As a result, for every pair {A,B}, point
sets A and B are stored consecutively. Two nested scans of these two sets suffice to create
the set {{a, b} : a ∈ A and b ∈ B}.

The extraction of all relevant pairs takes O(sort(N)) I/Os, since we apply time-forward
processing and sort and scan lists of size O(N) a constant number of times. Given the ex-
tracted pairs, producing lists (A,B1), . . . , (A,Bρ(A)), for all nodes A ∈ T , takes O(sort(N))
I/Os, since there are only O(N) pairs to be sorted. Using the same arguments as in Sec-
tion 6.2, the I/O-complexity of the extraction of pairs of sets {A,B} can be bounded by
O(sort(N +K)) because the cardinality of all extracted sets is O(N +K). Finally, the scan
to produce the candidate set of point pairs takes O(scan(N +K)) I/Os because O(N +K)
is a bound on the cardinality of the produced set. Hence, we obtain the following result.

Theorem 7 Given a set S of N points in R
d, the K closest pairs in S can be found in

O(sort(N +K)) I/Os.
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7 A Note on Dynamic WSPD and Closest Pair

We want to point out that, using the topology B-tree of [12] and ideas from [14], one
can obtain linear-space data structures to maintain a fair split tree, a well-separated pair
decomposition, and the closest pair of a given point set in O(logB N) I/Os per point insertion
or deletion. The details are straightforward. For the closest-pair problem, this fact has
already been observed in [12]; but, by maintaining the well-separated pairs dynamically, one
can obtain a direct externalization of the internal-memory data structure of [14], which is
simpler than the solution proposed in [12].

8 Conclusions

We have provided I/O-efficient algorithms for constructing the well-separated pair decompo-
sition of [15]. We have also demonstrated that, as in internal memory, the WSPD can be used
to solve a number of proximity problems such as K-closest-pairs, K-nearest-neighbours, and
the construction of t-spanners. While theoretically efficient, the algorithms are unlikely to be
practical; the main obstacle being the large constant factors inherited from the construction
of [15]. In particular, Callahan [11] provides an upper bound of 2((3s+ 6)

√
d+ 5)dN on the

number of pairs in the well-separated realization computed by procedure ComputeWSR.
However, in internal memory, Narasimhan and Zachariasen [35] report that a WSPD-based
algorithm for computing a geometric minimum spanning tree outperforms other approaches
in dimensions d ≥ 3 in practice. Instead of using the worst-case O(N logN) time algorithm
for constructing the fair split tree, they use the näıve construction, which splits the longest
dimension in half, partitions the points around the partitioning hyperplane, and then re-
curses on the two subsets. They prove that the expected running time of this procedure is
O(N logN) and verify its performance experimentally. Their results suggest that, in practice,
the size of the computed realization is nowhere near the upper bound provided by Callahan
and that the näıve construction leads to practical algorithms. It would be interesting to
verify experimentally whether the same is true in external memory.
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