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Abstract

We present an I/O-efficient algorithm for topologically
sorting directed acyclic graphs (DAGs). No provably
I/O-efficient algorithm for this problem is known. Sim-
ilarly, the performance of our algorithm, which we call
IterTS, may be poor in the worst case. However, our
experiments show that IterTS achieves good perfor-
mance in practise.

The strategy of IterTS can be summarized as
follows. We call an edge satisfied if its tail has a smaller
number than its head. A numbering satisfying at least
half the edges in the DAG is easy to find: a random
numbering is expected to have this property. IterTS

starts with such a numbering and then iteratively
corrects the numbering to satisfy more and more edges
until all edges are satisfied.

To evaluate IterTS, we compared its running time
to those of three competitors: PeelTS, an I/O-efficient
implementation of the standard strategy of iteratively
removing sources and sinks; ReachTS, an I/O-efficient
implementation of a recent parallel divide-and-conquer
algorithm based on reachability queries; and SeTS,
standard DFS-based topological sorting built on top
of a semi-external DFS algorithm. In our evaluation
on various types of input graphs, IterTS consistently
outperformed PeelTS and ReachTS, by at least an
order of magnitude in most cases. SeTS outperformed
IterTS on most graphs whose vertex sets fit in memory.
However, IterTS often came close to the running time
of SeTS on these inputs and, more importantly, SeTS

was not able to process graphs whose vertex sets were
beyond the size of main memory, while IterTS was
able to process such inputs efficiently.
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1 Introduction

Let G = (V,E) be a directed acyclic graph (DAG) with
n := |V | vertices and m := |E| edges. Topological
sorting is the problem of finding a linear ordering
of the vertices in V such that the tail of each edge
in E precedes its head in the ordering. Linear-time
algorithms for this problem are covered in standard
undergraduate texts, as topological sorting captures the
problem of finding a linear order of items or activities
consistent with a set of pairwise ordering constraints,
which arises in a number of applications. The problem
of topologically sorting large DAGs arises, for example,
in the application of recent multiple sequence alignment
algorithms [20,21] to large collections of DNA sequences.

Topologically sorting large DAGs is also an impor-
tant building block for other I/O-efficient algorithms,
mostly due to a technique called time-forward pro-
cessing [9], which has proven useful in obtaining I/O-
efficient solutions to a number of problems but requires
the vertices of the graph to be given in topologically
sorted order. Time-forward processing solves the fol-
lowing “graph evaluation” problem: given a DAG each
of whose vertices has a label φ(x), process its vertices in
topologically sorted order and, for each vertex x, com-
pute a new label ψ(x) from φ(x) and the ψ-labels of x’s
in-neighbours. A simple example of this type of prob-
lem is the evaluation of a Boolean circuit represented as
a DAG: φ(·) assigns a Boolean function to each vertex,
turning it into a logical gate; ψ(x) is the output of the
gate represented by vertex x, given the inputs it receives
from its in-neighbours. Since time-forward processing
requires the vertices of the DAG to be given in topo-
logically sorted order and no general I/O-efficient topo-
logical sorting algorithm is known to date, time-forward
processing has been applied only in situations where a
topological ordering of the vertices can be obtained by
using secondary information about the structure of the
DAG (e.g., [3, 4, 13, 15]). A general topological sorting
algorithm for massive graphs would greatly increase the
applicability of this technique.

Two simple linear-time algorithms for topological
sorting are to repeatedly number and remove sources
(in-degree-0 vertices) or to perform a depth-first search
(DFS) of the graph and number the vertices in reverse
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postorder [10]. Both approaches access the vertices in
an unpredictable fashion and, thus, usually perform one
random disk access per vertex when processing inputs
beyond the size of main memory, while data access
patterns with a high degree of locality are the key to
I/O efficiency, as they facilitate the transfer of data
between memory and disk in large blocks. This lack
of locality in their data access patterns is a problem for
all graph exploration strategies, not only for DFS, at
least on directed graphs. Due to the strong reliance on
such graph exploration strategies in traditional graph
algorithms, even simple problems, such as topological
sorting, become challenging on massive graphs.

A significant amount of work has focused on de-
veloping I/O-efficient graph algorithms. These algo-
rithms are designed and analyzed in the I/O model [1],
which assumes the computer is equipped with a two-
level memory hierarchy consisting of internal memory
and (disk-based) external memory. All computation has
to happen in internal memory, which is capable of hold-
ing M data items. The transfer of data between in-
ternal and external memory happens by means of I/O
operations (I/Os), each of which transfers a block of B
consecutive data items to or from disk. The cost of an
algorithm in this model is the number of I/Os it per-
forms to solve the given problem.

For many problems on undirected graphs, the ineffi-
ciency of graph exploration techniques in the I/O model
has been overcome by developing alternate techniques
for solving graph problems that do not rely on graph
exploration. For special graph classes, a wide range of
problems, including topological sorting [5,6,14,16], can
be solved I/O-efficiently using techniques that exploit
the structure of these graphs (e.g., planar separators).
For general directed graphs, on the other hand, almost
no I/O-efficient solutions to even the most elementary
graph problems are known. The currently best gen-
eral directed DFS and BFS (breadth-first search) al-
gorithms perform O((n + m/B) logn) I/Os [8], which
is efficient for dense graphs but worse than standard
internal-memory DFS and BFS for sparse graphs. No
techniques for solving problems on directed graphs with-
out graph exploration are known, as even time-forward
processing can be seen as exploring the graph from the
sources toward the sinks.

The lack of provably I/O-efficient algorithms for
directed graphs has led to the development of a number
of heuristic approaches to solving problems on directed
graphs I/O-efficiently. Most notably, Sibeyn et al. [18]
proposed a DFS heuristic that performs extremely well
if the vertex set of the graph fits in memory but
breaks down on larger graphs. In [11], a contraction-
based heuristic for computing the strongly connected

components of a directed graph was proposed. In this
paper, we propose an algorithm for topologically sorting
directed acyclic graphs that falls into this category of
efficient heuristics. In the worst case, its performance
is poor, but our experiments show that it performs well
in practise and can efficiently process graphs beyond
the reach of existing algorithms, including an algorithm
based on the DFS heuristic of [18].

The rest of this paper is organized as follows. In
Section 2, we describe our new algorithm. In Section 3,
we describe three algorithms we considered reasonable
competitors. We implemented these algorithms and
compared their performance with that of our algorithm.
In Section 4, we present some implementation details
and discuss our experimental setup and results. In
Section 5, we give some concluding remarks.

2 Topological Sorting by Iterative Improve-
ment (IterTS)

Our new topological sorting algorithm, called IterTS

throughout this paper, is based on the following strat-
egy. Given a numbering ν(·) of the vertices of the DAG,
we call an edge satisfied if its tail receives a lower num-
ber than its head; otherwise the edge is violated. The
satisfied subgraph of the DAG G is a DAG Gν whose ver-
tex set is V and whose edge set consists of all edges of
G satisfied by ν(·). After computing an initial number-
ing ν0(·) and its corresponding satisfied subgraph Gν0

,
we proceed in iterations, each of which computes a new
numbering νi(·) from the previous numbering νi−1(·),
with the goal of increasing the number of satisfied edges.
The computation of νi(·) from νi−1(·) ensures that νi(·)
satisfies strictly more edges than νi−1(·). Thus, the al-
gorithm is guaranteed to terminate, slowly in the worst
case, quickly in practise.

Our description of the algorithm consists of four
parts. In Section 2.1, we describe how we compute the
initial numbering ν0(·). In Section 2.2, we discuss the
computation in each iteration. In Section 2.3, we ana-
lyze the I/O complexity of the algorithm. In Section 2.4,
we discuss a heuristic that led to a tremendous perfor-
mance improvement.

2.1 Computing the Initial Numbering.
Throughout the algorithm, we assume G has only one
source s. If this is not the case, we add a new source and
connect it to each of the original sources. We compute
an out-tree of s, that is, a spanning tree T0 of G whose
root is s and all of whose edges are directed away from s;
see Figure 1(a). Since G is acyclic, such a spanning tree
can be obtained by choosing, for each vertex x 6= s, an
arbitrary in-edge to be included in T0.

After choosing an arbitrary left-to-right ordering of
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1
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(d)

1

8 9 10
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(e)

1

8 9 10
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102 9

(f)

1

5 7 9

113 4 8

102 6

(g)

Figure 1: (a) A DAG with an out-tree T0, shown in bold. (b/c) The two preorder numberings of T0. The one
in (c) satisfies more non-tree edges (bold dashed) and is the one we choose as the first numbering ν0(·). (d) The
out-tree T1 chosen in the first iteration. (e) The numbering ν′1(·) computed to satisfy all edges in T1. (f) The
numbering ν′′1 (·) computed to satisfy all edges in Gν0

, shown in bold. (g) The numbering ν1(·) obtained by sorting
the vertices according to ν′′1 (·) and then numbering them in order. The satisfied subgraph Gν1

, shown in bold,
contains all edges of G. Thus, ν1(·) is a topological ordering of G, and the algorithm terminates.

the out-edges of each vertex in T0, we compute two
numberings νl(·) and νr(·) of the vertices of T0; see
Figures 1(b) and 1(c). Both are preorder numberings
of T0; νl(·) numbers the subtrees of each vertex in left-
to-right order, while νr(·) numbers the subtrees in right-
to-left order. It is easy to see that one of these two
numberings satisfies at least half of the non-tree edges,
while both satisfy all tree edges. We choose our initial
numbering ν0(·) to be the one that satisfies more edges.

This computation of ν0(·) is easily carried out I/O-
efficiently. After sorting the edges of G by their heads,
a scan of this edge list suffices to choose one in-edge for
each vertex and, if there is more than one vertex without
in-edges, add a new source s and connect it to each such
vertex. Thus, T0 can be constructed using O(sort(m))

I/Os, where sort(N) = Θ
(

N
B logM/B

N
B

)

is the I/O

complexity of sorting N elements [1]. The numberings

νl(·) and νr(·) are easily computed by computing an
Euler tour and applying list ranking to the computed
tour [9], which takes O(sort(n)) I/Os. Then it suffices
to sort and scan the vertex and edge sets of G to label
every edge with the numbers assigned to its endpoints
by νl(·) and νr(·), and count the edges satisfied by each
numbering, in order to choose ν0(·). In summary, the
initialization step of our algorithm takes O(sort(m))
I/Os.

2.2 Growing the Satisfied Subgraph. Each iter-
ation of the algorithm now computes a new numbering
νi(·) from the current numbering νi−1(·) so that νi(·)
satisfies strictly more edges than νi−1(·). We do this
in two phases. In the first phase, we compute an out-
tree Ti of s and a numbering ν′i(·) that satisfies every
edge in Ti and such that ν′i(x) ≥ νi−1(x), for all x ∈ V .
In the second phase, we compute a numbering ν′′i (·) by
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processing the subgraph Gνi−1
of G satisfied by νi−1(·).

This numbering satisfies all edges of Gνi−1
and has the

property that ν′′i (x) ≥ ν′i(x), for all x ∈ V . We obtain
the new numbering νi(·) by ordering the vertices in G
according to ν′′i (·) and then numbering the vertices of
G in order.1 Next we describe the computation of ν′i(·),
ν′′i (·), and νi(·) in detail.

Computing ν
′

i
(·). To construct the tree Ti, we

proceed similar to the construction of T0, choosing one
in-edge yx per vertex x 6= s to be included in Ti. This
time, however, we choose each such edge yx so that
νi−1(y) is maximized; see Figure 1(d). Similar to the
construction of T0, this construction can be carried out
by sorting the edges of G by their heads and then scan-
ning the edge list to choose the in-edge of each vertex to
be included in Ti. (Recall that each edge yx is labelled
with the numbers νi−1(y) and νi−1(x) of its endpoints,
making it easy to identify the in-edge yx of each ver-
tex x that maximizes νi−1(y).) Next we construct an
Euler tour of Ti and apply list ranking to compute a
preorder numbering of Ti, which is also a topological or-
dering of Ti. We sort the vertices of Ti in this order and
then apply time-forward processing to compute, for ev-
ery vertex x ∈ Ti, ν

′

i(x) := max(νi−1(x), ν
′

i(pi(x)) + 1),
where pi(x) denotes x’s parent in Ti; see Figure 1(e).
The sorting and scanning of the vertex and edge sets
of G, and the application of the Euler tour technique,
list ranking, and time-forward processing to Ti take
O(sort(m)) I/Os in total.

Computing ν
′′

i
(·). In the second step, we sort the

vertices according to νi−1(·) and the edges of Gνi−1

by their tails. Then we apply time-forward process-
ing to Gνi−1

, which is possible because νi−1(·) defines
a topological ordering of Gνi−1

(by definition, νi−1(·)
satisfies all edges in Gνi−1

). For every vertex, we com-
pute ν′′i (x) := max({ν′i(x)} ∪ {ν′′i (y) + 1 | yx ∈ Gνi−1

}),
which ensures that ν′′i (·) satisfies every edge of Gνi−1

;
see Figure 1(f). This takes O(sort(m)) I/Os.

Computing νi(·). To prepare for the next iter-
ation, we compute νi(·) by sorting the vertices in G
by ν′′i (·) and then numbering them in order; see Fig-
ure 1(g). Using a constant number of sorting and scan-
ning passes, we label every edge with the numbers of its
endpoints and accordingly classify the edge as satisfied
or violated. This takes O(sort(m)) I/Os.

2.3 Analysis. From the above discussion, it follows
that the initialization and each iteration of the algo-
rithm take O(sort(m)) I/Os. Thus, the I/O complexity
of the whole algorithm depends on the number of it-

1The orderings defined by νi(·) and ν
′′
i
(·) are identical, but

ν
′′
i
(·) may not assign unique numbers to vertices and may assign

numbers greater than N .

erations the algorithm executes. The following lemma
bounds this number of iterations.

Lemma 2.1. IterTS takes at most l − 1 iterations to
satisfy all edges in G, where l is the length of the longest
path in G.

Proof. For a vertex x, let l-dist(x) be the length of the
longest path from s to x in G. We prove by induction
on i that νi−1(·) satisfies all in-edges of vertices x with
l-dist(x) ≤ i + 1. Thus, if l denotes the length of the
longest path in G, νl−1(·) satisfies all edges of G.

The base case, i = 0, is trivial because ν0(s) = 1,
while ν0(x) > 1, for all x 6= s. Hence, all out-edges of s
are satisfied by ν0(·), which is a superset of the in-edges
of all vertices x with l-dist(x) ≤ 1.

So assume the claim holds for i < k. We need
to prove it for i = k. It suffices to prove that ν′′k (·)
satisfies all in-edges of vertices x with l-dist(x) ≤ k + 1
because νk(·) is obtained by ordering the vertices by
ν′′k (·) and then numbering them in order. In particular,
ν′′k (x) < ν′′k (y) implies νk(x) < νk(y), and νk(·) satisfies
all edges satisfied by ν′′k (·).

First we prove that ν′′k (x) = ν′k(x) = νk−1(x), for all
x with l-dist(x) ≤ k. Since every in-neighbour y of such
a vertex x satisfies l-dist(y) ≤ k and νk−1(x) satisfies
every in-edge of x, this implies that ν′′k (y) = νk−1(y) <
νk−1(x) = ν′′k (x), that is, ν′′k (·) satisfies the in-edges of
all vertices x with l-dist(x) ≤ k. We prove our claim by
induction on l-dist(x).

For l-dist(x) = 0, we have x = s and ν′′k (s) =
ν′k(s) = νk−1(s) = 1 because s is the source of Gνk−1

and the root of Tk−1. For 0 < l-dist(x) ≤ k, we
have ν′k(x) = max(νk−1(x), ν

′

k(pk(x))+1). However, we
have l-dist(pk(x)) < l-dist(x) and, hence, ν′k(pk(x)) =
νk−1(pk(x)). Furthermore, νk−1(pk(x)) < νk−1(x)
because pk(x) is an in-neighbour of x and νk−1(·)
satisfies all in-edges of x. This implies that ν′k(x) =
νk−1(x). Similarly, we have ν′′k (x) = max({ν′k(x)} ∪
{ν′′k (y) + 1 | yx ∈ Gνk−1

}). Every in-neighbour y of x
in Gνk−1

satisfies l-dist(y) < l-dist(x). Hence, by the
induction hypothesis and because νk−1(·) satisfies the
edge yx, ν′′k (y) = ν′k(y) = νk−1(y) < νk−1(x) = ν′k(x),
and ν′′k (x) = ν′k(x) = νk−1(x).

To complete the proof, we need to show that ν′′k (·)
satisfies all in-edges of vertices x with l-dist(x) = k+ 1.
Consider such a vertex x, and let y be an in-neighbour
of x. The parent pk(x) of x in Tk is chosen so that
νk−1(pk(x)) ≥ νk−1(y). Hence, ν′k(x) ≥ ν′k(pk(x))+1 =
νk−1(pk(x)) + 1 ≥ νk−1(y) + 1. We also have ν′′k (x) ≥
ν′k(x), that is, ν′′k (x) > νk−1(y). On the other hand,
since y is an in-neighbour of x, we have l-dist(y) ≤ k
and, hence, ν′′k (y) = νk−1(y). Thus, the edge yx is
satisfied by ν′′k (·). Since this argument applies to all in-
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M

x2 x1 x3 x7 x4 x6 x5

(a) Subgraph before processing.

M

x1 x2 x3 x4 x5 x6 x7

(b) Subgraph after processing.

Figure 2: Local topological ordering of memory-sized subgraphs. In (a), vertices are arranged by ν′′i (·). Solid
edges are satisfied edges in the subgraph, dashed edges are violated edges in the subgraph, and dotted edges have
only one endpoint in the subgraph, that is, are not local. In (b), the vertices are rearranged to ensure that all
edges local to the subgraph are satisfied.

edges of vertices x with l-dist(x) = k + 1, and we have
already shown that ν′′k (·) satisfies all in-edges of vertices
x with l-dist(x) ≤ k, this finishes the proof. �

By Lemma 2.1, IterTS is guaranteed to terminate,
after at most n − 2 iterations. For many graphs, the
longest path has length significantly less than n − 1,
guaranteeing a faster termination of the algorithm.
Even for graphs with long paths, our experiments show
that, in practise, IterTS terminates much faster than
predicted by Lemma 2.1.

2.4 Satisfying Local Edges. By our analysis in the
previous subsection, the cost of our algorithm depends
crucially on the number of iterations it needs to satisfy
all edges in the DAG. In this section, we discuss a
heuristic that helped us reduce the number of iterations
significantly.

The idea is to immediately satisfy violated edges
whose endpoints are “not too far apart” in the current
ordering. To this end, we add the following step between
sorting the vertices ofG by ν′′i (·) and numbering them in
order to compute νi(·). Let Vi be the list of vertices ofG,
sorted by ν′′i (·). We greedily break Vi into contiguous
sublists Vi,1, Vi,2, . . . , Vi,q so that the subgraph G[Vi,j ]
induced by each sublist Vi,j fits in memory. We load
each such subgraph G[Vi,j ] into memory and compute
a topological ordering of its vertices, thereby producing
a new ordered list V ′

i,j of the vertices in G[Vi,j ]. We
concatenate these lists V ′

i,1, V
′

i,2, . . . , V
′

i,q to obtain a
new ordered vertex list V ′

i of G and then compute
νi(·) by numbering the vertices in V ′

i in order. Since
two vertices in different subgraphs G[Vi,j ] and G[Vi,k]
appear in the same relative order in Vi and V ′

i , this
strategy ensures that νi(·) satisfies all edges within each
memory-sized subgraph G[Vi,j ], while also satisfying
edges between subgraphs G[Vi,j ] and G[Vi,k] that were
satisfied by ν′′i (·). In other words, using this heuristic,
the edges satisfied by νi(·) are a superset of the edges

satisfied by ν′′i (·). This is illustrated in Figure 2.
To implement this strategy, we label every edge of

G with the numbers assigned to its endpoints by ν′′i (·).
Then we produce the list Vi by sorting the vertices of
G by ν′′i (·), using their vertex IDs as tie breakers. Since
this defines a total order on the vertices of G, it suffices
to inspect the labels of the endpoints of each edge to de-
termine which endpoint occurs later in Vi. We call this
the high endpoint, and the other endpoint the low end-
point of the edge. We sort the edges of G by their high
endpoints. Then we scan Vi and the sorted edge list to
partition Vi into sublists Vi,1, Vi,2, . . . , Vi,q and, simul-
taneously, construct the edge lists Ei,1, Ei,2, . . . , Ei,q of
the graphsG[Vi,1], G[Vi,2], . . . , G[Vi,q]. During this scan,
when considering a vertex x for inclusion in the current
sublist Vi,j , we inspect all edges with high endpoint x.
Such an edge yx has both its endpoints in G[Vi,j ∪ {x}]
if and only if its low endpoint y succeeds the first vertex
z of Vi,j in Vi, which can be determined using a simple
comparison of the labels of y and z. Thus, we can count
these edges by scanning the edges with x as their high
endpoints and add the count to the size of G[Vi,j ] to
determine the size of G[Vi,j ∪ {x}]. If G[Vi,j ∪ {x}] has
size at most M , we add x to Vi,j and all edges with high
endpoint x and low endpoint in Vi,j to Ei,j . Otherwise
x becomes the first vertex in the next sublist Vi,j+1, and
Ei,j+1 is initially empty. Then we proceed to the next
vertex in Vi.

Once we have constructed the vertex and edge
lists Vi,1, Vi,2, . . . , Vi,q and Ei,1, Ei,2, . . . , Ei,q in this
manner, we load the graphs G[Vi,1], G[Vi,2], . . . , G[Vi,q]
into memory, one graph at a time. For each such graph
G[Vi,j ], we compute its topologically sorted vertex list
V ′

i,j in memory and append it to the vertex list V ′

i .
Since the cost of this procedure is dominated by the

cost of producing the initial sorted vertex and edge lists,
this heuristic adds O(sort(m)) I/Os to the cost of each
iteration.
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3 Other Approaches to Topological Sorting

There are other approaches to topological sorting that
are worth considering, as they are either natural or were
proposed with I/O efficiency or parallelism in mind and,
thus, may achieve better performance than IterTS,
at least on certain inputs. In our experiments, we
compared the performance of these algorithms to the
performance of IterTS.

3.1 Topological Sorting Using Semi-External
DFS (SeTS). A classical method for topological sort-
ing is to perform DFS on the DAG and number the
vertices in reverse postorder [10]. Using this strategy
on top of the semi-external DFS heuristic of [18], one
obtains an algorithm for topological sorting that should
be very efficient as long as the vertex set of the graph
fits in memory.

3.2 Iterative Peeling of Sources and Sinks
(PeelTS). Another classical method for topological
sorting is to iteratively remove sources and sinks. The
algorithm starts with the graph G0 := G. The ith itera-
tion identifies all sources and sinks of the current graph
Gi−1 and numbers them, sources up from 1, sinks down
from N . Then these vertices are removed, which pro-
duces a new subgraph Gi whose sources and sinks are
numbered in the next iteration. The algorithm termi-
nates as soon as the current graph Gi−1 is empty.

A naive implementation of this strategy requires
one random access per edge to test, for each neighbour
of a removed vertex, whether it becomes a source or
sink as a result of this removal and, thus, should be
numbered and removed in the next iteration. In our
experiments, we used the following, more I/O-efficient
implementation.

As in IterTS, we assume the initial DAG has only
one source. We start by arranging the vertices of G
and their adjacency lists in an order that attempts to
approximate the order they are numbered by PeelTS,
in order to be able to identify sources and sinks in
each peeling round by scanning this sorted list instead
of using random accesses. To this end, we compute
an out-tree T of the source as in Section 2, and we
label the vertices of G with their in- and out-degrees
in G and with their depths in T . This information can
be computed using the Euler tour technique and list
ranking. Now we sort the vertices and their adjacency
lists by their depths in T . Let L be the resulting list.

Having preprocessed G in this manner, we start
the process of iteratively removing sources and sinks.
The ith iteration of this process requires four lists V −

i−1,

V +

i−1, E
−

i−1, and E+

i−1 as inputs. These lists respectively
contain the sources of Gi−1, the sinks of Gi−1, the out-

edges in Gi−1 of all vertices in V −

i−1, and the in-edges in

Gi−1 of all vertices in V +

i−1
. The lists V −

0 , V +

0 , E−

0 , and

E+
0 required by the first iteration are easily computed

by scanning L.
Now consider the computation in the ith iteration.

Numbering the sources and sinks in V −

i−1 and V +

i−1 is a
simple matter of scanning these two lists. To construct
V −

i and V +

i , we sort the edges in E−

i−1
by their heads,

and the edges in E+

i−1 by their tails. Now we scan E−

i−1

forward. For every edge xy ∈ E−

i−1, we decrease the
in-degree of vertex y in L by one. If y’s in-degree is
now 0, we mark y and its adjacency list as deleted in L,
append y to V −

i , and append y’s out-edges to E−

i . By
the ordering of the edges in E−

i−1, locating the heads of

the edges in E−

i−1
in L is a matter of scanning L forward

once until we have found all heads of edges in E−

i−1.

After processing the edges in E−

i−1 in this manner, we

process the edges in E+

i−1 similarly, with the exception

that we scan E+

i−1 and L backward, and we decrease the

out-degrees of the tails of the edges in E+

i−1.
After a number of iterations, deleted elements start

to accumulate in L, contributing unnecessarily to the
cost of scanning L. To reduce the scanning cost of L, we
compact L periodically. For some load factor 0 < α < 1,
we call a sublist of L α-sparse if more than a (1 − α)-
fraction of the elements in the sublist are marked as
deleted. In each iteration, we find the longest α-sparse
prefix of the prefix of L scanned in this iteration, and
the longest α-sparse suffix of the suffix of L scanned
in this iteration, and we compact these two sublists by
storing the unprocessed elements in them consecutively.
In our implementation, we chose α = 5%, which we
determined experimentally gave the best performance.

3.3 Divide and Conquer Based on Reachability
Queries (ReachTS). In [17], a parallel divide-and-
conquer algorithm for topological sorting based on
reachability queries is described. We implemented an
external-memory version of this algorithm.

If the DAG fits in memory, we load it into memory
and sort it. Otherwise, we apply the following parti-
tioning strategy. We arrange the vertices in a random
order x1, x2, . . . , xn. Then we use binary search to find
the lowest index k such that vertices x1, x2, . . . , xk can
reach at least n/2 vertices in the DAG. Let A be the set
of vertices reachable from x1, x2, . . . , xk−1, and let B
be the set of vertices reachable from xk. The algorithm
now recursively sorts the vertices in the sets V \(A∪B),
A \B, {xk}, B \A, and A∩B and concatenates the re-
sult; see Figure 3. The correctness of this strategy is
shown in [17]. It is also shown that the expected size of
each set is n/2, making this algorithm terminate after
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xk

V \ (A ∪B)

not reachable from

x1, x2, . . . , xk

B \A

reachable only

from xk

x1 x2 xk−1

A \B

reachable only from

x1, x2, . . . , xk−1

reachable from

x1, x2, . . . , xk

A ∩B

Figure 3: The five parts of G ReachTS recurses on.

expected logn levels of recursion.
To find the set of vertices reachable from a set S

during the binary search that finds the index k, we use
an implementation of directed breadth-first search. We
start by initializing two sets L := S and R := S. The
set L is the current BFS level. The set R ⊇ L is the set
of vertices already seen by the BFS. Then we proceed
in iterations. In each iteration, we compute the next
BFS level L′ as the set of out-neighbours of the vertices
in L that are not in R. Then we set R := R ∪ L′ and
L := L′ for the next iteration. We repeat this until
L = ∅. At this point, the set R is the set of vertices
reachable from S. Each iteration of this directed BFS
procedure can be implemented using O(sort(m)) I/Os.
The set L′ can be computed by scanning L and the
set of edges of G to find all out-edges of vertices in L.
Then we sort the set of heads of these edges and scan
the resulting sorted list and R to remove all duplicates
and vertices that belong to R from the list. The result
is L′. Since each BFS iteration takes O(sort(m)) I/Os,
ReachTS should be efficient if the “diameter” of the
graph is low.

4 Implementation and Experiments

In this section, we discuss some choices we made in our
implementations of the different algorithms, the envi-
ronment and data sets we used to evaluate the algo-
rithms, and the results we obtained in our experiments.

4.1 Implementation. We implemented IterTS,
PeelTS and ReachTS in C++ and using the STXXL
library [12], which is an implementation of the C++
STL for external memory computations. For SeTS,
we used an implementation provided by Andreas Beck-
mann [7].

We used STXXL vectors to store the vertex and
edge sets of the graph. All sorting steps in our imple-
mentation were accomplished using the STXXL sorting
algorithm. The implementation of time-forward pro-

cessing requires a priority queue, for which we used the
one provided in STXXL.

We used the standard construction of an Euler tour
of a tree, which generates a list of edges incident to
each vertex by duplicating each edge and then sorting
the edge list. Then a scan of this sorted list suffices to
generate the Euler tour [9]. Thus, an Euler tour is easily
constructed using STXXL primitives.

For list ranking, we used an algorithm of [19].
Ajwani et al. [2] provided an STXXL-based implemen-
tation of this algorithm as part of their undirected BFS
implementation, and we re-used this code.

4.2 Test Environment. All experiments were run
on a PC with a 3.33GHz Intel Core i5 processor, 4GB
of RAM, and one 500GB 7200RPM IDE disk using the
XFS file system. The operating system was Ubuntu
9.10 Linux with a 2.6.31 Linux kernel. The code was
compiled using g++ 4.4.1 and optimization level –O3.
For our experiments, we limited the available RAM to
1GB (using the mem= kernel option). All of our timing
results refer to wall clock times in hours.

4.3 Data Sets. We tested the algorithms on syn-
thetic graphs chosen with certain characteristics that
should be hard or easy for different algorithms among
the ones we implemented. We also ran the algorithms
on real web graphs with their edges redirected to ensure
the graphs are acyclic. The number of vertices in the
graphs were between 225 and 228, the number of edges
between 227 and 230. The following is the list of graph
classes we used to evaluate the algorithms.

Random: We generated these graphs according to
the Gn,m model; that is, we generated m edges,
choosing each edge endpoint uniformly at random
from a set of n vertices. The edges were directed
from lower to higher endpoints.

Width-one: To construct these graphs, we started
with a long path of n − 1 edges. Then we added
m − n + 1 random edges according to the Gn,m

model as for random graphs.

Layered: These graphs were constructed from
√
n lay-

ers of
√
n vertices, with random edges between ad-

jacent layers. To generate these graphs, we first
chose, for each vertex in a given layer, a random
in-neighbour in the previous layer and a random
out-neighbour in the next layer. Then we added
more random edges between adjacent layers to in-
crease the edge count to m.

Semi-layered: Layered graphs consist of many mod-
erately long paths but are too structured, which
makes them extremely easy inputs for PeelTS.
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Semi-layered graphs aim to have moderately long
paths but with less structure. To construct these
graphs, we first constructed q := n1/3 layered
DAGs G1, G2, . . . , Gq consisting of n1/3 layers of
size n1/3 each. Then we added random edges be-
tween the DAGs by generating random quadruples
(i, j, h, k) with i < j and h > k and, for each such
quadruple, adding a random edge from layer h of
Gi to layer k of Gj .

Low-width: These graphs were constructed in the
same way as layered graphs. However, the number
of layers was set to 1, 000, 000 in this case and the
size of a layer was set to n/1, 000, 000. Moreover,
in the first phase of the construction of the graph,
which chooses one in- and one out-neighbour per
vertex, we connected the ith node in the jth layer
to the ith node in the (j + 1)st layer, thereby
starting with n/1, 000, 000 disjoint paths of length
1, 000, 000. Then we added random edges between
layers as for layered graphs.

Grid: These graphs were formed by taking a
√
n×√

n
grid and directing all horizontal edges to the right
and all vertical edges down.

Webgraphs: The web graphs were produced by real
web crawls of the .uk domain, the .it domain,
and from data produced by a more global crawl
using the Stanford WebBase crawler. They were
obtained from http://webgraph.dsi.unimi.it/.
Since these graphs were not necessarily acyclic, we
redirected the edges from lower vertex IDs to higher
vertex IDs.

4.4 Experimental Results. The main goal of our
experiments was to compare the algorithms, study how
they are affected by the structure of the input graph,
and use the results to recommend which algorithm to
use if there is a-priory knowledge of the graph structure.
Table 1 shows the running times of the algorithms on
different input graphs. In order to bound the time
spent on our experiments, we used the following rules.
(1) Each algorithm was given an amount of time at least
10 times the time used by IterTS to process the same
input. If it did not produce a result in the allocated
time, we terminated it. This is indicated by dashes in
the table, with superscripts indicating the amount of
time given to the algorithm. (2) If IterTS took more
than one day to process an input and was consistently
faster than the other algorithms on smaller inputs, we
did not run the other algorithms on this input. This
is indicated by stars in the table. (3) Since SeTS is a
semi-external algorithm and 226 vertices do not fit in
1GB of memory, we did not run it on larger inputs if

it did not finish in the allocated time on the smallest
input with 226 vertices (which was the case for all input
types).

4.4.1 Comparison of Running Times. With the
exception of the second random graph instance, IterTS

outperformed PeelTS and ReachTS. As expected,
random graphs proved to be easy instances for all al-
gorithms, with usually a factor of less than two between
the running times of IterTS, PeelTS, and ReachTS.
On most of the other inputs, PeelTS and ReachTS

were not able to process any of the inputs in the al-
lotted amount of time, that is, IterTS outperformed
them by at least one order of magnitude on these in-
puts. PeelTS was able to process all layered and grid
graph instances we tried. For grid graphs, the running
time was still more than 10 times higher than that of
IterTS. Layered graphs are a particularly easy input
for PeelTS because the preprocessing stage of the al-
gorithm ends up arranging the vertices layer by layer,
which is also the order in which the peeling phase peels
sources and sinks. Thus, each peeling round scans ex-
actly those vertices that are removed from the graph in
this round. We created semi-layered graphs to eliminate
this effect and, as expected, the performance of PeelTS

broke down on these graphs. ReachTS performed bet-
ter on semi-layered graphs than on layered graphs. We
believe this was a result of somewhat shorter shortest
paths in the semi-layered graphs, which made the reach-
ability queries in ReachTS cheaper.

The results on web graphs presented a surprise, with
ReachTS being able to process one of these graphs in 4
times the time taken by IterTS, while not being able to
process the bigger web graphs. PeelTS was not able to
process any of these graphs in the allotted time. This is
surprising because we expected these graphs to behave
similarly to random graphs, particularly given that the
edge directions were essentially chosen randomly. Thus,
these graphs should not have posed any challenges.

On inputs whose vertex sets fit in memory, SeTS

outperformed IterTS on most inputs, while IterTS

was faster on some inputs. Width-one graphs turned
out to be particularly easy instances for SeTS. On
these inputs, it was nearly two orders of magnitude
faster than IterTS. This concurs with the discussion
in [18], where it was stated that the semi-external DFS
algorithm performs very well for deep DFS trees. As
expected, the comparison between IterTS and SeTS

changed dramatically once the graph’s vertex set did not
fit in memory any more. SeTS was not able to process
any of these inputs within the allotted time, that is,
IterTS outperformed SeTS by at least one order of
magnitude.
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In summary, we conclude that SeTS is the algo-
rithm that should be used for semi-external inputs,
while IterTS is the clear winner on larger inputs.
PeelTS and ReachTS were not competitive with ei-
ther SeTS or IterTS.

4.4.2 The Effect of the Graph’s Structure. Re-
call from Section 2.3 that the running time of IterTS is
determined mostly by the number of iterations it needs
to satisfy all edges in the graph. With the exception
of width-one graphs and the larger semi-layered graphs,
the number of iterations needed by IterTS was low,
even though the graph structure had some impact on
the number of iterations needed. Thus, the performance
of IterTS can be considered fairly robust and almost
independent of the graph’s structure. Width-one graphs
and the larger semi-layered graphs posed a greater chal-
lenge. However, the upper bound on the number of it-
erations provided by Lemma 2.1 is between 225 and 228

for the input graphs we tested, while IterTS needed
less than 20 iterations for all of these inputs and was
able to process all our input instances in a reasonable
amount of time.

SeTS can be considered equally robust on semi-
external instances, even though it benefits from deep
DFS trees, as already discussed. In contrast, IterTS

benefits from graphs having short paths, even accord-
ing to the pessimistic prediction of Lemma 2.1. Hence,
IterTS is competitive with SeTS, for instance, on
semi-external random inputs, while SeTS is signifi-
cantly faster on width-one graphs.

The other algorithms are much more sensitive to
graph structure. By definition, PeelTS needs a large
number of peeling rounds for graphs with long paths.
For example, for the smallest low-width graph, only 5%
of the vertices had been removed after 92,000 peeling
rounds, while PeelTS finished after between 73 and 148
rounds for random graphs. On layered graphs, PeelTS

also needed a large number (2898–8194) of rounds.
The reason for the good performance of PeelTS on
these graphs is that the total cost of the rounds is
proportional to the total number of vertices, due to
the particular order in which the preprocessing phase
arranges the vertices. The same should be true for
low-width graphs, which are layered graphs with many
small layers. The reason why PeelTS was not able to
process them was the large number of peeling rounds,
each of which incurred some overhead leading to a cost
of 1–5s per peeling round. This overhead could have
been eliminated for these graphs, given our knowledge
of the graph structure, but our goal was not to design
customized algorithms for individual graph classes.

ReachTS should perform well on graphs with

low diameter and poorly on graphs with long shortest
paths, as the most costly part of the algorithm is
the BFS-based reachability queries. This intuition is
confirmed by its good performance on random graphs
and its poor performance on layered, low-width, and
grid graphs. For example, the maximum number
of BFS levels observed in any reachability query on
the random instances was 39, while the smallest low-
width graph led to reachability queries with over 1,400
BFS levels before the algorithm was terminated. The
performance on semi-layered and width-one graphs,
however, contradicts this intuition. Width-one graphs
are random graphs, apart from the one path visiting
all vertices. So most shortest paths should be short,
and the algorithm should perform well, but it did not
manage to process any of these instances. Conversely,
semi-layered graphs should have fairly long shortest
paths; yet, the algorithm performed fairly well on these
graphs.

4.4.3 Further Analysis of IterTS. Figure 4(a)
shows the running time of IterTS on graphs of differ-
ent types and sizes but with fixed density. As expected,
the running time increased linearly with the input size
for layered and low-width graphs, as the number of iter-
ations is nearly independent of the size of the graph. For
random, width-one, and semi-layered graphs, the num-
ber of iterations required by the algorithm to terminate
increased with the input size, leading to a super-linear
dependence of the algorithm on the input size.

Another interesting factor to consider is how quickly
the satisfied subgraph Gν converged to the whole
DAG G. Figure 4(b) shows the percentage of satis-
fied edges as a function of the iteration number for the
largest input of each type. As can be seen, with the
exception of width-one graphs, the algorithm took only
few iterations to satisfy nearly all edges. Even for width-
one graphs, 95% of the edges were satisfied after only 6
iterations, and nearly 100% were satisfied after 10 itera-
tions. This implies that, under reasonable assumptions
about the ratio between the sizes of main memory and
disk, the edges that remained violated after 8–10 itera-
tions fit in memory. It would be helpful to switch to an
alternate strategy at this point, which takes advantage
of this fact in order to avoid a large number of iterations
to satisfy the remaining edges. We did not succeed in
finding such a strategy.

Our final comment concerns the effect of the local
reordering heuristic described in Section 2.4 on the
running time of the algorithm. It became clear relatively
early on that this heuristic speeds up the algorithm
tremendously. So we did not run IterTS without the
heuristic, except on some of the smaller inputs. For
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Graph class n m m/n IterTS PeelTS ReachTS SeTS

Iterations Time (h) Time (h) Time (h) Time (h)

Random 225 227 4 2 0.94 2.71 2.20 0.50

Random 225 228 8 5 3.50 8.58 2.39 1.56

Random 226 228 4 4 3.47 5.48 4.23 —2

Random 226 229 8 5 7.48 17.76 10.78 ***

Random 227 229 4 5 9.22 14.02 9.80 ***

Random 228 230 4 7 27.13 *** *** ***

Width-one 225 227 4 4 1.78 —1 —0 0.05

Width-one 225 228 8 6 4.25 —2 —2 0.08

Width-one 226 228 4 8 7.42 —3 —3 —3

Width-one 226 229 8 9 13.46 —6 —6 ***

Width-one 227 229 4 14 24.90 *** *** ***

Width-one 228 230 4 19 68.38 *** *** ***

Layered 225 227 4 2 0.92 2.70 —0 0.48

Layered 225 228 8 1 0.76 4.62 —1 1.17

Layered 226 228 4 1 1.02 6.33 —1 —1

Layered 226 229 8 1 1.49 10.76 —1 ***

Layered 227 229 4 3 5.01 25.55 —2 ***

Layered 228 230 4 2 7.14 57.87 —3 ***

Semi-layered 225 227 4 3 1.33 —1 2.58 0.34

Semi-layered 225 228 8 5 3.26 —2 8.02 0.75

Semi-layered 226 228 4 5 4.47 —2 15.77 —2

Semi-layered 226 229 8 7 10.08 —4 20.83 ***

Semi-layered 227 229 4 8 14.09 —5 66.97 ***

Semi-layered 228 230 4 9 31.75 *** *** ***

Low-width 225 227 4 1 0.47 —1 —1 0.35

Low-width 225 228 8 1 0.72 —1 —1 0.93

Low-width 226 228 4 1 1.01 —1 —1 —1

Low-width 226 229 8 1 1.48 —1 —1 ***

Low-width 227 229 4 1 2.03 —1 —1 ***

Low-width 228 230 4 1 4.09 —2 —2 ***

Grid 225 ≈ 226 2 1 0.31 4.14 —1 0.50

Grid 226 ≈ 227 2 1 0.67 8.46 —1 —1

Grid 227 ≈ 228 2 1 1.38 18.67 —1 ***

Grid 228 ≈ 229 2 1 2.84 44.54 —2 ***

Webgraph 18.5m 298.1m 16.1 3 1.88 —1 7.75 1.30

Webgraph 41.3m 1,150.7m 25.9 4 9.06 —4 —4 3.49

Webgraph 118.1m 1,019.9m 8.6 4 10.13 —4 —4 —4

Table 1: Experimental results. Dashes indicate inputs that could not be processed by the algorithm in the
allocated time. Superscripts indicate the number of days after which each run was terminated. A superscript of 0
means the run was terminated after 15 hours. Stars indicate that these experiments were not run, following our
rules stated at the beginning of Section 4.4.

Copyright © 2011 by SIAM 
Unauthorized reproduction is prohibited.

148



 0

 10

 20

 30

 40

 50

 60

 70

2
27

2
28

2
29

2
30

T
im

e
 (

h
rs

)

Num. Edges (m)

Random
Width-one

Layered
Semi-layered

Low-width

(a)

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0  2  4  6  8  10  12  14  16  18  20

S
a

ti
s
fi
e

d
 E

d
g

e
s
 (

%
)

Rounds

Random
Width-one

Layered
Semi-layered

Low-width
Grid

Webgraph-uk
Webgraph-it

Webgraph-wb

(b)

Figure 4: (a) Increase of the running times of IterTS for graphs with fixed density m/n = 4 and increasing m.
(b) Increase of the number of satisfied edges per iteration for graphs with n = 228 and m = 230.

graphs with 225 vertices and 227 edges, we observed a
reduction in the number of iterations from between 4
and 21 to between 1 and 3 as a result of the heuristic.
The only exceptions were grid graphs, which took one
iteration with or without the heuristic, and width-one
graphs, which took 4 iterations with the heuristic and
which we terminated after 51 iterations without the
heuristic.

5 Conclusions

Our experiments demonstrated that IterTS and SeTS

substantially outperform PeelTS and ReachTS and
are less susceptible to variations in the graph’s struc-
ture. While SeTS outperformed IterTS on most in-
puts whose vertex sets fit in memory, IterTS was able
to process larger inputs efficiently and SeTS was not.
As such, we conclude that IterTS is the first algo-
rithm for topologically sorting large DAGs that can effi-
ciently process graphs whose vertex sets are beyond the
main memory size, while SeTS remains the best choice
for topologically sorting inputs whose vertex sets fit in
memory.
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