I/O-Efficient Planar Separators and Applications

Norbert Zeh
May 30, 2001

Abstract

We present a new algorithm to compute a sulsef vertices of a planar grap® whose removal
partitionsG into O(N/h) subgraphs of siz&(h) and with boundary siz&(v/h) each. The size dBis

O(N/+/h). ComputingStakesO(sortN)) I/Os and linear space, provided that> 56hlog? B. Together

with recent reducibility results, this leads @(sort{N)) I/O algorithms for breadth-first search (BFS),
depth-first search (DFS), and single source shortest paths (SSSP) on undirected embedded planar graphs.
Our separator algorithm does not need a BFS tree or an embeddtpdfe given as part of the input.

Instead we argue that “local embeddings” of subgraphs afe enough.

1 Introduction

I/0-efficient graph algorithms have received considerable attention lately because massive graphs arise nat-
urally in many applications. Recent web crawls, for example, produce graphs of on the order of 200 million
nodes and 2 billion edges. Recent work in web modeling uses depth-first search, breadth-first search, short-
est paths, and connected components as primitive operations for investigating the structure of the web [8].
Massive graphs are also often manipulated in Geographic Information Systems (GIS), where many funda-
mental problems can be formulated as basic graph problems. The graphs arising in GIS applications are
often planar. Yet another example of massive graphs is AT&T’s 20TB phone call graph [9]. When working
with such large data sets, the transfer of data between internal and external memory, and not the inter-
nal memory computation, is often the bottleneck. Thus, I/O-efficient algorithms can lead to considerable
run-time improvements.

Breadth-first search (BFS) and depth-first search (DFS) are the two most fundamental graph searching
strategies. They are extensively used in internal memory algorithms, as they are easy to perform in lin-
ear time; yet they provide valuable information about the structure of the given graph. Unfortunately, no
I/0-efficient algorithms for BFS and DFS in arbitrary sparse graphs are known, while existing algorithms
perform reasonably well on dense graphs.

In this paper, we develop a new algorithm for computing small separators of planar graphs. Together
with recent results on single-source shortest paths (SSSP) and DFS, our algorithm leads to 1/0O-efficient
algorithms for SSSP, BFS, and DFS on undirected embedded planar graphs.

1.1 Model of Computation

The algorithms in this paper are designed and analyzed in the Parallel Disk Model (PDM) [27]. In this

model, D identical disks of unlimited size are attached to a machine with an internal memory capable of
holdingM data items. These disks constitute the external memory of the machine. Initially, all data is stored
on disk. Each disk is partitioned into blocks®data items each. An I/O-operation is the transfer of up to

D blocks, at most one per disk, to or from internal memory from or to external memory. The complexity of

an algorithm in the PDM is the number of I/O-operations it performs.

Sorting, permuting, and scanning an arrayNottonsecutive data items are primitive operations of-
ten used in external memory algorithms. Their I/O-complexitiessar¢N) = ©((N/DB)logy 5(N/B)),
permN) = ©(min(N,sortN))), andscar{N) = O(N/DB), respectively [27].

1.2 Previous Results

Many authors have studied I/O-efficient graph algorithms [1, 2, 5, 6, 10, 18, 19, 22, 23, 25, 26]. We only
discuss results on BFS, DFS, SSSP, and graph separators here. The best SSSP algorithm for arbitrary
undirected graphs tak€X |V |+ (|E|/B)log, |E|) I/Os [19]. The best BFS algorithm for arbitrary undirected
graphs take®(|V |+ sort(|E|)) I/Os [26]. Recently a BFS algorithm for graphs of bounded degree has been
presented in [25]. Ifl is the maximum vertex degree in the graph, the algorithm t@K@g|/(ylogy B) +
sortBY|V|)) 1/0s usingO(|V|/B!~Y) blocks of external memory, fd@ < y < %

In [18], anO(sortN)) 1/0 algorithm for computing a 2/3-separator of si2é\/N) for an embedded
planar graphG is given, provided that a BFS-tree & is part of the input. In [5], this idea has been
extended to obtain a®(sort{N)) I/O algorithm to compute a smadtseparator of an embedded planar
graph, provided that a BFS-tree of the graph is given. Using the computed separator, the SSSP problem
can then be solved i@(sortN)) I/Os for the given graph [5]. In a recent paper [6], two DFS algorithms
for embedded planar graphs are given. The first one t@kesrtN)logN) 1/0s. The second one takes
O(I(N)) I/Os, whereI(N) is the number of 1/Os required to compute a BFS-tree of an embedded planar
graph. This seems to suggest that BFS is the core problem to be solved on planar graphs, in order to obtain
efficient algorithms for all other problems discussed here.

For undirected outerplanar graplsortN)) I/0 algorithms for BFS, DFS, and finding 2/3-separators
of size 2 are presented in [22]. Together with the algorithm of [5], this also gived(aartN)) 1/O
SSSP algorithm for undirected outerplanar graphs. In [23] it is shown how to solve the SSSP problem
in O(sortN)) 1/0Os on graphs of bounded treewidth. It is shown in [22] that BFS, DFS, and SSSP require at
leastQ(permN)) 1/0Os, even on outerplanar graphs.

In internal memory, the problem of computing graph separators is well studied. We mention the most
relevant results here. In their classic paper [21], Lipton and Tarjan show §1ae;aarator of siz&(v/N)
can be computed in linear time for a given embedded planar geaphsize N. The required embedding
can be computed in linear time [17, 7, 15, 20, 11, 24]. In [16], the algorithm of [21] is applied recursively to
compute inO(NlogN) time a setSof O(N/h) vertices whose removal partitio@into O(N/h) (possibly
disconnected) subgraphs of si2éh), each of which is adjacent to at ma¢v/h) vertices inS. In [3] it is
shown how to compute a s8bf O(,/(g+ 1/€)N) vertices whose removal partitions an embedded g&ph
of genugyinto subgraphs of size at madt. Other results include results on edge separators [12], separators
for graphs with multiple vertex weights [14], and separators of low cost if a cost function of the vertices of
Gis given [13].

1.3 Our Results

In this paper we exploit the fact that BFS, DFS, and SSSP in embedded planar graphs can all be reduced
to computing small separators. Using the result of [5], SSSP can be sol@gantN)) 1/Os, given a
small separator dB. Giving all edges in the graph unit weight, this immediately gives a BFS-algorithm for
the given graph. Using the reduction of [6], DFS can be reduced to BiE%sart{N)) I/Os. Thus, if we
can compute a small separator of an embedded planar @aplO(sortN)) 1/0s, we can solve all these
problems inO(sortN)) 1/0Os on embedded planar graphs.
We show how to find a planar separa®of size O(N/v/h) whose removal partitions the given graph
into O(N/h) subgraphs of size at mdsto that each subgraph is adjacent to at mdsseparator vertices.
Our algorithm takeO(sort(N)) I/Os, provided thaM > 56hlog®B. Our algorithm does not make any

2

assumptions about the input, except that the given g@phplanar. In particular, we do not require an
embedding or a BFS-tree &. This is the main improvement over previous algorithms.

1.4 Preliminaries

An undirected graptG = (V,E) is an ordered pair of two set6andE. The elements 0¥ are called the
verticesof G; the elements oE are theedgesof G and are unordered paifs,w}, v,w € V. For an edge
{v,w} € E, verticesv andw are theendpointof edge{v,w}. Also, v andw are said to badjacent Edge
{v,w} isincidentto verticesy andw. The notion of adjacency can be extended to vertex sets and subgraphs
of G. Two vertex set¥; CV andV, CV, ViNV, = 0, are adjacent if there are two adjacent verticesvy
andw € V,. Two subgraph§&; = (V1,E;) andG; = (V,, Ep) of G are adjacent ¥, andV; are adjacent. A
graphG is said to beplanar if it can be drawn in the plane so that the edge§&afo not intersect, except
at their endpoints. We call such a drawing®@f (planar) embeddingnd denote it bys. Given such an
embeddingG, we call the connected regions Bf \ G the facesof G. Let F denote the set of faces of
G. Then Euler's formula says thaf|+ |F| — |E| = 2. In particular, this implies thaE| < 3|V|— 6, for
every planar grapks. We define thesize|G| of a planar grapiG as the numbejV| of vertices inG. As
[E| = O(V)), V| + |E| = O(|G]).

Given a seSCV of vertices ofG and a subgraphl C G—S, dH is the set of vertices i adjacent to
H. We calloH theboundaryof H. The following two results will be applied in our separator algorithm.

Theorem 1 [3] Given a planar grap = (V,E) and an integeh > 0, it takesO(N) time to compute a set
SCV of O(N/+v/h) vertices so that no connected componerefS has size exceedirty

Theorem 2 [16] Given a planar grap = (V,E) and a seSC V of vertices whose removal partitiof
into O(N/h) subgraph$is,...,Hq such thatH;| < h andy? , |oHi| = O(N/v/h), it takesO(NIlogN) time
to compute a se8 of O(N/+v/h) vertices,SC S C V, whose removal partitior@ into O(N/h) subgraphs
Hi,...,Hy such thatH{| < h and|oH/| < cvh, for1 <i < q and some constaot> 0.

A graphG = (V,E) is bipartiteif the vertex seV can be partitioned into two se¥s andV, such that € V;
andw € V5, for every edggv,w} € E. In this case we writ& = (V1,V,, E). We will need the following two
technical results.

Lemmal LetG = (V1,Vo,E) be a bipartite planar graph such that the verticeihave degree at least
three each. ThelWs| < 2|V4|.

Proof. Consider an embeddir@ of G. As G is bipartite, every face of has size at least 4. Thu
|E|/2. By Euler’s formula)V|+ |F|—|E| = 2. Thatis,

&

<

2=|V|+|F|-[E]
<|V[-I[E|/2
[E[<2V].

On the other handE| > 3|V,|, so that

3Vo| < 2V|
= 2(|Va| +[V2|)
[Va| < 2|Vy|.

Corollary 1 LetG = (V1,Vo, E) be a bipartite planar graph. Let the vertice¥irbe partitioned into equiv-
alence classds,, ... ,Cq, Where two vertices andw are equivalent if they are adjacent to the same set of
vertices irV1. Thenq < 6|V1|.

Proof. Every vertexv € Vi defines one clags, such that the vertices i@, are adjacent only te. Thus,
there are at mog¥| such classe€,. Now consider a paifv,w} of vertices inVy. LetCy,,, be the set

of vertices inV, adjacent only tov andw. Then we choose one representatiyg,, € Cy,, for each such
class of vertices. Ldil; be the bipartite subgraph &finduced by all edges incident to such representatives
rwwy- AS Hp is a subgraph o6, Hj is planar. We now remove representativgs,, from H; and replace
edges{V,rw } and{ryw, W} by a single edggv,w}. As every representativg,,,; has degree 2, the
resulting graptHy is a planar graph whose vertex set is a subs& pdnd whose edges are in one-to-one
correspondence to the clas€gg.,. Thus, by Euler's formula, there can be at mdgt;| such classes
Civw- Finally, letHs be the subgraph d& induced by all edges incident to vertices of degree at least 3 in
V. GraphHz is a bipartite planar grapHz = (V{,V3,E’) with V] C V1, V) CV,, andE’ C E. All vertices in

V, have degree at least 3, so tiif| < 2|V]| < 2|V1|, by Lemma 1. Each vertex M, gives rise to at most
one categor{;, so that there are at modj\v; | categorie€ in total. |

Given a grapls = (V,E) and an edgév,w} € E, thecontractionof edge{v,w} is the operation of removing
w from G and making all edgefu,w} € G, u# v, incident tov. If the vertices ofG have weights, then the
weight ofv is increased by the weight of. It is known that contracting edges of a planar gr&preserves
the planarity ofG.

A matchingof a graphG = (V,E) is a subsetM C E of edges so that no two edgesdd share an
endpoint. The matching/ is maximalif every edge irE \ M shares an endpoint with an edgefif.

2 Separators for Planar Graphs

In this section we present a new separator algorithm for planar graphs. In particular, we show how to
compute inO(sortN)) 1/Os and linear space a subseof O(N/v/h) vertices of a given planar gragh

whose removal partition into O(N/h) subgraphss, ..., Hq such thatH;| < h and|oH;| < v/h, for 1 <

i < g, provided thaM > 56hlog®B.

The main idea of our algorithm is to construct a hierarchipgj B graphsGy, . .., G, such thaG = Gy,
|Git1] < %|Gi , and every vertex iiG; 1 represents a small subgraph@fand thus a subgraph &. Given
this hierarchy, we start by computing a small separ&tgrartitioningG; into relatively coarse subgraphs
such that the number of vertices@corresponding to the vertices $is small. Then we iteratively refine
graphG; to graphsG;_1,Gr_»,...,Gg as well as the partitions of grapl& until we obtain a separator
of size O(N/+v/h) partitioning G into subgraphs of size at mostog?B. Given such a partition, we load
each subgraph into internal memory and refine it so that no subgraph has size exteedbgundary
size exceeding/h. This can be done using Theorems 1 and 2 and introduces aOfidgi/h) additional
separator vertices. Summing up, we construct a separator d@izé,/h) partitioningG into subgraphs of
size at mosh and with boundary size at mogfh. If we can implement every recursive stepdtsort|G;|))

I/Os, we obtain an algorithm that tak€gsortN)) 1/Os to compute the desired separator.

Our algorithm proceeds in two phases. The first phase is only concerned with generating subgraphs of
size at moshlog? B while keeping the total separator size small. We are not concerned about the boundary
size of each subgraph at this point. The second phase partitions each subgraph further, so that every subgraph
has size at most and boundary size at mogth. We now describe these phases in detail.

2.1 The Graph Hierarchy

The first step is to compute the sequence of gr&phs. ., G;. We first show how to construct gra@i.. 1
from graphG; and then prove a number of useful properties of graghis. ., G;.

Given a graplts;, every vertex € G; has aveightw(v), which is the number of vertices &represented
byv. Thatis,w(v) = 1, for each vertex € Gy, asGo = G. For every vertex € G;, its sizea(v) is the number
of vertices inG;_; represented by. We define a series of weight threshofis= 2+1 for0<i<r. Given
Gi, we initially define a grapls;, ; = G with o(v) =1, for all ve G[;. The weight of a vertex i/, , is
the same as its weight . We inspect the edges & , in an arbitrary order. As long as there is an edge
{v,w} € G[, ; such thato(v) + w(w) < pi;1 ando(v) +a(w) < 56, we contract edgév,w} and repeat. Let
G/’ , be the resulting graph which does not allow any further edge contractions.

We call a vertew in G/, ; heavyif w(v) > pi,+1/2 or o(v) > 28, andlight otherwise. Observe that for
every edge(v,w} € G/, ,, eitherw(v) + w(w) > pi;1 or a(v) + a(w) > 56, so that at least one efandw
is heavy. Thus, no two light vertices are adjacent. We partition the light vertices of degree at most 2 in
G/ , into classe£, ..., Cq such that the vertices in each class have the same set of (heavy) neighbors. We
partition each clas§; into subclasse§; 1, .. .,Cj k;, so that the total weight of each subcl@ss, 1 <1 <k;j,
is at mostp; and its total size is at moS6. For1 <| < k;, either the total weight of; is at leasip; /2 or
its total size is at leas28. The last clas€j x, may have weight less than, 1 /2 and size less tha?8.

GraphG;, 1 is defined as follows: The vertex set@f,; consists of all heavy vertices i’+1, all light
vertices of degree at least 3, as well as one vertexfor each clas€; of light vertices of degree at most 2.
For every heavy vertexc G/, ;, the weight oivin G; 1 is the same as i/’ ;. The same is true for all light
vertices of degree at least 3. For every vertgx we definew(vj) = 3 yec;, w(v). There is an edge between
two verticesv andw, wherev andw are either heavy or light and of degree at least 3, if there is an edge
betweenv andw in Gi”+1. There is an edgév,vj, } € Gi;+1, wherev is a heavy vertex and | corresponds to
classC; , if the vertices irC; are adjacent tgin G/_;. The following lemma provides important properties
of graphsGy, ..., G;, which are crucial to guarantee an upper bound on the size of the separator we compute

in the next section.

Lemma 2 LetG be planar, and 166 = Gy, . .., G, be the graphs as defined above. Every glapb <i<r,
has the following properties:

(i) GraphG; is planar,

(i) w(v) < pj, for all verticesv € Gj,
(iii) Every vertexv € G; corresponds to at moS6 vertices inG;_1, fori > 0, and
(iv) |Gi| <28N/pi.

Proof. To prove Property (i), we inductively show that each gr&pt0 < i < r, has a planar embeddiy.
Fori =0, Go = G, so that an embeddirng, of Gy exists by the planarity oB. So assume that we are given
an embedding?i_l of graphG;_1. We show how to obtain a planar embedd(ﬁ\g)f Gi. First we construct
a planar embedding @'. Such an embedding is easily obtained frém;, asG/’ is constructed fron;_;
using a series of edge contractions. The adjacencies between heavy vertices and light vertices of degree at
least 3 do not change fro@ to G;. For a clas<i, vertexv;, is adjacent to the same heavy vertices in
Gi as all members o in G'. Thus, we rename an arbitrary membeGpf to vi; and remove all other
members o€ from G/'. The result is the desired embeddg
Property (ii) is easily shown by induction. In particulaxy) = 1 < po, for all verticesv € Gy. Given
that all vertices irG; have weight at mogi;, the weight of a vertex i5;, 1 can exceeg; only by merging

two or more vertices into a single vertex. But we merge vertices only if their total weight does not exceed
pi+1. Property (iii) is explicitly guaranteed by our construction.

It remains to show Property (iv). Lét be the number of heavy vertices@. It follows from the above
construction and Corollary 1 thi®;| < 7h;. Thus, Property (iv) follows if we can show thiat< 4N/p;.

We prove this claim by induction. We partition the heavy vertices into two categories. Heavy vertices of
type | are heavy because their weight is at lgas2. Type-ll vertices are heavy because their size is at least
28. In general, grapks; contains at mos2N/p; type-| vertices and at mogb;_1|/28type-Il vertices. That
ish < 24 5],

i 28
Fori = 1, we obtainh; < 2% 4 74 < TN becausg; = 4. Fori > 1, we obtain

2N |G|
h < — 1
| < o + 28 1)
2N hi_;
< —+ 2
<+ (2)
2N N
<—+ 3
Pi Pi-1
4N
=—. 4
Pi)
Line (2) follows from Line (1) becaus&;_1| < 7h;_1, as shown above. Line (3) follows from Line (2) by
the induction hypothesis. Line (4) follows from Line (3) using the fact that 2p;_;. O

Next we show how to compute graps,...,G; 1/O-efficiently. GraphGq is already given. So assume

that we have computed grapf,...,Gi_1. We compute grapks; as follows. Initially letG = G;_;.

An edge{v,w} of G is calledcontractibleif w(v)+ w(w) < p; ando(v) +o(w) < 56. The contractible
subgraptHy of G is the graph induced by all contractible edge$§|n Hp can easily be extracted fro®

in O(sort(|G;_1])) I/Os. We compute a maximal matchingldf, which takesO(sort(|Ho|)) I/0Os [23]. We

contract all edges in the matching, leading to a grdphWe call a vertew of Hy matchedf it is the result

of contracting a matching edge ky. Otherwise, we calV unmatched First observe that two unmatched
vertices cannot be adjacent because otherwise the matching we have computed is not maximal. Our goal is
to construct a grapHlj such that no unmatched vertex has an incident edge which is contractible.

In order to do that we compute the subgraphbf H¢ induced by all edges incident to unmatched vertices.
GraphI:| is bipartite. Let, be the set of unmatched vertices afydbe the set of matched verticestin We
number the vertices i, andV;, in their order of appearance. For every vertex Vy,, we store the set of
vertices inV, adjacent tov, sorted by increasing indices in the numbering. Wwdie a vertex adjacent 19
V1 < Vo < --- <V be the vertices adjacent ¥y andv = vj. Then we store the index of vertex,; with w
in the adjacency list of. If vj 1 does not exist, we markas being the last vertex adjacentioAlso, we
markv as being the first vertex adjacenttaf v = vi. This representation ¢i can easily be constructed in
O(sort(|Ho|) I/Os from the edge list o).

Now we use a priority queu® to contract the contractible edgestin We inspect the vertices W, in
their order of appearance. For every venigletw; < w; < --- <w be the vertices adjacent o For every
vertexw; we perform the following action. N is the first vertex adjacent tg; or if the minimum entry in
Qis entry(v,w;), we test whethet(v) + w(w;) < p; ando(v) +a(w;j) < 56. If this is the case, we contract
edge{v,w;} and increase the weight ofby w(w;) and the size ot by o(w;). Otherwise, there are two
possibilities. Ifv is the last vertex adjacent t8;, none of the edges incident vg is contractible. Ifvis
not the last vertex, lai be the vertex stored wit; in the adjacency listv;. Then we add the paiu, w;)
to Q. If vis not the first vertex adjacent w; and the first entry ifQ is not(v,w;), then vertexw; has been
contracted into another heavy vertex already, and we proceed to the next vertex adjacent to

6

It is obvious that this algorithm achieves the desired goal. In particular, every eddesrbeing
inspected by the algorithm, and the algorithm contracts the edge unless the edge is not contractible or the
unmatched endpoint of the edge has been contracted into another matched vertex, so that the edge now
joins two matched vertices. Thus, none of the remaining edges that are incident to unmatched vertices are
contractible. This procedure tak€%sort(|Ho|)) I/Os [4], asH is planar and its size is bounded from above
by the size oHj.

Let H{ be the graph obtained froid) by contracting the edges if using the above algorithm. We
extract the contractible subgraph of Hj and repeat the whole process. We stop as soon as the con-
tractible subgraplidj;, of graph HJ" is empty. From the above discussion it follows that each iteration
takesO(sort(|Hj|)) I/Os. The following lemma shows that we repeat this compression procedure at most
|2log56] = 11times and that the total I/O-complexity@sort|G;|)), as the sizes of grapli, ... ,Hs are
geometrically decreasing.

Lemma 3 For every vertex € Hj, o(v) > 2i,

Proof. The proof is by induction. Foy = 0, the claim holds because every vertextighas sizeo(v) = 1.

So assume that the claim holds for k. Then every vertex ifl,_1 has size at leagk~1. As every matched
vertexvin H/ , is the result of contracting at least one edgéliny, its size is at least(v) = 2- k=1 — 2k,

Also, no unmatched vertex iH; ; has an incident edge which is contractible. Thus, only the matched
vertices inH,’_; remain inH. O

It is easy to extract the final vertex and edge setS|afbtained after finishing all contractions. Then it takes
sorting and scanning to partition the light vertices of degree at most tv@ into classe<,, ...,Cq and
partition these classes into subclassgs as described above. Thu,can be constructed @(sort(|Gi_1])
I/0s fromGj_1. As |Go| = N, and the sizes of subgrapks are geometrically decreasing, we obtain the
following lemma.

Lemma 4 The sequenc8y,...,G; of graphs, as described above, can be constructéqsortN)) I/Os
usingO(N/B) blocks of external memory.

2.2 The Separator Hierarchy

Having constructed grapl@y, ..., G, we use them to construct a relatively coarse separat@r of partic-
ular, we show how to construct a separaaf sizeO(N/+v/h) whose removal partition§ into connected
subgraphs of size at mdstog? B.

We start by computing a partition @; into subgraphs of size at mdstog?B. To do this, we use an
arbitrary linear-time algorithm to compute a planar embeddinG,odind apply Theorem 1 to compute the
desired partition. A$G;| = O(N/B), this take<O(N/B) I/Os. LetS = §' be the computed separator, whose
size is|S| < ¢|G|/(v/hlogB), for some constart defined in [3]. Given a separat6y. ; for graphGj, 1,
we construct a separat§ for graphG; as follows: First we construct the sﬁjt of vertices represented
by the vertices ir5j 1. S’.J is a separator o&; whose removal partition§; into subgraphs of size at most
56hlog?B. This is true because every subgraplof Gj+1— Sj+1 has size at mostlog®B, and every vertex
in Gj41 represents at mo$i6 vertices inG;, by Lemma 2. We load every subgraphof G; — S; whose
size exceedblog?B into internal memory, compute an embeddindHgfand partition it into subgraphs of
size at moshlog® B, again applying Theorem 1. LS{ be the separator obtained by partitioning all heavy

subgraphs o6G; — S; this way. S| < c/Gj|/(v/hlogB), for the same constawtas defined above. Now
S = S’J U S’j’. We continue this procedure until we obtain a separgiaf Gy = G.

Lemma 5 The separatoB, of G computed by the above procedure has €i¢sl/\/h). The connected
components o6 — S have size at mo$t|og2 B.

Proof. It follows from the above construction and Lemma 2 that

Sl < i)pirsw

Z;p'flogB
28N
<cC j———
- i;p'piflogB
28N

Za vhlogB
28N

-

The bound on the size of the connected componen®-of, is explicitly ensured by our construction]

Given separato§ 1, it takesO(sort(|G;|)) I/Os to construc§ and compute the connected components
of G — § [10]. Then it takeD(scar{|G;i|)) I/Os to load each connected component into internal memory
and perform the above patrtition. As the sizes of graphs..,G; are geometrically decreasing, the total
I/O-complexity of the algorithm i©(sortN)).

2.3 Computing the Final Separator

In order to finish the computation of our separator algorithm, we have to partition each connected component
of G— S into smaller subgraphs of size at mbsand boundary size at mosth. We do this by applying
Theorems 1 and 2.

We use Theorem 1 first to partition the subgraph&ef & into subgraphs of size at mdsteach. In
particular, we compute the connected components efS and load them into internal memory one by
one. For each such componddtwe compute an embeddir and apply Theorem 1 to partitio@ into
subgraphs of size at mokt Let S be the total number of separator vertices introduced by partitioning
the connected components @f— S this way. By Theorem 1,S| = O(N/vh). Let S, = SUS. Then
IS5l = O(N/v/h).

The final step is now to apply Theorem 2 in order to compute a sep&at& whose removal partitions
G into O(N/h) subgraphs whose boundary sizes do not exededThere are two obstacles preventing us
from applying Theorem 2 immediately. Firstly, the total boundary size of the connected components of
G— S, may bew(N/v/h), even though the number of separator vertice3(Id/v/h). Secondly, the number
of connected components &f — S, may be as large a@(N). In order to apply Theorem 2, we need
to obtain a partition ofc — §, into O(N/h) subgraphdH,...,Hs such thatHj| < h, for 1 <i <, and
554 [0Hi| = O(N/Vh).

We satisfy these two requirements using ideas similar to the compression step in the construction of the
graph hierarchy in Section 2.1, but separately. First we ensure that the total boundaryGikg éh).
Once this is done, we merge small subgraphs, in order to reduce the number of gr@dNghp. A more
straightforward procedure may produce the correct result; but our analysis uses the fact that at any time, we
can represent the adjacencies between subgraphs and separator vertices using a planar graph. This would
not be true if for instance we exchanged the two steps (i.e., first reduced the number of regions and then
tried to argue about the total boundary size).

In order to reduce the total boundary size, we build a planar gé&pbntaining all separator vertices
in §, as well as oneegion vertexper connected component Gf— S,. G contains the same edges between
vertices in§, asG. There is an edge between a separator vertard a region vertexv representing
componen if vis adjacent t@Q in G. We now consider all region vertices of degree at most twd.ikve
partition these vertices into equivalence classes so that the vertices in the same equivalence class have the
same set of neighbors. For every region vemteorresponding to a connected compor@nlet its weight
w(w) be defined as(w) = |Q|. A region vertex iheavyif its weight is at leash/2. We now merge region
vertices in each equivalence cl&sintil at most one light vertex is left in each class, while maintaining the
property that no vertex has weight exceeding

As a result, there ar®(N/h) heavy region vertices ar@d(N/+v/h) light region vertices irG, by Corol-
lary 1. Every vertexv in G now represents a (possibly disconnected) subgkpbf G — S The total
boundary sizqiq:1 |oH;| of these subgraphs is equal to the number of edgés HoweverG hasO(N/+v/h)
vertices and is planar. Thus; ; |0H;| = O(N/v/h), as desired.

GivenG, we use it to further merge subgragis ..., Hg, in order to reduce the number of subgraphs to
O(N/h). The crucial observation is that merging subgraphs cannot increase the total boundary size. We now
give every separator vertaxc §, weightw(v) = 0. Region vertices retain their weights from the previous
computation.

We compres$ further by choosing an arbitrary incident edgew} for each separator vertexc Gand
contracting it. This preserves the planarity@®&nd reduces the vertex set®fo that it contains only region
vertices. We apply our edge-contraction algorithm of Section 2.1 in order to further conpsesthat no
vertex inG has weight exceedinigand there is no edgg,w} € G’ such that(v) + w(w) < h. A vertex
in G is heavy if its weight is at lea$t/2, and light otherwise. We now partition the light vertices of degree
at most two inG into equivalence classes so that the vertices in a €ldsave the same set of neighbors.
We keep merging vertices in the same class until no dassntains more than one light vertex. As shown
in Section 2.1, this procedure produces a gr@plvith O(N/h) vertices. Each such vertexrepresents a
subgraph ofs — §, whose size is equal to the weightwfThus, we obtain a partition @& — §, into O(N/h)
subgraph#i;, ..., Hs of size at mosh such thaty$; |0H;| = O(N/v/h). B

We now Ioad each subgraph into internal memory, compute an embeddinddpfand partition it into
subgraphs of size at mastand boundary size at mosfh. If we had used the algorithm in [16] to compute
S,. this would be straightforward, as in fact every subgraplincluding its boundaryvould have size at
mosth. Our algorithm on the other hand does not guarantee a bound on the siize) 8H; better than
O(N/v/h). B

In order to work around this problem, we represent each subditaphd its boundary by another graph
Hi, which is obtained by compressiddli to some new sedH; whose size is at mogh. We first define
Hi and prove that its size is at mo&t. Then we show how to derive the desired separatdd;dfom a
separator ofi;. B B B

In order to computél; from H;, we consider the bipartite graph induced by edgew}, v e H;,w € oH;.

The compression technique we apply is the one we have applied already a number of times in our algorithm.
In particular, we partition the separator verticeglt into classes according to the sets of adjacent vertices

in H;. Let thedegreeof such a clas€ be the number of vertices ; adjacent to the vertices . For each

classC of degree at most two, we replace all vertice€iby a single vertex whose weight we define to

be w(v) = |C|. For all other vertices € 0H;, w(v) = 1. For all vertices irH;, w(v) = 0. By Corollary 1,

IFi| < 7|Hi| < 7h.

We now apply Theorem 2 to compute a partitionrfinto subgraphsﬂijl, e I—~|i3|q of weight at most
vh/2 each. By Theorem 2, the total size of the separators computed for all dfiaphs, Hs is O(N/v/h),
and each subgrap‘ﬁw of H; is adjacent to at most’h/2 separator vertices. Unfortunately, some of these
vertices may have a large weight; that is they correspond to many separator verdtés iFhus, even

though a su_bgrapﬁli,j is adjacent to at most'h/2 separator vertices, the corresponding subgw&gh:
Hin I—~|i’ j of Hi may be adjacent to many separator vertices. However, each separator vertex of large weight
is the result of compressing a number of separator verticéslitnto a single vertex. As we do this only
for vertices adjacent to at most two verticesHp every separator vertex of large weight is adjacent to at
most two vertices inFIL,-. Thus, we modify the obtained separator as follows. For every separator vertex of
weight two or greater adjacent to a verieg I:IU, we addv to the separator computed fif. As a result
we obtain a separator whose size is at most twice the size of the separator compbieevery subgraph
|_Ti7j of Hj is now adjacent to at mosth separator vertices.
Let S’ be the set of all separator vertices introduced in this step, agcH&, U S’ be the final separator.
By Theorem 2|§ = O(N/+v/h), and the number of subgraphﬁj obtained by removing the vertices &
from G is O(N/h), so that we obtain the main result of our paper.

Theorem 3 Given a planar grap and an integeh > 0, it takesO(sortN)) I/Os andO(N/B) blocks
of external memory to compute a separa&af sizeO(N/v/h) whose removal partition& into O(N/h)
subgraphs of size at mdsaand boundary size at mogh, provided thaM > hlog?B.

3 Applications

In this section we show how to use Theorem 3 to solve the following three fundamental problems on em-
bedded planar graphs 1/0O-efficiently:

Breadth-first search: Given an undirected grapB = (V,E), compute a spanning trée of G rooted at
some source vertexso that for every edgév,w} € E, the distances fromato v and fromsto w in
T differ by at most one, where the distance between two vertices is the number of edges in the path
between the two vertices.

Depth-first search: Given an undirected graph = (V, E), compute a spanning trdeof G rooted at some
source vertes so that for every edgév,w} € E, vis an ancestor oivin T or vice versa.

Single source shortest paths:Given an undirected grapB = (V,E) and an assignment: E — R{ of
non-negative weights to the edges@fcompute a spanning trdeof G rooted at some source vertex
sso thatT is the union of the shortest paths frato all vertices inG, where the shortest path frosn
to some vertex is the path whose edges have minimum total weight among all pathssfrom

We prove the following theorem.

Theorem 4 It takesO(sort{N)) I/Os andO(N/B) blocks of external memory to compute BFS and DFS
trees of an embedded planar grdplof sizeN and to solve the single source shortest-path proble,on
provided thaM > B2log?B.

We show that SSSP can be solveddfsortN)) 1/0Os. The result on BFS then follows from the fact that
BFS is the single source shortest path problem with) = 1, for all v € G. The result on DFS follows from
the O(sortN)) 1/0 reduction of DFS to BFS shown in [6].

We use the algorithm of [5] to solve the SSSP problem given a small separator of an embedded planar
graph. This algorithm uses the notion of boundary sets, as introduced in [16], in order to achieve 1/O-
efficiency. Given a separat@whose removal partitions a planar graBhnto subgraph#is,...,Hg, the
vertices inS can be partitioned into maximal subses, ..., B such that the vertices in each $Btare
adjacent to the same set of subgraphsWe call B4,..., B theboundary setslefined by the separat&
and the subgraphtdy,...,Hg. The following theorem provides the tool for solving the SSSP problem on
embedded planar graphs.

10

Theorem 5 [5] LetG be an embedded planar graph of $¢and bounded degree, aBtte a set oO(N/B)
verticesO(N/B) whose removal partitionG into O(N/B?) subgraph$is, ...,Hq with the following prop-
erties:

(i) [Hi| <B%1<i<q,
(i) |oHi| <B,1<i<q,
(iii) The separatoB and subgraphidy, ..., Hq defineO(N/B) boundary set$,, ..., 5.

Then the single source shortest path problei@ ican be solved i®©(sor{N)) I/Os usingO(N/B) blocks
of external memory.

In order to solve the SSSP problem for any embedded planar @awk first transform it to an embedded
planar graphG’ of size O(|G|) whose vertices have degree at most 3. We will ensure that the weighted
distances between the verticesGrand the corresponding vertices@ are preserved. Give@, we apply
Theorem 3 with parametér= B? to G’ to obtain a separat@whose removal partition§’ into O(N/B?)
subgraphs of size at moBt and boundary size at moBt Finally we regroup the connected components of
G’ — Sin a manner that reduces the number of boundary seNgB?).

The construction ofd’ from G replaces every vertex of G whose degreel, exceeds 3 by a cycle
Vo, ..., Vq,—1 Of vertices. Letwyp,...,Wqy,—1 be the neighbors of in G in clockwise order around. Then
we replace edgef/,wi}, 0 <i < dy, by edges{vi,wi}, 0 <i < dy. For every edge = {Vi,V(i+1)modd,} N
the cycle representing vertex we define its weightv(e) = 0. For edgesvi,w;}, 0 <i < dy, we define
w({vi,w;}) =w({v,wi}). Then itis easily verified tha®' is planar, has siz&(|G|), and that for any two
verticesv,w € G, distg(v,w) = distz (vi,w;j), 0 <i < dy, 0 < j < dy, Wherevy,...,Vg,—1 andwo, ..., Wq,—1
are the vertices &’ representingy andw, respectively. Given the embedding®f the construction o6&’
takesO(sortN)) 1/Os.

In order to reduce the number of boundary set&of S, letQs,...,Q, be the connected components of
G’ — S. We construct a grapB containing one vertex; per connected compone®t and an edge between
two verticesv; andv; if Qi NdQ; # 0. Since the vertices i’ have degree at most & is planar, and
s1.10Qi| = O(|S]) = O(N/B). We now assign weights(vi) = |Qj| andy(v;) = |dQj| to verticesvy, ..., v,
and apply our, by now standard, contraction proceduré.tdlhat is, as long as there is an edgew}
such thatw(v) + w(w) < B? andy(v) + y(w) < B, we contract this edge and repeat. We call a vertex in
the resulting compressed version®@heavyif either w(v) > B2/2 or y(v) > B/2, and light otherwise. We
partition the light vertices of degree at most two into equivalence classes such that the vertices in the same
equivalence class are adjacent to the same set of (heavy) neighbors. Then we merge vertices in the same
equivalence class until no class contains more than one light vertex. As theDéNyfB?) heavy vertices,
the total size of the grap@ obtained after these contractionsQsN/ B?), by Corollary 1. Every vertex
v € G represents a subgraph of G’ — S consisting of a number of connected componéptslt is easily
shown that graphB; = H; UdH; are of two possible types:

(i) EitherR; is connected or
(i) R shares vertices with at most two other graphsindRy, which are connected.

It now follows from arguments found in [16] that the separé8and graphsis, ..., Hq defineO(N/B?)
boundary sets. As it take3(sortN)) I/Os to construcG’ from G, compute the separat&for G/, and
group the connected components3f- Sinto the desired subgraphi, ..., Hq, this proves Theorem 4.

11

4 Conclusions

We have provided a fairly simple and practical algorithm for computing separators of planar graphs which
leads toO(sortN)) I/O solutions for BFS, DFS, and SSSP on embedded planar graphs, provid&ti that
B2log?B. Due to the constraints of the SSSP algorithm of [5], reducing the memory requirement for our
separator algorithm belo®® does not lead to improved memory requirements for BFS, DFS, and SSSP. It
is a challenging open problem to design a separator algorithm that@&es(N)) 1/0s forM < B?. If the
number of disks i®© = 1, we may increase the size of the separat@gsortN)) instead ofO(N/B) in our
algorithm. This still leads t®(sortN)) I/O algorithms for SSSP, BFS, and DFS and reduces the memory

requirements of our algorithm td > 229'20925. ForlogN > log?B, this implies that our algorithm requires
M/B

only M > B?. In practice, however, this constraint is never satisfied.

Although our separator algorithm does not require an embedding of the planar graph to be given as
part of the input, the degree reduction of the graph applied in Section 3 requires an embedding, as does the
reduction from DFS to BFS of [6], so that we need to compute an embedding of the given graph in order
to solve any of the applications discussed in this paper. In practice, the requirement that the given graph
be given together with an embedding is not a serious constraint, as in many large scale applications dealing
with planar graphs such as GIS, we know that the graph is planar only because we are given an embedding.
From a theoretical point of view, however, I/O-efficient algorithms for planarity testing and computing a
planar embedding would be desirable, in order to have a firm grip on planar graphs as an abstract graph
class in external memory.

Acknowledgments. | would like to thank Lyudmil Aleksandrov and Anil Maheshwari for helpful discus-
sions on planar separators and external memory issues.

References

[1] J. Abello, A. L. Buchsbaum, and J. Westbrook. A functional approach to external graph algorithms. In
Proceedings of the 6th European Symposium on Algoritpages 332-343, 1998.

[2] P. Agarwal, L. Arge, T. Murali, K. Varadarajan, and J. Vitter. 1/O-efficient algorithms for contour-line
extraction and planar graph blocking. Pmoceedings of the 10th ACM-SIAM Symposium on Discrete
Algorithms pages 117-126, 1998.

[3] L. Aleksandrov and H. Djidjev. Linear algorithms for partitioning embedded graphs of bounded genus.
SIAM Journal of Discrete Mathematic®:129-150, 1996.

[4] L. Arge. The buffer tree: A new technique for optimal I/O-algorithmsPhceedings of the Workshop
on Algorithms and Data Structuregolume 955 of_ecture Notes in Computer Scienpages 334-345,
1995.

[5] L. Arge, G. S. Brodal, and L. Toma. On external memory MST, SSSP, and multi-way planar separators.
In Proceedings of SWAT’2002000.

[6] L. Arge, U. Meyer, L. Toma, and N. Zeh. On external-memory planar depth first seafelodaedings
of WADS'20012001. to appear.

[7] K. Booth and G. Lueker. Testing for the consecutive ones property, interval graphs, and graph planarity
using PQ-tree algorithmslournal of Computer and Systems Scierd&2335-379, 1976.

12

[8] A. Broder, R. Kumar, F. Manghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener.
Graph structure in the web: Experiments and modétsnputer Networks and ISDN Systems

[9] A. L. Buchsbaum and J. R. Westbrook. Maintaining hierarchical graph viewBrdeeedings of the
Annual ACM-SIAM Symposium on Discrete Algorithpegyes 566575, 2000.

[10] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and J. S. Vitter. External-
memory graph algorithms. IRroceedings of the 6th Annual ACM-SIAM Symposium on Discrete
Algorithms January 1995.

[11] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for embedding planar graphs using
PQ-treesJournal of Computer and Systems Scier3¥1):54—76, 1985.

[12] K. Diks, H. N. Djidjev, O. Sykora, and I. Vrto. Edge separators of planar and outerplanar graphs with
applications.Journal of Algorithms14:258-279, 1993.

[13] H. N. Djidjev. Partitioning graphs with costs and weights on vertices: Algorithms and applications.
volume 1284 ot ecture Notes in Computer Scienpages 130-143. Springer Verlag, 1997.

[14] H. N. Djidjev and J. R. Gilbert. Separators in graphs with negative and multiple vertex weights.
Technical Report TR94-226, Department of Computer Science, Rice University, April 1994.

[15] S. Even and R. E. Tarjan. Computing an st-numberilbeoretical Computer Scienc®:339-344,
1976.

[16] G. N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applicaBoisl
Journal on Computingl6(6):1004—-1022, December 1987.

[17] J. Hopcroft and R. E. Tarjan. Efficient planarity testidgurnal of the ACM21(4):549-568, 1974.

[18] D. Hutchinson, A. Maheshwari, and N. Zeh. An external memory data structure for shortest path
queries. InProceedings of the 5th ACM-SIAM Computing and Combinatorics Confergakeane
1627 ofLecture Notes in Computer Scieng@ages 51-60. Springer Verlag, July 1999. To appear in
Discrete Applied Mathematics.

[19] V. Kumar and E. J. Schwabe. Improved algorithms and data structures for solving graph problems in
external memory. IfProceedings of the 8th IEEE Sumposium on Parallel and Distributed Computing
October 1996.

[20] A. Lempel, S. Even, and |. Cederbaum. An algorithm for planarity testing of graph§hdary of
Graphs: International Symposium (Rome 19¢@iges 215-232, New York, 1967. Gordon and Breach.

[21] R. J. Lipton and R. E. Tarjan. A separator theorem for planar gra@aM Journal on Applied
Mathematics36(2):177-189, 1979.

[22] A. Maheshwari and N. Zeh. External memory algorithms for outerplanar grapHaroteedings of
the 10th International Symposium on Algorithms and Computatiolnume 1741 ol ecture Notes in
Computer Scienggages 307-316. Springer Verlag, December 1999.

[23] A. Maheshwari and N. Zeh. I/O-efficient algorithms for graphs of bounded treewid®robeedings
of SODA'2001 pages 89-90, 2001.

13

[24] K. Mehlhorn and P. Mutzel. On the embedding phase of the hopcroft and tarjan planarity testing
algorithm. Algorithmica 16:233-242, 1996.

[25] U. Meyer. External memory bfs on undirected graphs with bounded degred2rotreedings of
SODA’2001 pages 87-88, 2001.

[26] K. Munagala and A. Ranade. I/O-complexity of graph algorithm®risceedings of the 10th Annual
ACM-SIAM Symposium on Discrete Algorithranuary 1999.

[27] J. Vitter and E. Shriver. Algorithms for parallel memory I: Two-level memoriglgiorithmicg 12(2—
3):110-147, 1994.

14

