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ABSTRACT

Consider rain falling at a uniform rate onto a terrain T rep-
resented as a triangular irregular network. Over time, water
collects in the basins of T , forming lakes that spill into ad-
jacent basins. Our goal is to compute, for each terrain ver-
tex, the time this vertex is flooded (covered by water). We
present an I/O-efficient algorithm that solves this problem
using O(sort(X) log(X/M) + sort(N)) I/Os, where N is the
number of terrain vertices, X is the number of pits of the
terrain, sort(N) is the cost of sorting N data items, and M
is the size of the computer’s main memory. Our algorithm
assumes that the volumes and watersheds of the basins of T
have been precomputed using existing methods.
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F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
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1. INTRODUCTION
An important problem in terrain analysis is the prediction

of water flow across a terrain. Traditional approaches focus
on computing the river network of the terrain under the
assumption that water does not collect in the basins of the
terrain. In reality, water does collect in the terrain’s basins,
particularly during heavy rainfall. This may cause basins to
spill into adjacent basins, changing the river network of the
terrain as a result. Thus, to model the flow of water across
a terrain over time, it is necessary to compute the times at
which the basins of the terrain spill. In this paper, we solve
the more general problem of computing, for every vertex v
of a terrain T , the time tv at which it is flooded. We assume
the terrain T is represented as a triangular irregular network
(TIN) and the amount of rain is uniform across the terrain.

The accuracy of predictions of natural phenomena, such
as flooding, depends on the precision of the data used in
these predictions. High-resolution elevation models even of
fairly small geographic regions often exceed the size of a
computer’s main memory. Current GIS tools cannot handle
data sets of this size efficiently and therefore need to work
with models of lower resolutions. This sacrifices accuracy
because lower-resolution models do not capture all terrain
features. For example, in experiments we conducted to pre-
dict the flooding of coastal regions of Denmark due to rising
sea levels, an elevation model with one data point every 10m
failed to capture a dike around an island, and the island was
predicted to be flooded if the sea rises by 2m, while the dike
can in fact withstand 2m higher sea levels. Using a higher-
resolution model with one data point every 2m, we obtained
the correct prediction, but storing elevation data for Den-
mark alone requires 500GB of space at this resolution, an
input size well beyond the size of main memory and beyond
the reach of current GIS tools.

To process data sets beyond the size of main memory ef-
ficiently, it is necessary to develop I/O-efficient algorithms,
that is, algorithms that focus on minimizing the number of
disk accesses they perform to swap data between disk and
internal memory, as a disk access is orders of magnitude
slower than an internal-memory computation step. In this
paper, we propose an I/O-efficient algorithm for computing
the flooding times of all vertices of a terrain T .

The core of the problem is computing the spill times of all
basins of T . A simple method to compute these spill times
is to simulate the entire sequence of spill events of the basins
of T and maintain the watersheds of all basins that yet have
to spill, as well as predicted spill times for these basins based
on their current watersheds. An internal-memory solution



based on this idea has been presented in [14]. In Section 3.2,
we discuss an O(N log N) time implementation of this ap-
proach using a priority queue and a union-find structure.
This simulation approach does not translate into an I/O-
efficient algorithm, as the only known I/O-efficient union-
find structure [1] requires the sequence of Union operations
to be known in advance. In simulating the sequence of spill
events, the set of Union operations is known, but their
order depends on the spill times of the basins. Using an
internal-memory union-find structure and an I/O-efficient
priority queue (e.g., [3, 12]), a cost of O(Xα(X) + sort(N))
disk accesses can be achieved, where α(·) is the inverse of
Ackermann’s function, sort(N) ≪ N is the I/O complex-
ity of sorting N data items (see next section), and X is
the number of pits of the terrain. In contrast, the algo-
rithm presented in this paper achieves an I/O complexity of
O(sort(X) log(X/M) + sort(N)) disk accesses.

In the remainder of this section, we formally define the
computational model we use, discuss previous work, and
give an overview of our algorithm. Section 2 introduces the
terminology and notation we use throughout the paper. Sec-
tion 3 discusses our algorithm for computing the spill times
of the terrain’s basins and the flooding times of all terrain
vertices. This algorithm makes use of an I/O-efficient meld-
able priority queue, which we discuss in Section 4.

1.1 I/O Model
We use the I/O model with one (logical) disk [2] to design

and analyze our algorithm. In this model, the computer is
equipped with a two-level memory hierarchy consisting of an
internal memory and a (disk-based) external memory. The
internal memory is capable of holding M data items (ver-
tices, edges, etc.), while the external memory is of conceptu-
ally unlimited size. All computation has to happen on data
in internal memory. Data is transferred between internal
and external memory in blocks of B consecutive data items.
Such a transfer is referred to as an I/O operation or I/O.
The cost of an algorithm is the number of I/Os it performs.
The number of I/Os required to read N contiguous items
from disk is ⌈N/B⌉. The number of I/Os required to sort N
items is sort(N) = Θ((N/B) logM/B(N/B)) [2]. For all real-
istic values of N , M , and B, we have N/B < sort(N) ≪ N .

1.2 Related Work
Due to its importance, the problem of computing water

flow across a terrain (usually in the form of a river net-
work) has been studied extensively. Most existing meth-
ods for computing river networks assume that once water
flows into a small basin of the terrain, it never flows out—in
other words, basins do not spill. Therefore, to avoid water
getting caught in small local basins, most flow modelling
approaches first remove all basins by flooding the terrain,
that is, conceptually pouring water onto the terrain until all
basins are filled [4, 13, 15]. However, this often leads to un-
realistic flow patterns, since many important geographical
features are removed. Recent papers [1,5] suggested partial
flooding algorithms that flood only “small” basins, where the
size of a basin can be defined using different measures, such
as height, volume or area. Agarwal, Arge and Yi [1] de-
scribed an O(sort(N)) I/O partial flooding algorithm that
removes all basins of small height. This is done by com-
puting the topological persistence [10, 11] of each basin and
removing the ones with persistence below a small threshold.

The key to obtaining an O(sort(N)) I/O solution to this
problem is an algorithm that can process a sequence of N
Union and Find operations using O(sort(N)) I/Os, assum-
ing the entire sequence of operations is provided in advance.
Arge and Revsbæk [5] extended the result of [1] to remov-
ing basins based on different geometric measures, including
volume and area.

Partial flooding methods provide a basis only for approxi-
mate solutions to flow modelling, as the underlying assump-
tion is that all “small” basins are flooded at a certain time,
while all “big” basins are not. This assumption may not be
true, as the spill time of a basin depends on its volume and
its watershed, and the watershed of a basin may grow over
time as a result of other basins spilling into it; in particular,
the watershed of a big basin may grow to a size far exceeding
the size of the watershed of a small basin and, thus, the big
basin may spill before the small basin. To model the flow
network at time t accurately, it is necessary to compute the
times the basins of T fill and remove the basins that are
full at time t. This is much harder than the partial flood-
ing approaches discussed above, as the above methods are
based on local measures associated with each basin, while
the computation of the actual spill time of each basin β de-
pends on the spill times of other basins that spill into β. As
mentioned in the introduction, Liu and Snoeyink [14] pre-
sented an internal-memory algorithm for computing actual
spill times and used it for flow prediction. While the pa-
per does not present the algorithm in detail, we discuss an
efficient implementation using a union-find structure and a
priority queue in Section 3.2; this implementation is needed
as part of our I/O-efficient algorithm.

We also require a tree structure that represents the nesting
of the basins of T . This tree has been termed the merge tree
of T in [7,8] (also see Section 2) and can be computed using
O(sort(N)) I/Os using the topological persistence algorithm
of [1]. This algorithm is easily augmented to compute the
lowest saddle on the boundary of each basin and, as shown
in [5], the volume of each basin.

Computing the watershed sizes of all basins of T is harder.
The watershed sizes of all basins of T are easily computed
from the watershed sizes of all pits by summing watershed
sizes bottom up in the merge tree. However, the only I/O-
efficient algorithm for computing the watersheds of all pits
of a terrain exactly is the one of [9]. This algorithm per-
forms O(sort(N + S)) I/Os for fat terrains, where S is the
size of the terrain’s strip map. The size of the strip map of
a fat terrain is Θ(N2) in the worst case [9], in which case
the exact computation of watersheds becomes infeasible. An
approach often taken in practice [16–18] is to assume that
water flows only along terrain edges, allowing the computa-
tion of watersheds using O(sort(N)) I/Os. While this may
lead to poor approximations of the watersheds for irregular
terrains [9], TIN’s derived from LIDAR data, for example,
are rather regular, and the computed watersheds match the
real watersheds rather closely.

1.3 New Result
We present an algorithm that computes the flooding times

of all terrain vertices using O(sort(X) log(X/M) + sort(N))
I/Os, where N is the size of the terrain and X is the number
of pits. This assumes that the watershed sizes and volumes
of all basins are given and that every vertex is labelled with
the pit whose watershed contains it. The cost of computing



this information has been discussed in the previous section.
Our algorithm operates on the merge tree M of the given
terrain T . Given a node β of M, we employ a recursive
strategy to compute the spill times of all basins represented
by descendants of β. If there are at most M such descen-
dants, we use an augmented version of the internal-memory
algorithm mentioned in the introduction to compute the spill
times of their corresponding basins using O(sort(Y )) I/Os,
where Y is the number of descendants of β plus the number
of basins that spill into β. Otherwise we consider an appro-
priate path P from β to a descendant leaf and prove that
we can compute the spill times of all basins whose parents
belong to P using O(sort(Y )) I/Os, where Y is defined as
above. The path P is chosen so that every subtree attached
to P contains at most half of β’s descendants, and we invoke
our algorithm recursively on the root of each such subtree.
This ensures that log(X/M) levels of recursion suffice to
break M into subtrees of size at most M , to which the above
internal-memory algorithm can be applied. The cost per
level of recursion is O(sort(X)) I/Os. Hence, the total cost
of the algorithm is O(sort(X) log(X/M)) I/Os. This gives
only the spill times of the basins. To compute the flooding
times of all terrain vertices, we use a post-processing step
that can be seen as a simpler version of the recursive step of
our algorithm and performs O(sort(N)) I/Os.

The intuition behind the computation in each recursive
step is the following. In general, there are two directions
water can flow across any saddle of the terrain T . Given the
flow direction for each saddle, spill times could be computed
rather easily, but the direction for each saddle is determined
by the spill times of the two basins that merge at this sad-
dle. For the saddles between the basins corresponding to the
path P in each recursive steps, we can characterize each flow
direction as either “confluent” (toward the basin represented
by the leaf of P ) or “diffluent” (away from the leaf), and
we can show that confluent spill events that influence other
spill events—we call these watershed events—can themselves
depend only on confluent watershed events. This allows us
to perform a sweep in the confluent direction first to com-
pute the times of all confluent watershed events. In a second
phase, we sweep in the diffluent direction and use the times
computed in the first phase to compute the correct times for
all spill events.

2. PRELIMINARIES
In this section, we introduce the basic terminology used

throughout this paper. In the following, we make some as-
sumptions about the structure of the terrain that simplify
the exposition in the rest of the paper. All these assumptions
can be removed using standard perturbation techniques.

Terrains, pits, and basins. We consider the terrain T
to be represented as a triangular irregular network, which
is a planar triangulation each of whose vertices v has an
associated elevation T (v). The elevation of a point interior
to a triangle is a linear interpolation of the elevations of the
triangle vertices. In this manner, the terrain is represented
as a continuous piecewise linear surface, and we use T (p)
to refer to the elevation of the point p ∈ R

2. We assume
that no two adjacent vertices have the same elevation. A
pit of T is a local minimum, that is, a terrain vertex all
of whose neighbours have higher elevations. A saddle point
of T is a vertex v with four vertices w1, w2, w3, w4 among
its neighbours that satisfy max(T (w1), T (w3)) < T (v) <

min(T (w2), T (w4)) and appear in the order w1, w2, w3, w4

clockwise around v.
A basin is a maximal connected set of points β ⊆ R

3 such
that T ((x, y)) ≤ z ≤ hβ , for all (x, y, z) ∈ β, where hβ is a
fixed elevation chosen as the upper boundary of β. A basin β
is maximal if there exists a saddle point pβ on the boundary
of β such that T (pβ) = hβ. The point pβ is called the spill
point of basin β, since water poured into β spills over pβ

into an adjacent basin once β becomes full. We assume pβ

is unique, that is, there are no two saddles with elevation hβ

on the boundary of β. We also assume exactly two basins
meet in each spill point. Throughout this paper, we are
interested almost exclusively in maximal basins and refer to
them simply as basins. Every basin contains at least one
pit, and for every pit there exists a unique (maximal) basin
that contains only this pit. We call such a basin elementary.

Trickle paths, watersheds, and tributaries. The
trickle path of a point q ∈ T is the path that starts at q,
continues in the direction of steepest descent for every point
it visits, and ends either in a pit p or at the boundary of T .
In the former case, water falling onto q collects in the ele-
mentary basin corresponding to p; in the latter, it flows off
the edge of the terrain. The watershed of a pit p is the set of
points whose trickle paths end in p. The watershed W 0

β of a
basin β is the union of the watersheds of all pits contained
in β. More generally, we use W t

β to denote the watershed of
basin β at time t, which is the area such that water falling
onto W t

β at time t collects in basin β. A tributary of β is
a basin τ such that τ ∩ β = ∅, τ spills before β, and water
falling onto W tτ

τ at the time tτ when τ spills collects in β;
that is, τ spills into β and the watershed of τ at this time
becomes part of the watershed of β. Note that τ is usually
a tributary of more than one basin. In particular, if β is the
smallest basin that has τ as a tributary, then τ is a tributary
of every basin that contains β but not τ .

Merge tree and flow tree. The basins of T form a
hierarchy that is easily represented using a rooted tree, the
merge tree M of T . The leaves of M are the elementary
basins of T . A basin β1 is the parent of a basin β2 if and
only if β2 ⊂ β1 and there exists no basin β3 such that β2 ⊂
β3 ⊂ β1. Under the assumptions we made about T , M is
a binary tree. For a subset S of nodes of M, let M(S) be
the subgraph of M induced by S. For a node α of M, Mα

denotes the subtree of M induced by α and its descendants.
We do not distinguish between merge tree nodes and their
corresponding basins. For a basin β, we use Vβ to denote
β’s volume, W t

β to denote β’s watershed at time t or its size
(which will be clear from the context), Eβ to denote the
event that β spills into an adjacent basin, and tβ to denote
the time of event Eβ. We call Eβ the spill event associated
with β. See Figure 1 for an illustration of these definitions.

Now consider a subset S of nodes of M such that M(S)
is a tree. The flow paths between the basins in S form
a flow tree F(S) defined as follows. Let S′ be the set of
leaves of M(S). The elements of S′ are the vertices of F(S).
There is an edge between two such vertices α1 and α2 if their
watersheds touch in the common spill point of two basins
β1, β2 ∈ S. See Figure 2.

3. COMPUTING FLOODING TIMES
Our algorithm for computing the flooding times of all ter-

rain vertices has two phases. The first phase (Sections 3.1–
3.3) computes the spill times tβ of all basins of T using
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Figure 1: (a) A 1-d terrain with its corresponding merge tree and volumes and initial watersheds of its basins.
(b) The spill times of the basins and the water levels in the basins at time t = 2.
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Figure 2: Figure (a) shows the merge tree M(S) of a set S = {α0, α1, β1, . . . , α7, β7} of basins. Figure (b)
illustrates the nesting of these basins using contour lines through their spill points. Figure (c) shows the flow
tree of basins α7, β1, β2, . . . , β7. Every edge corresponds to a spill point and joins the two basins containing
the endpoints of the trickle paths starting at this spill point (shown as dashed lines in Figure (b)). Note that
the trickle paths corresponding to different edges incident to a flow tree node βi may end in different pits
inside the basin βi. This is the case for basin β6 in Figure (b).

O(sort(X) log(X/M)) I/Os. The second phase (Section 3.4)
then computes the flooding times of all vertices of T using
O(sort(N)) I/Os.

3.1 Computing Spill Times
We assume the merge tree M is given and every node

β ∈ M stores Vβ , W 0
β , as well as identifiers of the two ele-

mentary basins λf (β) and λr(β) such that λf (β) ∈ Mβ and
W 0

λf (β) and W 0
λr(β) touch in pβ; λf (β) is needed for some

data structure queries in our algorithm, while λr(β) is the
basin where water spilling from β would collect if we poured
water only into β. We further assume the elementary basins
of T have been numbered using a preorder traversal of the
flow tree F of T starting at an arbitrary root, and every
elementary basin stores the preorder interval of its descen-
dants. This information can be computed from the input of
our algorithm using O(sort(X)) I/Os using standard tech-
niques. Details appear in the full paper.

Our algorithm for computing the spill times of all basins
is recursive. Every recursive call takes a node β ∈ M and
a list Rβ of all tributaries of β as input. Each tributary
τ ∈ Rβ stores its spill time tτ , its watershed Wτ := W tτ

τ at
time tτ , and the preorder number of an elementary basin it
contains. The task of the recursive call on a node β is to
compute the spill times of all proper descendants of β in M.
The top-level invocation takes the root ρ of M and an empty
list of tributaries as input (since ρ has no tributaries). We
distinguish two cases for each recursive call.

If |Mβ | ≤ M , we use the algorithm in Section 3.2 below
to solve the problem using O(sort(X)) I/Os, where X is the
total input size of the invocation, that is, X := |Mβ |+ |Rβ |.

If |Mβ| > M , we compute a heaviest path P in Mβ . This
path consists of a sequence of nodes α0, α1, . . . , αk, where
α0 = β, αk is a leaf, and, for 1 ≤ i ≤ k, αi is the child of
αi−1 with the bigger subtree Mαi

among the two children
of αi−1. We use βi to denote the other child of αi−1. See



Figure 2(a). The first step of the algorithm is to compute the
spill times tαi

and tβi
and the set Rβi

of tributaries of βi, for
all 1 ≤ i ≤ k. To finish the computation of spill times, we
recursively invoke the algorithm on each node βi, 1 ≤ i ≤ k.
As we show in Section 3.3, the computation of the spill times
tαi

and tβi
, for 1 ≤ i ≤ k, and of the lists of tributaries of the

basins β1, β2, . . . , βk takes O(sort(k + |Rβ |)) = O(sort(X))
I/Os, where X := |Mβ|+|Rβ |. The path P can be computed
using O(sort(X)) I/Os using the Euler tour technique and
list ranking [6]. This gives the following result.

Theorem 1. The spill times of all basins of a terrain T
can be computed using O(sort(X) log(X/M)) I/Os, where X
is the number of elementary basins of T .

Proof. We prove in Section 3.2 that, given the tribu-
taries of β, we compute the correct spill times for all basins
in Mβ in the case |Mβ| ≤ M . In Section 3.3, we prove
that, in the case |Mβ | > M , we compute the spill times of
basins αi and βi and the tributary lists Rβi

, for 1 ≤ i ≤ k,
correctly. The correctness of the algorithm then follows by
induction. The I/O complexity of an invocation of the al-
gorithm with total input size X := |Mβ | + |Rβ | and merge
tree size Y := |Mβ| is given by the recurrence

T (X,Y ) =

(

O(sort(X)) Y ≤ M

O(sort(X)) +
Pk

i=1 T (Xi, Yi) Y > M
,

where Yi := |Mβi
| and Xi := Yi + |Rβi

|. By the definition
of a tributary, every basin τ with τ ∈ Mβ or τ ∈ Rβ can
be the tributary of at most one basin βi. Hence, we have
Pk

i=1 Xi ≤ X. Furthermore, the choice of the path P as
a heaviest path ensures that Yi ≤ Y/2, for all 1 ≤ i ≤ k.
Together, these two facts imply that the recurrence solves
to T (X,Y ) = O(sort(X) log(Y/M)). For the root of M, we
have X = Y , that is, the overall complexity of the algorithm
is O(sort(X) log(X/M)), as claimed.

3.2 Small Basins
To solve the case |Mβ| ≤ M , we provide an implemen-

tation of the algorithm of [14] using a union-find structure
and a priority queue and extend it to take the tributaries of
the basin β into account when computing the spill times of
all sub-basins of β. Before running the actual algorithm, we
compute, for each tributary τ of β, the elementary sub-basin
λr(τ ) of β that τ spills into; that is, τ spills into β across
a saddle on the boundary of W 0

λr(τ). These basins can be
computed from the preorder numbers stored with the trib-
utaries of β and the preorder intervals of the elementary
sub-basins of β using O(sort(X)) I/Os. Details appear in
the full paper.

The algorithm maintains a set of active basins in Mβ ,
which are the basins that have not spilled yet but whose
children have already spilled. A basin that has spilled is
finished, and a basin with at least one unfinished child is
inactive. The set of active basins always contains the next
basin in Mβ to spill. We maintain the set of active basins
using two data structures: a priority queue Q and a union-
find structure U . The priority queue stores the active basins
with priorities equal to their predicted spill times—these
times decrease over time as we discover more tributaries of
active basins. The union-find structure stores the elemen-
tary basins (leaves) in Mβ and allows us to find, for each
such basin α, the active basin α′ such that W 0

α is currently

part of Wα′ . More precisely, a Find(α) operation returns
a representative elementary sub-basin of α′, and it is easy
to ensure that at all times, the representative of α′ stores
the ID of α′. Initially, all elementary basins are active and
all other basins are inactive; the predicted spill time of an
elementary basin α is t′α := Vα/W 0

α. To allow the updating
of predicted spill times, each active basin α also stores the
time uα when its watershed changed last—that is, the spill
time of its most recent tributary—as well as its residual vol-
ume V r

α at time uα, which is the portion of Vα left to be
filled at this time. Initially, V r

α = Vα and uα = 0, for every
elementary basin α of T .

After initializing the algorithm’s data structures as just
described, we process the events in Q and Rβ by increasing
time until Q contains only the basin β. The details of each
iteration are as follows. Let τ be the next tributary in Rβ to
be processed, and let α be the active basin with minimum
priority in Q. If tτ < t′α, we remove τ from Rβ and process
Eτ as a watershed event with time tτ , as described below.
If t′α < tτ , we remove α from Q and consider its sibling σ.
If σ is not finished, we process Eα as a watershed event
with time t′α; otherwise we process it as a basin event with
time t′α.

Watershed event: A watershed event occurs when a basin
α spills into a non-full basin α′, thereby increasing the water-
shed of α′. To process a watershed event Eα with time t, we
find the active basin α′ that α spills into using a Find(λr(α))
operation on U . We update the information for α′ as V r

α′ :=
V r

α′ − Wα′(t − uα′), Wα′ := Wα′ + Wα, uα′ := t, and
t′α′ := t + V r

α′/Wα′ , and then update the priority of α′ in Q
accordingly. If α ∈ Rβ, this finishes the processing of Eα. If
α ∈ Mβ, we need to update U to reflect that water falling
or flowing onto Wα after time t flows into α′. We do this
by performing a Union(λf (α), λr(α)) operation on U and
ensuring that the representative of the resulting set of ele-
mentary basins points to α′. We also label the node α in
Mβ as finished.

Basin event: A basin event occurs when the second of two
sibling basins becomes full, leaving its parent basin in Mβ

to fill. When processing a basin event Eα with time t, for
some α ∈ Mβ , both α and its sibling σ in Mβ are full at
time t. Thus, we label α as finished in Mβ and mark its
parent γ as active. Water that flowed into α before time t
now collects in γ. Thus, we set Wγ := Wα and ensure that
the representative of α now points to γ. Since both α and σ
are full at time t, we set V r

γ := Vγ − Vα − Vσ, uγ := t, and
t′γ := t + V r

γ /Wγ . Then we insert γ into Q with priority t′γ .

The following lemma states the correctness and I/O com-
plexity of the above procedure.

Lemma 1. Let β be a basin with at most M sub-basins,
and let X := |Mβ| + |Rβ |. The spill times of all basins
α ∈ Mβ can be computed using O(sort(X)) I/Os.

Proof. To bound the I/O complexity of the procedure,
we observe that Q, U , and Mβ fit in memory and that
scanning the sorted list of tributaries Rβ requires us to keep
only one buffer block of size B in memory. Thus, apart
from sorting the tributaries in Rβ by their spill times using
O(sort(X)) I/Os, the algorithm only loads Mβ into mem-
ory and scans Rβ , which takes O(X/B) I/Os. All other
processing happens in memory.



To prove the correctness of the algorithm, we consider
the sequence of events E1, E2, . . . , EX affecting basin β and
its sub-basins, sorted by their times t1, t2, . . . , tX . That is,
every event Ei is an event Eα with α ∈ Mβ or such that
α /∈ Mβ and α is a tributary of a basin α′ ∈ Mβ, in which
case α is also a tributary of β and belongs to Rβ .

We use t′i to denote the “current” predicted time of the
event Ei. Consider the basin α such that Ei = Eα. Then
we define t′i := ti if α is a tributary of β and t′i := ∞ if
α ∈ Mβ and α is inactive; if α ∈ Mβ and α is active, we
define t′i to be its priority in Q. We use induction on i to
prove that t′i = ti when event Ei is processed. To do so, we
prove that the following holds after processing event Ei:

(i) Events E1, E2, . . . , Ei have been processed. No other
events have been processed.

(ii) Wα = W ti
α , for all active basins α ∈ Mβ.

(iii) t′i+1 = ti+1, while t′j ≥ tj , for all j > i + 1.

The base case is i = 0, setting t0 = 0. Property (i) holds
because no events have been processed yet. Property (ii)
holds because initially Wα = W 0

α, for every elementary basin
in Mβ, which is exactly the set of active basins at the begin-
ning of the procedure. To see that (iii) holds, observe that
t′j = tj if Ej = Eτ , for some tributary τ of β. If Ej = Eα,
for α ∈ Mβ, and α is inactive, then t′j = ∞; if α is active,

then t′j = Vα/W 0
α ≥ tj . Moreover, if E1 = Eα, for some

α ∈ Mβ , then α has no tributaries and t1 = Vα/W 0
α = t′1.

For the inductive step, consider i > 0 and assume the
claim holds for all j < i. By part (i) of the inductive hy-
pothesis, Ei−1 is the (i − 1)st event to be processed. By
part (iii) of the inductive hypothesis, we have t′i = ti and
t′j ≥ tj > ti, for all j > i, after processing Ei−1. Hence, Ei

is the ith event to be processed. This establishes (i).
To prove (ii), we consider the two possible types of event

Ei separately. Let Ei = Eα. If Ei is a watershed event, part
(ii) of the inductive hypothesis implies that we identify the
correct watershed Wα′ into which α spills at time ti and,
hence, that we update Wα′ to W ti

α′ ; all other watersheds
remain unchanged. If Ei is a basin event, α and its sibling
are full at time ti, while α’s parent γ has to fill. Furthermore,
all water flowing into γ immediately before time ti collects in
α because α’s sibling is already full. Therefore, W ti

γ = W ti
α ,

and we correctly set Wγ := Wα.
Finally, consider (iii). We consider only events Ej = Eα

with α an active basin in Mβ because, by definition, t′j = tj ,
for every spill event Ej of a tributary of β, and t′j = ∞,
for every spill event Ej of an inactive basin in Mβ. It is
easily verified that we update t′α correctly whenever we in-
crease Wα. By (ii), each event Eh with h ≤ i updates Wα

if and only if Eh = Eτ , for some tributary τ of α. Thus,
t′j ≥ tj , for all j ≥ i. For j = i + 1, the spill events of the
tributaries of α are a subset of E1, E2, . . . , Ei, as they have
to happen before Eα = Ei+1. Thus, we have t′i+1 = ti+1

after Ei is processed.

3.3 Basin Sets With Linear Merge Trees
Now consider a path P = 〈β = α0, α1, . . . , αk〉 from a

merge tree node β to a descendant leaf αk, and let βi be
the sibling of αi, for all 1 ≤ i ≤ k. The basic step of our
solution for the case |Mβ| > M computes the spill times
of α1, β1, α2, β2, . . . , αk, βk, as well as the lists of tributaries

Rβ1
,Rβ2

, . . . ,Rβk
of the basins β1, β2, . . . , βk. Our algo-

rithm for this problem operates on the flow tree F := F(S)
of the set S of basins in P . Note that every edge in F corre-
sponds to the spill point connecting two basins αi and βi, for
1 ≤ i ≤ k, and that λf (αi) = λr(βi) and λf (βi) = λr(αi) in
this case. So the tree is easy to construct using a constant
number of sorting and scanning steps of S. Details appear
in the full paper.

We call a spill event Eβi
confluent, as the water spilling

from βi at time tβi
spills towards αk. Similarly, we call a

spill event Eαi
diffluent, as the water spilling from αi at time

tαi
spills away from αk (αk is a sub-basin of αi). We define

Fβi
to be the subtree of F rooted in βi, assuming αk is cho-

sen as the root of F . Our algorithm proceeds in two phases.
The confluent phase computes times t′β1

, t′β2
, . . . , t′βk

. These
times satisfy t′βi

= tβi
if Eβi

is a watershed event and
t′βi

≥ tβi
if Eβi

is a basin event. In addition, this phase
constructs a list Lβi

, for each 1 ≤ i ≤ k, which is a su-
perset of those tributaries of βi that belong to Fβi

or spill
into β across a saddle on the boundary of a basin βj ∈ Fβi

.
The second, diffluent phase computes times t′′α1

, t′′α2
, . . . , t′′αk

and t′′β1
, t′′β2

, . . . , t′′βk
from the times and potential tributary

lists computed in the confluent phase, and we prove that
t′′αi

= tαi
and t′′βi

= tβi
, for all 1 ≤ i ≤ k. In the process, the

diffluent phase computes the list Rβi
of tributaries of βi, for

every 1 ≤ i ≤ k.
Intuitively, this two-phase approach works because the

confluent phase ensures that the spill times of all basins βi

that are tributaries of other basins are computed correctly
(since βi can be a tributary only if its spill event is a water-
shed event). A basin αi can have only confluent tributaries,
since basins α1, α2, . . . , αk are nested. A basin βi can have
only one diffluent tributary, namely αi, because βi is a sub-
basin of αj , for all j < i, and αi is a super-basin of αh, for all
h > i. Thus, by processing the basins “outwards” from αk—
that is, by decreasing index i—in the diffluent phase, we can
ensure that the spill times of all tributaries of a basin are
known by the time the basin is processed.

3.3.1 From Tributaries to Spill Times

Both phases of our algorithm use the same elementary
procedure to compute a predicted spill time for a basin. To
avoid duplication, we describe this procedure here and refer
to it as procedure FindSpillTime later. The input of this
procedure is a basin α, a time uα, the residual volume V r

α of
α at time uα, and the watershed Wα = W uα

α of α at time uα.
In addition, we are given a priority queue Q containing a
set of potential tributaries of α; each entry τ ∈ Q satisfies
t′τ > uα, where t′τ denotes the priority of τ . The output of
the procedure is a predicted spill time t′α of α and a list L
of entries removed from Q while computing t′α.

Initially, we set t′α := uα + V r
α /Wα. Then we repeat the

following steps to update t′α until either Q is empty or the
minimum entry τ in Q satisfies t′τ ≥ t′α. We remove the min-
imum entry τ (which satisfies t′τ < t′α) from Q and append it
to L. Then we set V r

α := V r
α −Wα(t′τ −uα), Wα := Wα+Wτ ,

uα := t′τ , and t′α := uα + V r
α /Wα.

Lemma 2. Assume at the beginning of procedure Find-

SpillTime, Wα and V r
α reflect the actual watershed and

residual volume of α at time uα, Q contains only entries
τ with t′τ ≥ uα, and t′τ < tα if and only if τ is a tributary of
α. Assume further that every tributary τ ∈ Q of α satisfies
t′τ = tτ . Then t′α ≥ tα when the procedure terminates. If Q



contains every tributary τ of α with tτ ≥ uα, then t′α = tα,
and L = {τ ∈ Rα | tτ ≥ uα}.

Proof. First assume for the sake of contradiction that
t′α < tα when the algorithm terminates. Then the last ele-
ment τ ∈ Q processed by procedure FindSpillTime satis-
fies t′τ < t′α, as the update of t′α when processing an entry τ
does not decrease t′α below t′τ . Hence, every processed entry
τ satisfies t′τ < tα. This implies that all processed elements
are tributaries of α that satisfy uα < t′τ = tτ < tα, and we
process them in order. Thus, after processing every tribu-
tary τ , we have Wα ≤ W tτ

α , which implies that t′α ≥ tα, a
contradiction.

Now assume Q contains all tributaries of α and t′α > tα

when procedure FindSpillTime finishes. This is possible
only if we do not process all tributaries of α. An unprocessed
tributary τ would have to remain in Q by the end of the
procedure and, thus, satisfies t′τ > t′α. However, t′τ = tτ <
tα < t′α, again a contradiction.

Finally, observe that, if t′α = tα, we process exactly the
elements τ ∈ Q with t′τ < tα, and place them into L. These
are exactly the tributaries of α that satisfy tτ ≥ uα.

3.3.2 Confluent Phase

To implement the confluent phase of the algorithm, we
root the flow tree F in αk and process its nodes in post-
order. With every node α ∈ F we associate a list Sα ⊆ Rβ

containing all tributaries τ of β that spill into β across a sad-
dle on the boundary of W 0

α. These lists are easy to compute
using O(sort(X)) I/Os from the preorder numbers of the el-
ementary basins associated with the tributaries, assuming
that every basin in M stores the largest preorder interval
of all its elementary sub-basins, which is easily computed
in a preprocessing step using a bottom-up traversal in M.
Details appear in the full paper.

During the traversal of F , we ensure that visiting a node
βi produces a priority queue Qβi

that contains all basins τ
that satisfy (i) τ ∈ {βj} ∪ Sβj

, for some βj ∈ Fβi
, and (ii)

t′τ ≥ t′βh
, for all βh on the path from βj to βi in F , inclu-

sive. At any point during the postorder traversal, there is
a set of active nodes, which are nodes that have been vis-
ited already but whose parents in F have not. We maintain
the priority queues of all active nodes in a sequence sorted in
the order these nodes are visited and represent this sequence
of priority queues using a data structure that supports In-

sert and DeleteMin operations on the last priority queue
in the sequence, the creation of a new priority queue at the
end of the sequence, as well as a Meld operation, which
replaces the last two priority queues in the sequence with
their union. In Section 4, we show that the external heap of
Fadel et al. [12] can be extended to process a sequence of N
Insert, DeleteMin, Create, and Meld operations using
O(sort(N)) I/Os.

The processing of a node βi distinguishes two cases. If
βi is a leaf, we create a new priority queue Qβi

at the end
of the sequence of priority queues of active nodes. If βi

is an internal node with children βj1 , βj2 , . . . , βjh
, the cor-

responding priority queues Qβj1
, Qβj2

, . . . , Qβjh
are at the

end of the current sequence of priority queues, and we con-
struct Qβi

by melding these priority queues. In both cases,
we continue by inserting all elements τ ∈ Sβi

into Qβi
, with

priority t′τ = tτ . Then we use procedure FindSpillTime to
compute t′βi

and Lβi
; the input to the procedure is βi, Qβi

,

uβi
:= 0, Wβi

:= W 0
βi

, and V r
βi

:= Vβi
. Once this procedure

terminates, we insert βi into Qβi
, with priority t′βi

.
The confluent phase terminates when the traversal reaches

the root αk of F . Since Eαk
is a diffluent spill event, we

do not compute its time in this phase of the algorithm.
We only construct a list Lαk

by collecting all elements in
Qβj1

, Qβj2
, . . . , Qβjh

and Sαk
, where βj1 , βj2 , . . . , βjh

are
the children of αk in F .

To establish the correctness of the confluent phase, we
require a number of technical lemmas. The first one char-
acterizes the spill events of basins on the flow path between
a basin and its tributary. For three basins βj , βh ∈ F and a
basin α ∈ {αi, βi}, we say βh is on the path from βj to α in
F if βh is not a sub-basin of α but belongs to the path from
βj to every sub-basin α′ ∈ F of α.

Lemma 3. Consider a tributary τ of a basin α ∈ {αi, βi},
and assume that τ ∈ {βj} ∪ Sβj

, for some j. Then Eβh
is a

watershed event, for every basin βh on the path from βj to
α in F that is not a sub-basin of αi.

Proof. For j > i, the lemma holds vacuously because
βj is a sub-basin of αi in this case and α ∈ {αi, βi}; this
implies that every basin βh on the path from βj to α is a
sub-basin of αi. For j ≤ i, assume there exists a basin βh on
the path from βj to α that is not a sub-basin of αi and such
that Eβh

is a basin event. Since βh is not a sub-basin of αi,
we have h ≤ i. If α = αi, this implies that α is a sub-basin
of αh and tα ≤ tαh

≤ tβh
. If α = βi, then h < i because

βh 6= α. Thus, α is again a sub-basin of αh; in particular,
tα ≤ tβh

. However, since βj is a tributary of α, we have
tβj

< tα and, therefore, tβj
< tβh

in both cases. For βj to
be a tributary of α, there has to exist a down-hill path from
βj to α at time tβj

. By the choice of βh, any path from βj

to α has to pass through a point interior to βh first and then
through pβh

. Since βh is not full at time tβj
, no such path

is down-hill at time tβj
, a contradiction.

Our next lemma shows that, if a basin τ ∈ {βj} ∪ Rβj
is

a tributary of a basin βi with βj ∈ Fβi
, then τ ∈ Lβi

, that
is, τ is processed when computing t′βi

; otherwise, if it is a
tributary of α ∈ {αi, βi}, then it is in Lγ , for some sub-basin
γ of αi. The first part is used to prove in Lemma 5 below
that the confluent phase computes the correct spill times for
all confluent watershed events. The second part is used to
establish the correctness of the diffluent phase, discussed in
Section 3.3.3.

Lemma 4. Consider a basin τ ∈ {βj} ∪ Sβj
with τ ∈ Lγ .

Assume further that every basin βh in Fγ satisfies t′βh
≥ tβh

,
with equality if Eβh

is a watershed event. If τ is a tributary
of βi and βj ∈ Fβi

, then γ = βi. Otherwise, if τ is a
tributary of a basin α ∈ {αi, βi}, then γ is a sub-basin of αi.

Proof. First assume τ is a tributary of βi and βj ∈ Fβi
.

Then Eτ is a watershed event and either τ ∈ Sβj
or τ = βj .

In both cases, we have t′τ = tτ , in the latter case by the
assumption that t′βh

= tβh
for every watershed event on the

path from βj to γ. If γ belongs to the path from βj to βi and
γ 6= βi, then we have t′γ = tγ < tτ because τ is a tributary
of βi and, hence, Eγ is a watershed event. However, γ 6= αk

in this case, and every element τ in Lγ is removed from
Qγ while computing t′γ . Thus, t′τ < t′γ , a contradiction.
This shows that γ is an ancestor of βi in F . This, however,
implies that t′βi

≥ tβi
> tτ = t′τ . Thus, the computation of

t′βi
removes τ from Qβi

, and τ ∈ Lβi
.



Now assume that τ is a tributary of a basin α ∈ {αi, βi}
and, if α = βi, that βj 6∈ Fβi

. Then, if γ belongs to the
path from βj to αi, we obtain t′γ = tγ < tτ = t′τ on the one
hand, because τ is a tributary of α and, by Lemma 3, Eγ

is a watershed event; on the other hand, t′γ > t′τ because
otherwise τ /∈ Lγ . Thus, we obtain a contradiction and γ is
a sub-basin of αi.

Lemma 5. For all 1 ≤ i ≤ k, we have t′βi
≥ tβi

. If Eβi
is

a watershed event, equality holds.

Proof. By induction on |Fβi
|. The base case is |Fβi

| = 0,
in which case there is nothing to prove. So consider a node
βi and assume the claim holds for all its descendants. Then,
by Lemma 4, every tributary τ ∈ {βj} ∪ Sβj

, for some de-
scendant βj of βi, is inspected when computing t′βi

, and
each such tributary satisfies t′τ = tτ by the inductive hy-
pothesis. In particular, each such tributary belongs to Qβi

when invoking procedure FindSpillTime to compute t′βi
.

We prove that any other element α ∈ Qβi
satisfies t′α ≥ tβi

.
By Lemma 2, this implies that t′βi

≥ tβi
, with t′βi

= tβi
if

Qβi
contains all tributaries of βi, which is the case if Eβi

is
a watershed event. Indeed if there was a tributary τ such
that τ ∈ {βj} ∪ Rβj

, for some βj /∈ Fβi
, the water spilling

from τ into βi would have to flow through a point interior
to αi and then through pαi

= pβi
. Since tτ < tβi

and Eβi
is

a watershed event, αi is not full at time tτ , that is, the path
from τ to βi cannot be down-hill at time tτ , a contradiction.

So consider an element α ∈ Qβi
, and assume that α ∈

{βj} ∪ Sβj
, for some βj ∈ Fβi

, and t′α < tβi
. We prove

that α is a tributary of βi. We have t′α ≥ t′βh
, for all βh

on the path from βj to βi, excluding βi, because otherwise
βh would have removed α from Qβh

when computing t′βh
.

Since, by the inductive hypothesis, tβh
≤ t′βh

, this implies
that tβh

< tβi
. Also by the inductive hypothesis, we have

t′α ≥ tα. If tα ≥ tβh
, for all βh on the path from βj to βi,

then α is a tributary of βi. If tα < tβh
≤ t′α, for some βh,

then, by the inductive hypothesis, Eα is not a watershed
event. In particular, α = βj , for some j < i, and tβi

< tαj
≤

tβj
= tα because βi is a sub-basin of αj . This contradicts

our assumption that tα ≤ t′α < tβi
.

3.3.3 Diffluent Phase

In the diffluent phase, we process the basins in Mβ in the
order αk, βk, αk−1, βk−1, . . . , α1, β1. We initialize a priority
queue Q to contain all events in Lαk

. Then we repeat the
following steps for i = k, k − 1, . . . , 1:

First we compute t′′αi
. If i = k, we do this by invoking

procedure FindSpillTime with arguments αk, Q, uαk
:= 0,

Wαk
:= W 0

αk
, and V r

αk
:= Vαk

. If i < k, we invoke the
procedure with arguments αi, Q, uαi

:= max(t′′αi+1
, t′′βi+1

),

Wαi
:= max(Wαi+1

, Wβi+1
), and V r

αi
:= Vαi

−Vαi+1
−Vβi+1

.
We place the elements of Q processed by procedure Find-

SpillTime into a list R′′
αi

.
Then we compute t′′βi

. To do so, we insert αi (with pri-
ority t′′αi

) and the events in Lβi
into Q and invoke pro-

cedure FindSpillTime with arguments βi, Q, uβi
:= 0,

Wβi
:= W 0

βi
, and V r

βi
:= Vβi

. We place the elements of Q
processed by procedure FindSpillTime into a list R′′

βi
.

The computation of t′′αi
and t′′βi

may not process all ele-
ments in Q, and some of these elements may be sub-basins
of αi. These elements should be ignored in subsequent com-
putations, as they cannot be tributaries of any αj or βj with
j < i. To ensure this, we augment the above procedure to

ignore in iteration i all elements αj or βj in Q with j > i.
(Note that we ignore only these basins, not the elements of
Sαk

or Sβj
with j > i.)

Lemma 6. For all 1 ≤ i ≤ k, we have tαi
= t′′αi

, tβi
= t′′βi

,

Rβi
= R′′

βi
, and Rαi

= R′′
αk

∪
Sk−1

j=i R′′
βj

.

Proof. By induction on i. For i = k, Lemmas 4 and 5
imply that every tributary τ of αk belongs to Lαk

and sat-
isfies t′τ = tτ . Any other basin α ∈ Lαk

satisfies t′α ≥ tα,
and the same arguments as in the proof of Lemma 5 show
that t′α ≥ tαk

in this case. Hence, by Lemma 2, the first
iteration computes t′′αk

= tαk
and processes only tributaries

of αk, that is, R′′
αk

= Rαk
.

Now consider βk. By Lemmas 4 and 5, every tributary of
βk belongs to {αk} ∪ Lαk

∪ Lβk
, and we have just argued

that the computation of αk processes only tributaries of αk.
Hence, Q contains all tributaries of βk. We have just argued
that t′′αk

= tαk
and, by Lemma 5, any other tributary τ of

βk satisfies t′τ = tτ . For an element α ∈ Q that is not a trib-
utary of βk, the same arguments as in the proof of Lemma 5
show that t′α ≥ tβk

. (However, we have to distinguish the
cases βj ∈ Fβk

and βj /∈ Fβk
, where α ∈ {βj}∪Rβj

.) Thus,
by Lemma 2, we compute t′′βk

= tβk
and R′′

βk
= Rβk

.
Now assume that i < k and that the inductive hypoth-

esis holds for all j > i. By Lemmas 4 and 5, every trib-
utary τ of αi is contained in L := Lαk

∪
Sk

j=i+1 Lβj
=

Q ∪
Sk

j=i+1(R
′′
αj

∪ R′′
βj

) and satisfies t′τ = tτ . Using the
arguments from the proof of Lemma 5 again, every α ∈ L
that is not a tributary of αi satisfies t′α ≥ tαi

. Moreover,
the elements of L \ Q are exactly the tributaries of αi+1

and βi+1, that is, the tributaries τ of αi that satisfy tτ < uαi
.

Hence, by Lemma 2, we compute t′′αi
= tαi

and R′′
αi

to con-
tain exactly the tributaries τ of αi that satisfy tτ ≥ uαi

.

Thus, Rα = R′′
αi

∪
Sk

j=i+1(R
′′
αj

∪ R′′
βj

). The correctness

proof for the computation of t′′βi
and R′′

βi
is identical to that

for βk.

Lemma 7. The computation of the spill times tαi
and tβi

and of the tributary lists Rβi
, for all 1 ≤ i ≤ k, takes

O(sort(X)) I/Os.

Proof. The correctness of the algorithm is established
by Lemma 6. Its I/O-complexity is established as follows:
Both phases of the algorithm perform O(X) priority queue
operations, as every event is inserted and removed from a
priority queue only once in each of the two phases and the
confluent phase performs at most X Meld operations. By
Theorem 3 in Section 4, these priority queue operations cost
O(sort(X)) I/Os. Apart from this, the algorithm traverses
trees F and M(S) once each and scans lists associated with
the tree nodes of total length O(X). After arranging the tree
nodes and list elements in the right order, using a sorting
step, the scanning of these lists takes O(X/B) I/Os.

3.4 Computing the Flooding Times of All Ter-
rain Vertices

The terrain vertices that are not spill points of basins can
be seen as partitioning the basins of T into sub-basins as
follows. For each terrain vertex v, let αv be the smallest
basin that contains v. For a basin β, let V (β) be the set of
terrain vertices with αv = β. Each vertex v ∈ V (β) defines a
sub-basin βT (v) of β containing the portion of β below eleva-
tion T (v). Let v1, v2, . . . , vk be the vertices in V (β) sorted by



increasing elevation. Then the water from every tributary in
R′′

βi
first collects in βT (v1); once βT (v1) is full, the water col-

lects in βT (v2), and so on. This is just a simplified version of
the diffluent flow computation in Section 3.3.3, and comput-
ing the spill times of basins βT (v1), βT (v2), . . . , βT (vk)—that
is, the flooding times of vertices v1, v2, . . . , vk—from the list
R′′

β takes O(sort(N)) I/Os in total for all basins of T . The
computation of the sets V (β) can be incorporated in the
computation of the basins of T without increasing the I/O
complexity of that phase. Details appear in the full paper.
Thus, we have the following result.

Theorem 2. The flooding times of all vertices of a ter-
rain T with N vertices and X pits can be computed using
O(sort(X) log(X/M) + sort(N)) I/Os, given the watersheds
and volumes of all basins of T .

4. A MELDABLE PRIORITY QUEUE
In this section, we discuss how to extend the external heap

of Fadel et al. [12] to obtain a meldable priority queue that
can be used in the procedure in Section 3.3.2. This struc-
ture maintains a sequence of priority queues Q1, Q2, . . . , Qk

under Create, Insert, DeleteMin, and Meld operations.
Given the current sequence Q1, Q2, . . . , Qk, a Create op-
eration creates a new, empty priority queue Qk+1 and ap-
pends it to the end of the sequence; an Insert(x) oper-
ation inserts element x into Qk; a DeleteMin operation
deletes and returns the minimum element in Qk; a Meld

operation replaces Qk−1 and Qk with a new priority queue
Q′

k−1 := Qk−1 ∪Qk containing the elements from Qk−1 and
Qk. We prove the following result.

Theorem 3. There exists a linear-space data structure
that uses O(sort(N)) I/Os to process a sequence of N Cre-

ate, Insert, DeleteMin, and Meld operations.

4.1 The Structure
Each priority queue Qi is represented as an external heap

similar to the one presented in [12]. The underlying struc-
ture is a rooted tree whose internal nodes have between
a = M/(4B) and b = M/B children. There are two types
of leaves: regular leaves are on the lowest level of the tree,
which we call the leaf level ; leaves above the leaf level are
special.

Every node v has an associated buffer Xv. If v is an
internal node, Xv has size M . If v is a leaf, there is no
bound on the size of Xv. The elements in Xv are sorted,
and the buffer contents of adjacent nodes satisfy the heap
property : for every node v with parent u and every pair of
elements x ∈ Xu and y ∈ Xv, we have x ≤ y.

To support Insert and DeleteMin operations efficiently,
every priority queue Qi is equipped with an insert/delete
buffer or I/D buffer for short. This buffer is capable of
holding up to M elements and stores the minimum elements
in Qi as well as newly inserted elements. To distinguish
newly inserted elements in Qi’s I/D buffer from minimum
elements, Qi has an associated priority pi, which is the min-
imum priority of the elements stored in the external part
of Qi.

The I/D buffers of priority queues Q1, Q2, . . . , Qk are kept
on a buffer stack, with the buffer of Q1 at the bottom and
the buffer of Qk at the top. The I/D buffers of consecutive
priority queues are separated by special marker elements.

We always keep the topmost M elements of this stack in
memory, which ensures in particular that the I/D buffer of
Qk is in memory.

4.2 Operations
Create. To create a new priority queue Qk+1, a Create op-
eration pushes a new marker element onto the buffer stack.

Insert. An Insert operation on Qk adds the inserted el-
ement x to Qk’s I/D buffer. If the buffer now contains M
elements, we Flush the buffer as described below. Then we
Fill the I/D buffer with the M/2 minimum elements in Qk

and update pk accordingly.

DeleteMin. A DeleteMin operation on Qk returns the
minimum element in Qk’s I/D buffer. Before doing so, how-
ever, it checks whether the I/D buffer of Qk is empty or
its minimum element is greater than pk. If so, it Flushes
the I/D buffer and then Fills it with the M/2 minimum
elements in Qk.

Meld. A Meld operation behaves differently depending
on the structure of the two involved priority queues, Qk−1

and Qk. During different stages of its life time, a priority
queue may have no external portion because all its elements
fit in the I/D buffer. If at least one of the two priority
queues, say Qk, has no external portion, we destroy its I/D
buffer, and Insert its elements into Qk−1. If both prior-
ity queues have external portions, we Flush and destroy
their I/D buffers, Merge their two trees as described be-
low, and then Fill the I/D buffer of the merged priority
queue Q′

k−1 := Qk−1 ∪Qk with the M/2 minimum elements
in Q′

k−1.

Flush. A Flush operation of an I/D buffer containing K
elements creates a new leaf l at the leaf level and stores
these K elements in l. Then it applies a Heapify operation
to the path from l to the root to restore the heap property.
If the addition of l increased the degree of l’s parent p to
M/B + 1, we split p into two nodes p′ and p′′, each with
half of p’s children. We associate the buffer of p with p′ and
populate the buffer of p′′ with the M smallest elements in
its subtree using a Fill operation. If this split increases the
degree of p’s parent to M/B + 1, we apply this rebalancing
procedure recursively until we reach the root. If the root has
degree greater than M/B, we split it into two nodes with a
new parent.

Fill. A Fill operation applied to a node v repeatedly takes
the smallest element stored in the buffers of v’s children, re-
moves it from the corresponding child’s buffer and stores it
in v’s buffer. This continues until M elements have been col-
lected in v’s buffer or there are no elements left in the buffers
of v’s children. Whenever a child buffer runs empty while
filling v’s buffer, its buffer is filled recursively before continu-
ing to fill v’s buffer. Once there are no more elements left in
a node v’s subtree, we mark v as exhausted, in order to avoid
repeatedly trying to fill v with elements. More precisely, a
node is marked as exhausted once its buffer becomes empty
and all its children are exhausted. To fill the I/D buffer of
a priority queue Qk with the M/2 smallest elements in Qk,
we transfer the M/2 smallest elements from the root of Qk

into the I/D buffer, Filling the root’s buffer whenever it
runs empty. If the root becomes exhausted in the process,
we delete the entire external portion of the priority queue.



Merge. A Merge operation between two trees T1 and T2

of heights h1 > h2 proceeds as follows. We locate a node v
at height h2 + 1 in T1 and make the root r2 of T2 a child
of v. We also create a new special leaf node l that is a child
of v. Now let v = v0, v1, . . . , vh be the ancestors of v, by
increasing distance from v, let Ki be the number of elements
in Xvi

, and let K =
Ph

i=0 Ki. First we collect the elements
in Xv0

, Xv1
, . . . , Xvh

in sorted order and store them in l.
Then we repeatedly remove the minimum element from Xr2

and Xl, refilling Xr2
as necessary, until we have collected

the K smallest elements in the subtrees rooted at r2 and l.
We store these elements in buffers Xv0

, Xv1
, . . . , Xvh

, sorted
top-down and so that each node vi receives Ki elements. We
clear the“exhausted”labels of all nodes among v0, v1, . . . , vh.
If v has degree greater than M/2 as a result of gaining two
children, r2 and l, we rebalance the tree using node splits
starting at v similar to the rebalancing done after a Flush

operation.

Heapify. The final operation to discuss is the Heapify op-
eration. Given a node v and its path v = v0, v1, . . . , vh to the
root, a Heapify operation ensures that the elements stored
on the path satisfy the heap property. It assumes that the
elements in v1, v2, . . . , vh already do so, but some elements
in v0 may be less than elements stored at higher nodes. To
restore the heap property, we sort the elements in v0 and col-
lect the elements in v1, v2, . . . , vh in sorted order. Then we
merge the two sorted sequences to obtain a sorted sequence
of the elements stored in v0, v1, . . . , vh and distribute these
elements over the buffers of nodes v0, v1, . . . , vh, assigning
the same number of elements to each node as it had before
the operation and storing the elements sorted top-down on
the path. If some of the nodes on the path were marked as
exhausted before this operation, we unmark them.

4.3 Analysis
To prove the correctness of all priority queue operations,

we need to verify that the heap property is maintained at all
times. This is little more than an exercise and is therefore
omitted.

It is easy to see that every Create, Insert, DeleteMin,
and Meld operation makes only O(1) changes to the buffer
stack and thus has an amortized cost of O(1/B) I/Os, ex-
cluding the manipulations performed by the Flush, Fill,
Merge, and Heapify operations they trigger. The follow-
ing two lemmas bound the cost of all Flush, Fill, Merge,
and Heapify operations performed during a sequence of N
priority queue operations. Due to lack of space, their proofs
are omitted.

Lemma 8. During a sequence of N priority queue opera-
tions, at most O(N/M) Flush, Fill, Merge, and Heapify

operations are performed.

Lemma 9. The amortized cost per Flush, Fill, Merge

or Heapify operation is O((M/B) logM/B(N/M)) I/Os.
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