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Abstract. We show how to compute single-source shortest paths in
undirected graphs with non-negative edge lengths in O(

p
nm/B log n +

MST (n, m)) I/Os, where n is the number of vertices, m is the number
of edges, B is the disk block size, and MST (n, m) is the I/O-cost of
computing a minimum spanning tree. For sparse graphs, the new algo-
rithm performs O((n/

√
B) log n) I/Os. This result removes our previous

algorithm’s dependence on the edge lengths in the graph.

1 Introduction

Let G = (V,E) be a graph, let s be a vertex of G, called the source vertex, and let
` : E → R+ be an assignment of non-negative real lengths to the edges of G. The
single-source shortest-path (SSSP) problem is to find, for every vertex v ∈ V , the
distance, distG(s, v), from s to v, that is, the length of a shortest path from s to
v in G. We focus mostly on the equivalent closest-source shortest-path (CSSP)
problem: In addition to the input for SSSP, let w : V → R+ be an assignment of
non-negative weights to the vertices of G. Then compute for every vertex x ∈ G,
its distance D(x) = min{w(y) + distG(y, x) | y ∈ G} from the closest source. If
y is a vertex such that w(y) + distG(y, x) = D(x), a shortest path to x, denoted
π(x), is a path of length distG(y, x) from y to x. The classical SSSP-algorithm for
general graphs is Dijkstra’s algorithm [6], which has seen many improvements,
particularly for undirected graphs with integer or float edge lengths [12, 13], and
undirected graphs with real edge lengths [11]. When applied to massive graphs
that do not fit in memory and are stored on disk, however, Dijkstra’s algorithm
and its improved variants perform poorly. This is because they access the data
in a random fashion.

More recently, much work has focused on SSSP in massive graphs. These
algorithms are analyzed in the I/O-model [1], which assumes that the computer
has a main memory that can hold M vertices or edges and that the graph is
stored on disk. In order to process the graph, pieces of it have to be loaded into
? For more details, see [10].

?? Research supported by DFG grant ME 2088/1-3.
? ? ? Research supported by NSERC and CFI.



memory, which happens in blocks of B consecutive data items. Such a transfer
is referred to as an I/O-operation (I/O). The complexity of an algorithm is the
number of I/Os it performs; e.g., sort(n) = Θ((n/B) logM/B(n/B)) I/Os to sort
n numbers [1].

Little is known about solving SSSP in general directed graphs I/O-efficiently.
For undirected graphs, the algorithm of Kumar and Schwabe (KS-SSSP) [7]
performs O(n+(m/B) log(n/B)) I/Os. For dense graphs, the second term dom-
inates; but for sparse graphs, the I/O-bound becomes O(n). The SSSP-algorithm
of Meyer and Zeh (MZ-SSSP) [9] extends the ideas of [8] for breadth-first search
(BFS) to graphs with edge lengths between 1 and W , leading to an I/O-bound of
O(

√
nm log W/B+MST (n, m)), where MST (n, m) is the I/O-cost of computing

a minimum spanning tree.1 This paper removes the algorithm’s dependence on
W using a number of new ideas, proving the following result:

Theorem 1. SSSP in an undirected graph with n vertices, m edges, and non-
negative2 edge lengths can be solved in O(

√
nm/B log n + MST (n, m)) I/Os.

Note that for sparse graphs, the cost of our algorithm is O((n/
√

B) log n)
I/Os. The rest of the paper is organized as follows: Section 2 discusses the ideas
of KS-SSSP and MZ-SSSP that are reused in our algorithm. Section 3 augments
MZ-SSSP to make it independent of the edge lengths, assuming an appropri-
ate graph partition. The algorithm’s complexity now depends on a parameter
of the partition, called its depth. Section 4 describes a recursive shortest-path
algorithm that uses another partition into “well-separated” subgraphs, allowing
the computation of shortest paths in the whole graph using nearly independent
computations on these subgraphs. Section 5 argues that any graph can be par-
titioned into such well-separated subgraphs, while at the same time ensuring
that each has a partition of small depth in the sense of Sect. 3. This allows
the two approaches from Sects. 3 and 4 to be combined to obtain an efficient
CSSP-algorithm (which also solves SSSP) as stated in Thm. 1 above.

2 Previous Work: KS-SSSP and MZ-SSSP

KS-SSSP. KS-SSSP [7] is an I/O-efficient version of Dijkstra’s algorithm. It
uses a priority queue Q to maintain the tentative distances of all vertices and
retrieves the vertices one by one from Q, by increasing tentative distances. After
retrieving a vertex x from Q, x is visited, that is, its incident edges are relaxed,
where the relaxation of an edge xy replaces the tentative distance d(y) of y with
min(d(y), d(x) + `(xy)); this is reflected by updating the priority of y in Q.

The main contribution of KS-SSSP is an I/O-efficient priority queue that
supports Update(x, p), Delete(x), and DeleteMin operations, each in amortized
1 The current bounds for MST (n, m) are O(sort(m) log log(nB/m)) deterministically

[2] and O(sort(m)) randomized [5].
2 In this paper, it is assumed that edge lengths are strictly positive. Length-0 edges

can be handled by treating each connected component of the subgraph they induce
as a single vertex.



O((1/B) log(n/B)) I/Os. The latter two respectively delete x or the item with
minimum priority from the priority queue. The former replaces x’s current prior-
ity px with min(px, p) if x ∈ Q. If x 6∈ Q and x has never been in Q, it is inserted
with priority p. If x has been in Q before, but has been deleted, the operation
does nothing! This particular behaviour of update operations is supported only
for SSSP-computations in undirected graphs that visit vertices by increasing
distances, because information about the structure of the resulting update se-
quence is used to ensure this behaviour (see [7] for details). As our algorithms
visit vertices out of order, more effort is required to ensure this behaviour in our
algorithms. Details appear in the full paper.

Given this fairly powerful priority queue, visiting a vertex x reduces to scan-
ning its adjacency list E(x) and performing an Update(y, d(x)+`(xy)) operation
on Q for every edge xy ∈ E(x). Thus, KS-SSSP performs O(m) priority queue
operations, which cost O((m/B) log(n/B)) I/Os, and it spends O(1+deg(x)/B)
I/Os to retrieve the adjacency list of each vertex x, O(n + m/B) I/Os in total.
For sparse graphs, the bottleneck of KS-SSSP is thus the random accesses to
the adjacency lists. This problem is addressed by MZ-SSSP and by our new
algorithm.

MZ-SSSP. MZ-SSSP partitions the vertex set of G into q = O(n/µ) carefully
chosen sets V1, . . . , Vq, called vertex clusters; 1 ≤ µ ≤

√
B is a parameter speci-

fied later. For each vertex cluster Vi, the adjacency lists of the vertices in Vi are
concatenated to form an edge cluster Ei. The edges in each edge cluster Ei are
stored consecutively on disk.

The shortest-path computation now proceeds as in KS-SSSP, except that a
hot pool H acts as an intermediary between the priority queue and the adjacency
lists. When a vertex x is retrieved from Q, it is only released, which means that
the hot pool H is instructed to visit x. H may delay visiting x, but not long
enough to compute incorrect distances, as formalized by the following property:

(SP) If vertex y is visited before vertex x, then D(y) ≤ D(x) + distG(x, y)/2.

This implies in particular that the vertices along any shortest path are visited by
increasing distances, which immediately implies the correctness of the algorithm.

The hot pool H is a buffer space storing adjacency lists. When a vertex x
needs to be visited and E(x) is in H, the edges in E(x) are relaxed. If E(x) is not
in H, then the entire edge cluster containing E(x) is loaded into H before x is
visited. This ensures that only O(n/µ+m/B) I/Os are performed to load edges
into the hot pool, because every edge cluster is loaded only once. The difficult
part is looking for adjacency lists in H efficiently, which can be done in amortized
O(µ log W/B) I/Os per edge, provided that the cluster partition has certain
properties, discussed in the next section. A partition with these properties can
be computed in O(MST (n, m) + (n/B) log W ) I/Os. By using a priority queue
that exploits the bounded range of the edge lengths to support Update, Delete,
and DeleteMin operations in amortized O((1/B) log W ) I/Os, the complexity of
the algorithm thus becomes O(n/µ + (mµ log W )/B + MST (n, m)) I/Os, which
is O(

√
nm log W/B + MST (n, m)) if µ =

√
nB/(m log W ) is chosen.



3 A Length-Independent MZ-SSSP

This section presents a new implementation of MZ-SSSP, called MZ-SSSP∗. The
cost of MZ-SSSP∗ is O((n/µ) log n+m(µd+log n)/B) I/Os, where d is a parame-
ter of the used cluster partition, called the depth of the partition. Section 5 will be
concerned with ensuring that d = O(log n), which, after choosing µ =

√
nB/m,

leads to the desired complexity of O(
√

nm/B log n) I/Os, plus the cost for com-
puting the partition, which will be O(MST (n, m)) I/Os.

3.1 µ-Partitions

The efficient implementation of the hot pool in MZ-SSSP∗ requires that the used
cluster partition has a number of properties. For an edge e ∈ G, the category of
e is the integer c such that 2c−1 ≤ `(e) < 2c. A c-component of G is a maximal
connected subgraph of G all of whose edges have category c or less. A category
component is a c-component, for some c. A c-cluster is a vertex cluster Vi that is
contained in a c-component, but not in a (c− 1)-component. The corresponding
edge cluster Ei is also referred to as a c-cluster. The diameter of a vertex set V ′ is
equal to max{distG(x, y) | x, y ∈ V ′}. Now the partition required by MZ-SSSP∗

is a µ-partition of G, which is a partition of V into q = O(n/µ) vertex clusters
V1, . . . , Vq with the following properties:
(C1) Every cluster Vi contains at most µ vertices,
(C2) Every c-cluster Vi has diameter at most µ2c,
(C3) No (c− 1)-component contributes vertices to two c-clusters, and
(C4) Every c-component contributing a vertex to a c′-cluster with c′ > c has

diameter at most 2cµ.

The depth of a cluster is the difference between the category of the cluster and
the category of the shortest edge with exactly one endpoint in the cluster. The
depth of the partition is the maximal depth of its clusters. A (µ, d)-partition is
a µ-partition of depth d. Note that d ≤ log W .

Even though every edge with exactly one endpoint in a c-cluster of a (µ, d)-
partition has category at least c−d, edges between vertices in the same c-cluster
may be arbitrarily short. A mini-cluster is a (c − d)-component contained in
a c-cluster. (Note that, in a (µ, d)-partition, any (c − d)-component is either
completely contained in or disjoint from a given c-cluster.) Mini-clusters have to
be treated specially, in order to ensure correctness of the algorithm.

The hot pool also requires information about which vertices of which cluster
are contained in which category component. This information is provided by a
cluster tree Ti associated with each cluster Vi. To define these cluster trees, the
component tree Tc of G needs to be defined first: A c-component is maximal if
it is properly contained in a (c + 1)-component or it is equal to G; all vertices
of G are maximal 0-components. The vertex set of Tc consists of all maximal
category components. Component C is the parent of component C ′ if C ′ ⊂ C
and C ⊆ C ′′ for all C ′′ ⊃ C ′. Now the cluster tree Ti of a c-cluster Vi is the
subtree of Tc containing all nodes of category c or less that are ancestors of
vertices in Vi (which are leaves of Tc).



3.2 Shortest Paths

The shortest-path computation proceeds in iterations; each iteration releases a
vertex x from the priority queue Q and inserts a Visit(x, d(x)) signal into the
hot pool to induce the relaxation of all edges incident to x. Before releasing x
from Q, a Scan operation is invoked on the hot pool to ensure that all edges that
need to be relaxed before releasing x are relaxed. This operation is described in
the next section, which discusses the implementation of the hot pool.

Our algorithm uses the same priority queue as KS-SSSP. It also requires a
distance repository REP, which stores the tentative distances of all vertices in
G, maintained using Update(x, d(x)) operations, and allows the retrieval of the
tentative distances of all nodes in a cluster tree Ti using a ClusterQuery(Ti)
operation. Every edge relaxation in our algorithm performs an update on the
priority queue and on the repository.

The repository can be implemented as an augmented buffered repository tree
(BRT) [4], which supports Update(x, d(x)) operations in amortized O(log n/B)
I/Os and ClusterQuery(Ti) operations in amortized O((1 + ri) log n + |Ti|/B)
I/Os, where ri is the number of cluster tree roots that are contained in or adjacent
to Ti. It is easy to prove that

∑q
i=1 ri = O(n/µ). Details appear in the full paper.

3.3 Hot Pool

The hot pool consists of a hierarchy of r = dlog W e edge buffers EB1, . . . ,EBr,
a hierarchy of r tree buffers TB1, . . . ,TBr, and a hierarchy of r signal buffers
SB1, . . . ,SBr. Each of these hierarchies is implemented as a single stack with
markers indicating the boundaries between consecutive buffers. Buffers EBi,
TBi, and SBi form level i of the hot pool.

The edge buffers hold edges that have been loaded into the hot pool. Edge
buffer EBi+1 is inspected by Scan operations about half as often as EBi. If an
edge xy is stored in EBi, then TBi stores all ancestors of x in Tc that have
category at most i. The signal buffers store signals that are used to trigger edge
relaxations and movements of edges between different edge buffers. The purpose
of moving edges between different edge buffers is to initially store edges in buffers
that are inspected infrequently and later, when the time of their relaxation
approaches, move them to buffers that are inspected more frequently, in order
to avoid delaying their relaxation for too long. The inspection of edge buffers
is controlled by due times t1 ≤ t2 ≤ · · · ≤ tr+1 = +∞ associated with these
buffers. These due times satisfy the following condition:
(DT) For 1 ≤ i < r, ti+1 = ti or 2i−3 ≤ ti+1 − ti ≤ 2i−2.

The due times are initialized as ti = min{w(x) | x ∈ G} + 2i−2, for 1 ≤ i ≤ r.
Due time ti indicates that EBi has to be inspected for edges to be relaxed or
moved to lower buffers before the first vertex with tentative distance d(x) ≥ ti
is released from Q. The hot pool maintains the following invariant:
(HP) After loading a c-edge cluster Ej into the hot pool, an edge xy ∈ Ej

is stored in the lowest edge buffer EBi such that i ≥ c − d and the i-
component C containing vertex x satisfies d(C) < ti+1.



The tree buffers are used to check this condition. In particular, component C
is stored as a node of Tj in the tree buffer TBi, and this copy of C in TBi

always stores the correct value of d(C) = min{d(x) | x ∈ C}.3 To achieve this,
an Update(y, d(x) + `(xy)) signal is inserted into an appropriate signal buffer
whenever an edge xy is relaxed; this signal updates the tentative distance of
every ancestor of y in Tc that is stored in a tree buffer to which this signal is
applied.

As discussed in the previous subsection, the shortest-path algorithm inserts a
Visit(x, d(x)) signal into the hot pool to trigger the relaxation of edges incident
to x. This signal is inserted into SBcx , where cx = c− d if x is contained in a c-
cluster. From there, it travels only up to level c+O(log n) and is then discarded.
In order to achieve this insertion into SBcx

without performing a random access,
the signal is sent to level cx by inserting it, with priority cx, into a priority
queue SQ+. Priority queue SQ+ is used to send signals to higher levels. Another
priority queue SQ− is used to send signals to lower levels.

Scanning the hot pool: The Scan operation scans a prefix EB1, . . . ,EBj

of edge buffers for edges that need to be relaxed or moved to other levels. Let f
be the minimum priority of the vertices in Q. Since f is the priority of the next
vertex to be released from Q, edge buffers EB1, . . . ,EBj such that t1 ≤ · · · ≤
tj ≤ f < tj+1 need to be scanned. The scanning of an edge buffer EBi may
decrease f . Then the updated value of f is used to decide whether to include
EBi+1 in the scan.

The Scan operation can be divided into two phases: The up-phase inspects
edge buffers EB1, . . . ,EBj , relaxes edges, and moves edges whose relaxation is
not imminent to higher levels. The down-phase inspects EB1, . . . ,EBj in reverse
order, assigns new due times to EB1, . . . ,EBj , and moves edges to lower levels
if the maintenance of property (HP) requires it. These two phases perform the
following operations on each inspected level i:

Up-phase:
– Retrieve all signals sent to level i from SQ+ and insert them into SBi.
– For every Visit(x, d(x)) signal in SBi such that x 6∈ TBi, load the edge

cluster Eh containing E(x) into EBi; load the corresponding cluster tree Th

into TBi and retrieve the tentative distances of all nodes in Th from REP.
Eh is loaded only once, even if more than one vertex in Vh is to be visited.

– For every cluster tree node C in TBi and every Update(x, d) signal in SBi

such that x ∈ C, replace d(C) with min(d(C), d).
– For every Visit(x, d(x)) signal in SBi, process the mini-cluster containing x.

The details are explained below. For every category-c edge xy with c ≥ i
relaxed during this process, send an Update(y, d(x) + `(xy)) signal to level
max(i+1, c− log n− d− 1) (using SQ+) and, if c ≤ i+log n+ d+1, to level
i (using SQ−). Such an Update signal is said to have category c.

– Move all cluster tree nodes C in TBi to TBi+1 for which either the category
of C is greater than i or the tentative distance of the i-component containing

3 This is not quite correct; C stores only an upper bound d∗(C) ≥ d(C); but this
upper bound suffices to move edges to lower buffers in time for their relaxation.



C is at least ti+1. For every cluster tree leaf (vertex) x moved to TBi+1, move
E(x) from EBi to EBi+1.

– Move update signals with category greater than i− d to SBi+1. Discard all
other signals in SBi.

– Test whether f ≥ ti+1 and, if so, continue to level i + 1.

Down-phase:
– Update the due time ti: If f + 2i−1 ≥ ti+1, then ti = ti+1. Otherwise, let

ti = (ti+1 + f)/2. It is easy to check that this maintains Property (DT).
– Retrieve all signals sent to level i from SQ− and insert them into SBi. At

this point, they will all be Update signals sent during scans of higher levels.
As in the up-phase, apply these signals to the nodes stored in TBi.

– Move all cluster tree nodes C in TBi to TBi−1 for which the category of C
is less than i and the (i− 1)-component containing C has tentative distance
less than ti. Discard all cluster tree nodes of category i. For every cluster
tree leaf x moved to TBi−1, move E(x) from EBi to EBi−1.

– Move all signals of category less than i + log n + d + 1 to SBi−1. Discard all
other signals in SBi.

To implement these different steps efficiently, the nodes in Tc are numbered
in preorder. The algorithm then keeps the cluster tree nodes in TBi sorted by
their preorder numbers, the signals in SBi sorted by the preorder numbers of the
vertices they affect, and the edges in EBi sorted by the preorder numbers of their
first endpoints. It is easy to show then that both phases can be implemented by
scanning the involved buffers a constant number of times, except that the signals
retrieved from SQ+ and SQ− have to be sorted before merging them into SBi.

We show in the full paper that due times of empty levels can be represented
implicitly using the due times of the two closest non-empty levels. This avoids
spending I/Os on accessing due times of empty levels. Accesses to due times of
non-empty levels can be charged to accesses to elements in these levels.

Processing mini-clusters: The processing of a mini-cluster C involves vis-
iting all vertices in C that have Visit(x, d(x)) signals in SBi. Since the vertices
in the mini-cluster are connected by potentially very short edges, it may also be
necessary to immediately visit other vertices in the same mini-cluster. In partic-
ular, starting with their current tentative distances, we apply a bounded version
of Dijkstra’s algorithm to the mini-cluster. This can be done in internal mem-
ory because the mini-cluster has at most µ ≤

√
B vertices and, thus, at most B

edges. When Dijkstra’s algorithm is about to visit a vertex x, the vertex is visited
if d(x) ≤ ti. Otherwise, the algorithm terminates. Once Dijkstra’s algorithm ter-
minates, the tentative distances of all vertices in the mini-cluster that have not
been visited are updated, that is, for each such vertex, Update(x, d(x)) opera-
tions are performed on Q and REP, and d(x) is updated in TBi. For every visited
vertex x and every category-c edge xy in E(x) with c ≥ i, Update(y, d(x)+`(xy))
signals are sent to the levels specified in the discussion of the up-phase. Finally,
a Delete(x) operation is performed on Q for every visited vertex x. This is nec-
essary to ensure that x is not visited again because, during the processing of the
mini-cluster, vertices not yet released from Q may be visited.



3.4 Analysis

The lengthy and technical correctness proof of our algorithm is omitted from this
extended abstract due to lack of space. The main idea is to prove the following
lemma, which immediately implies the algorithm’s correctness.

Lemma 1. MZ-SSSP∗ has property (SP).

The key to proving this is the following lemma.

Lemma 2. A vertex x visited during a scan of level i satisfies ti−2i−2 ≤ d(x) ≤
d∗(x) ≤ ti, where d∗(x) is the tentative distance stored with x in TBi.

From Lem. 2, Property (SP) follows almost immediately, ignoring a few tech-
nical details: Consider a vertex y that is visited before the current scan of level i.
Then one can show that this vertex satisfies d(y) < ti because otherwise, level i
would have been scanned before visiting y. Thus, if x and y do not belong to the
same mini-cluster, then, because the path from x to y must include a category-i
edge and by Lem. 2, d(y) ≤ d(x)+distG(x, y)/2, which implies Property (SP). If
x and y belong to the same mini-cluster, it can be shown that they are visited by
increasing tentative distances, that is, d(y) ≤ d(x), which again implies Property
(SP).

The key to the analysis of the I/O-complexity is to prove that the hot pool
maintains Property (HP), which we do in the full paper. Given this, we obtain

Lemma 3. Excluding the cost of computing the (µ, d)-partition, MZ-SSSP∗ per-
forms O((n/µ) log n + m(µd + log n)/B) I/Os.

Proof sketch. Observe that the algorithm performs O(m) priority queue opera-
tions and Update operations on REP. All these operations have an amortized
cost of O((1/B) log n) I/Os, which gives a cost of O((m/B) log n) I/Os for these
operations. Only O(m) signals are sent to the different levels of the hot pool,
which costs O(sort(m)) I/Os for the involved operations on SQ+ and SQ− and
for sorting these signals before insertion into the signal buffers.

The remainder of the complexity analysis hinges on two claims: (1) Every
cluster is loaded into the hot pool only once. This results in a cost of O(n/µ +
m/B) I/Os for reading edge clusters and cluster trees, plus O((n/µ) log n+n/B)
I/Os for answering cluster queries on REP. (2) Every signal traverses at most
d + log n + 2 levels in the hot pool; every edge and cluster tree node traverses at
most d levels in the hierarchy, remaining at each level for at most O(µ) scans of
this level. This implies a cost of O((m/B)(d + log n + 2)) I/Os for scanning the
signals and O(mdµ/B) I/Os for scanning edges and cluster tree nodes. Summing
up the different costs proves the lemma.

The number of levels traversed by each edge or signal is easily seen to be as
claimed. The number of scans of a level during which an edge remains at a given
level follows from properties (C2) and (C4) and the fact that ti increases by at
least 2i−3 every time level i is scanned, which is easy to prove. Finally, Property
(HP) implies immediately that every cluster is loaded only once because an edge
xy, once loaded, reaches level cx in time for its relaxation. ut



4 A Recursive Shortest-Path Algorithm

This section describes a CSSP-algorithm that uses in a sense the exact oppo-
site of a µ-partition of low depth. Section 4.1 defines the partition required by
the algorithm. Section 4.2 shows that shortest paths in the whole graph can be
computed by solving nearly independent CSSP-problems on the graphs in the
partition. This section proves only the correctness of the algorithm. Its complex-
ity is analyzed in Sect. 5, where it is combined with MZ-SSSP∗ to obtain the
final algorithm.

4.1 Barrier Decomposition

The algorithm uses a barrier decomposition of G, which consists of a number of
multigraphs G0, . . . , Gq and vertex sets ∅ = B0, . . . , Bq, called barriers, with the
following properties:

(B1) Every graph Gi represents a connected vertex-induced subgraph Hi of G;
H0 = G.

(B2) For i < j, Hi ∩ Hj = ∅ or Hj ⊂ Hi. If Hj ⊂ Hi and Hi ⊆ Hk for all
Hk ⊃ Hj , Gi is the parent of Gj (and Gj a child of Gi).

(B3) For all i, graph Gi is obtained from Hi by contracting each graph Hj such
that Gj is a child of Gi into a single vertex r(Gj), called the representative
of Gj . For a vertex x ∈ Hj , r(Gj) is considered the representative of x in
Gi and denoted by rx. For x ∈ Gi, let rx = x.

(B4) For a given graph Gj with parent Gi, Bj is the set of vertices in (V (Hi)∪
Bi) \ V (Hj) that are reachable from Hj using edges of length at most
2n`max(Hj), where `max(Hj) is the length of the longest edge in Hj .

(B5) No set Bi contains a graph representative.

Intuitively, for every graph Gj , the set Bj forms a barrier between Hj and the
rest of G in the sense that a shortest-path between two vertices in Hj cannot
contain a vertex not in V (Hj) ∪Bj .

4.2 The Algorithm

Now assume that a Dijkstra-like CSSP algorithmA is given, that is, an algorithm
that visits every vertex exactly once and, when it does, relaxes all edges incident
to x. Assume also that algorithm A has property (SP). Given a barrier decom-
position of G, the CSSP problem in G can then be solved using the following
recursive algorithm. The algorithm requires the use of the distance repository
REP from Sect. 3, augmented to support a GraphQuery(Gi) operation, which
returns the tentative distances of all vertices in Gi; for a graph representative
x = r(Gj), let d(x) = min{d(y) | y ∈ Hj}. In the full paper, we show how
to perform such an operation in amortized O((1 + ci) log n + |V (Gi)|/B) I/Os,
where ci is the number of children of Gi.



ShortestPaths(Gi): Run a modified version of algorithmA on the graph Gi∪Bi

obtained from G[V (Hi) ∪ Bi] by contracting each graph Hj such that Gj is a
child of Gi into a single vertex r(Gj). The modifications are as follows:

– Terminate A as soon as all vertices in Gi have been visited. In particular, it
is not necessary to visit all vertices in Bi.

– When A visits a vertex x that is not a graph representative, relax all its
incident edges. In particular, for each such edge xy, where ry may or may
not be a graph representative, replace d(y) with min(d(y), d(x) + `(xy)) in
REP and d(ry) with min(d(ry), d(x) + `(xy)) in A’s data structures.

– When A visits a graph representative r(Gj):
• Recursively invoke ShortestPaths(Gj) with the weights of all vertices

in V (Gj) ∪ Bj initialized to their current tentative distances. (These
distances are retrieved from REP.)

• If the recursive call visits vertices in Bj , reflect this in the data structures
of the current invocation to ensure that these vertices are not visited
again. (E.g., if A is Dijkstra’s algorithm or MZ-SSSP∗, remove these
vertices from the priority queue.)

• If the recursive call updates the tentative distances of vertices in Bj ,
reflect this in the data structures of the current invocation. (E.g., if
A is MZ-SSSP∗, update their priorities in the priority queue and send
corresponding Update signals to the hot pool.)

• Relax all edges with exactly one endpoint in Hj , that is, for each edge xy
such that x ∈ Hj and y ∈ Hi \Hj , replace d(ry) with min(d(ry), d(x) +
`(xy)).

The initial invocation is on graph G0, which ensures that all vertices in G are
visited. The following lemma shows that this solves the CSSP problem.

Lemma 4. For every vertex x ∈ Hi ∪ Bi visited by ShortestPaths(Gi), d(x) =
D(x) at the time when x is visited.

Proof. The proof is by induction on the number of descendants of Gi. If there is
none, the algorithm behaves like A and the claim follows because, by (SP), all
vertices on π(x) are visited in order.

So assume that Gi has at least one child Gj , that there exists a vertex
x ∈ Hi ∪ Bi such that d(x) > D(x) when x is visited, and that every vertex z
preceding x on π(x) satisfies d(z) = D(z) when it is visited. First assume that
x is not visited in a recursive call Shortest-Path(Gj), where Gj is a child of
Gi. Let y be x’s predecessor on π(x), and let ry be its representative in Gi. ry

must be visited after x because otherwise d(x) = D(x) when x is visited. Hence,
by (SP), D(y) ≥ D(ry) ≥ D(x) − distGi∪Bi(ry, x)/2 ≥ D(x) − distG(y, x)/2, a
contradiction because y ∈ π(x).

Now assume that x is visited during a recursive call ShortestPaths(Gj). Then
the claim follows by induction if we can prove that DHj∪Bj

(x) = D(x). If π(x) ⊆
Hj ∪Bj , this is trivial. So assume that π(x) contains at least one vertex outside



Hj ∪ Bj . Let z be the last such vertex on π(x), and let y be its successor on
π(x), which is in Hj ∪Bj . We need to prove that w(y) = D(y).

Assume the contrary. Then r = r(Gj) must be visited before rz, that is, by
(SP), D(r) ≤ D(rz)+distGi∪Bi(rz, r)/2. However, D(u) < D(r)+n ·`max(Hj) ≤
D(r) + distGi∪Bi(rz, r)/2, for all u ∈ Hj , because z 6∈ Hj ∪ Bj . Hence, D(u) <
D(rz) + distGi∪Bi

(rz, r) ≤ D(z) + distG(z, u). Thus, z cannot belong to π(u),
for any u ∈ Hj , and x 6∈ Hj . Then, however, x is visited only if DHj∪Bj

(x) ≤
DHj∪Bj

(u), for some u ∈ Hj . Since D(x) ≤ DHj∪Bj
(x) and DHi∪Bi

(u) = D(u),
this implies again that z 6∈ π(x), a contradiction. ut

5 The Final Algorithm

Our final algorithm is based on the recursive framework of Sect. 4 and uses
MZ-SSSP∗ or, on small graphs, Dijkstra’s algorithm to compute shortest paths
on the different graphs in the barrier decomposition. To achieve the claimed I/O-
complexity, the following properties of the barrier decomposition are required:

(P1) The barrier decomposition consists of O(n/µ) multigraphs G0, . . . , Gq.
(P2) Each graph Gi has at most

√
B vertices or is equipped with a (µ, log n+2)-

partition. In the former case, it is called atomic; in the latter, compound.
(P3) If the parent Gi of Gj is atomic, then Gj is Gi’s only child. If the parent

Gi of Gj is compound, then Bj is a subset of a vertex cluster of Gi, and
this vertex cluster contains only one graph representative, namely r(Gj).
This implies in particular that |Bj | ≤ µ ≤

√
B, for all j.

In the full paper, we prove the following lemma.

Lemma 5. It takes O(MST (n, m)) I/Os to compute a barrier decomposition of
an undirected graph G that has properties (P1)–(P3).

In a nutshell, such a decomposition can be obtained as follows: In [9], a pro-
cedure is described that computes a µ-partition of a graph in O(MST (n, m) +
(n/B) log W ) I/Os, by computing a minimum spanning tree T and then com-
puting c-clusters iteratively using log W scans of an Euler tour of T . Using an
algorithm from [3], the component tree Tc can be computed from T in O(sort(n))
I/Os; the log W scans of the Euler tour can then be simulated in O(sort(n)) I/Os
using one traversal of Tc. Once this µ-partition is given, two more traversals of
Tc are needed. The first one refines the partition so that all clusters of depth
greater than log n+2 have a particularly simple structure. The second one splits
each of these deep clusters into three parts: a top, middle, and bottom part,
which correspond to top, middle, and bottom parts of its cluster tree. The top
and bottom parts define clusters in (µ, log n+2)-partitions of two graphs Gi and
Gk in the barrier decomposition. The middle part Gj defines an atomic graph
in the barrier decomposition that is a child of Gi and the parent of Gk.

By Lem. 5, it takes O(MST (n, m)) I/Os to compute the desired decomposi-
tion of the graph. Using MZ-SSSP∗ to solve CSSP in a compound graph Gi in the



computed barrier decomposition takes O(((ni + |Bi|)/µ) log n + (miµ log n)/B)
I/Os, where ni is the number of vertices in Gi and mi is the number of edges in
Gi. If Gi is atomic, Dijkstra’s algorithm can be used to solve CSSP in Gi, which
incurs O(1 + mi/B) I/Os because Gi fits in memory.

It is easy to see that
∑q

i=1(ni + |Bi|) = O(n) and
∑q

i=1 mi = O(m). Hence,
the cost of all CSSP-computations on graphs Gi isO((n/µ) log n+(mµ log n)/B).

The cost of all repository operations can be bounded as follows: The algo-
rithm performs exactly one subgraph query per graph Gi and at most two cluster
queries per cluster: one when the cluster is loaded into the hot pool and another
one when the graph representative r(Gj) in the cluster is visited. Moreover, it
is easy to show that the sum of the rj and ci is O(n/µ), so that the cost of
all queries on the repository is O((n/µ) log n + n/B) = O((n/µ) log n) I/Os.
Since the algorithm performs only O(m) edge relaxations, the cost of all Update
operations on the repository is O((m/B) log n) I/Os.

Summing the costs of all parts of the algorithm yields an I/O-complexity
of O((n/µ) log n + (mµ log n)/B + MST (n, m)), which is O(

√
nm/B log n +

MST (n, m)) for µ =
√

nB/m. This proves Thm. 1.
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