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Abstract

We present a new algorithm to compute a subsetS of vertices of a planar graphG whose removal
partitionsG into O(N/h) subgraphs of sizeO(h) and with boundary sizeO(

√
h) each. The size ofS is

O(N/
√

h). ComputingStakesO(sort(N)) I/Os and linear space, provided thatM ≥ 56hlog2B. Together
with recent reducibility results, this leads toO(sort(N)) I/O algorithms for breadth-first search (BFS),
depth-first search (DFS), and single source shortest paths (SSSP) on undirected embedded planar graphs.
Our separator algorithm does not need a BFS tree or an embedding ofG to be given as part of the input.
Instead we argue that “local embeddings” of subgraphs ofG are enough.

1 Introduction

I/O-efficient graph algorithms have received considerable attention lately because massive graphs arise nat-
urally in many applications. Recent web crawls, for example, produce graphs of on the order of 200 million
nodes and 2 billion edges. Recent work in web modeling uses depth-first search, breadth-first search, short-
est paths, and connected components as primitive operations for investigating the structure of the web [8].
Massive graphs are also often manipulated in Geographic Information Systems (GIS), where many funda-
mental problems can be formulated as basic graph problems. The graphs arising in GIS applications are
often planar. Yet another example of massive graphs is AT&T’s 20TB phone call graph [9]. When working
with such large data sets, the transfer of data between internal and external memory, and not the inter-
nal memory computation, is often the bottleneck. Thus, I/O-efficient algorithms can lead to considerable
run-time improvements.

Breadth-first search (BFS) and depth-first search (DFS) are the two most fundamental graph searching
strategies. They are extensively used in internal memory algorithms, as they are easy to perform in lin-
ear time; yet they provide valuable information about the structure of the given graph. Unfortunately, no
I/O-efficient algorithms for BFS and DFS in arbitrary sparse graphs are known, while existing algorithms
perform reasonably well on dense graphs.

In this paper, we develop a new algorithm for computing small separators of planar graphs. Together
with recent results on single-source shortest paths (SSSP) and DFS, our algorithm leads to I/O-efficient
algorithms for SSSP, BFS, and DFS on undirected embedded planar graphs.

1.1 Model of Computation

The algorithms in this paper are designed and analyzed in the Parallel Disk Model (PDM) [27]. In this
model,D identical disks of unlimited size are attached to a machine with an internal memory capable of
holdingM data items. These disks constitute the external memory of the machine. Initially, all data is stored
on disk. Each disk is partitioned into blocks ofB data items each. An I/O-operation is the transfer of up to
D blocks, at most one per disk, to or from internal memory from or to external memory. The complexity of
an algorithm in the PDM is the number of I/O-operations it performs.

1



Sorting, permuting, and scanning an array ofN consecutive data items are primitive operations of-
ten used in external memory algorithms. Their I/O-complexities aresort(N) = Θ((N/DB) logM/B(N/B)),
perm(N) = Θ(min(N,sort(N))), andscan(N) = O(N/DB), respectively [27].

1.2 Previous Results

Many authors have studied I/O-efficient graph algorithms [1, 2, 5, 6, 10, 18, 19, 22, 23, 25, 26]. We only
discuss results on BFS, DFS, SSSP, and graph separators here. The best SSSP algorithm for arbitrary
undirected graphs takesO(|V|+(|E|/B) log2 |E|) I/Os [19]. The best BFS algorithm for arbitrary undirected
graphs takesO(|V|+sort(|E|)) I/Os [26]. Recently a BFS algorithm for graphs of bounded degree has been
presented in [25]. Ifd is the maximum vertex degree in the graph, the algorithm takesO(|V|/(γ logd B)+
sort(Bγ|V|)) I/Os usingO(|V|/B1−γ) blocks of external memory, for0 < γ≤ 1

2.
In [18], anO(sort(N)) I/O algorithm for computing a 2/3-separator of sizeO(

√
N) for an embedded

planar graphG is given, provided that a BFS-tree ofG is part of the input. In [5], this idea has been
extended to obtain anO(sort(N)) I/O algorithm to compute a smallε-separator of an embedded planar
graph, provided that a BFS-tree of the graph is given. Using the computed separator, the SSSP problem
can then be solved inO(sort(N)) I/Os for the given graph [5]. In a recent paper [6], two DFS algorithms
for embedded planar graphs are given. The first one takesO(sort(N) logN) I/Os. The second one takes
O(I (N)) I/Os, whereI (N) is the number of I/Os required to compute a BFS-tree of an embedded planar
graph. This seems to suggest that BFS is the core problem to be solved on planar graphs, in order to obtain
efficient algorithms for all other problems discussed here.

For undirected outerplanar graphs,O(sort(N)) I/O algorithms for BFS, DFS, and finding 2/3-separators
of size 2 are presented in [22]. Together with the algorithm of [5], this also gives anO(sort(N)) I/O
SSSP algorithm for undirected outerplanar graphs. In [23] it is shown how to solve the SSSP problem
in O(sort(N)) I/Os on graphs of bounded treewidth. It is shown in [22] that BFS, DFS, and SSSP require at
leastΩ(perm(N)) I/Os, even on outerplanar graphs.

In internal memory, the problem of computing graph separators is well studied. We mention the most
relevant results here. In their classic paper [21], Lipton and Tarjan show that a2

3-separator of sizeO(
√

N)
can be computed in linear time for a given embedded planar graphG of sizeN. The required embedding
can be computed in linear time [17, 7, 15, 20, 11, 24]. In [16], the algorithm of [21] is applied recursively to
compute inO(N logN) time a setSof O(N/h) vertices whose removal partitionsG into O(N/h) (possibly
disconnected) subgraphs of sizeO(h), each of which is adjacent to at mostO(

√
h) vertices inS. In [3] it is

shown how to compute a setSof O(
√

(g+1/ε)N) vertices whose removal partitions an embedded graphG
of genusg into subgraphs of size at mostεN. Other results include results on edge separators [12], separators
for graphs with multiple vertex weights [14], and separators of low cost if a cost function of the vertices of
G is given [13].

1.3 Our Results

In this paper we exploit the fact that BFS, DFS, and SSSP in embedded planar graphs can all be reduced
to computing small separators. Using the result of [5], SSSP can be solved inO(sort(N)) I/Os, given a
small separator ofG. Giving all edges in the graph unit weight, this immediately gives a BFS-algorithm for
the given graph. Using the reduction of [6], DFS can be reduced to BFS inO(sort(N)) I/Os. Thus, if we
can compute a small separator of an embedded planar graphG in O(sort(N)) I/Os, we can solve all these
problems inO(sort(N)) I/Os on embedded planar graphs.

We show how to find a planar separatorS of sizeO(N/
√

h) whose removal partitions the given graph
into O(N/h) subgraphs of size at mosth so that each subgraph is adjacent to at most

√
h separator vertices.

Our algorithm takesO(sort(N)) I/Os, provided thatM ≥ 56hlog2B. Our algorithm does not make any
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assumptions about the input, except that the given graphG is planar. In particular, we do not require an
embedding or a BFS-tree ofG. This is the main improvement over previous algorithms.

1.4 Preliminaries

An undirected graphG = (V,E) is an ordered pair of two setsV andE. The elements ofV are called the
verticesof G; the elements ofE are theedgesof G and are unordered pairs{v,w}, v,w∈ V. For an edge
{v,w} ∈ E, verticesv andw are theendpointsof edge{v,w}. Also, v andw are said to beadjacent. Edge
{v,w} is incidentto verticesv andw. The notion of adjacency can be extended to vertex sets and subgraphs
of G. Two vertex setsV1 ⊆V andV2 ⊆V, V1∩V2 = /0, are adjacent if there are two adjacent verticesv∈V1

andw∈V2. Two subgraphsG1 = (V1,E1) andG2 = (V2,E2) of G are adjacent ifV1 andV2 are adjacent. A
graphG is said to beplanar if it can be drawn in the plane so that the edges ofG do not intersect, except
at their endpoints. We call such a drawing ofG a (planar) embeddingand denote it byĜ. Given such an
embeddingĜ, we call the connected regions ofR2 \ Ĝ the facesof Ĝ. Let F denote the set of faces of
Ĝ. Then Euler’s formula says that|V|+ |F | − |E| = 2. In particular, this implies that|E| ≤ 3|V| −6, for
every planar graphG. We define thesize|G| of a planar graphG as the number|V| of vertices inG. As
|E|= O(|V|), |V|+ |E|= O(|G|).

Given a setS⊆V of vertices ofG and a subgraphH ⊆G−S, ∂H is the set of vertices inSadjacent to
H. We call∂H theboundaryof H. The following two results will be applied in our separator algorithm.

Theorem 1 [3] Given a planar graphG = (V,E) and an integerh > 0, it takesO(N) time to compute a set
S⊆V of O(N/

√
h) vertices so that no connected component ofG−Shas size exceedingh.

Theorem 2 [16] Given a planar graphG = (V,E) and a setS⊆V of vertices whose removal partitionsG
into O(N/h) subgraphsH1, . . . ,Hq such that|Hi | ≤ h and∑q

i=1 |∂Hi | = O(N/
√

h), it takesO(N logN) time
to compute a setS′ of O(N/

√
h) vertices,S⊆ S′ ⊆V, whose removal partitionsG into O(N/h) subgraphs

H ′
1, . . . ,H

′
q′ such that|H ′

i | ≤ h and|∂H ′
i | ≤ c

√
h, for 1≤ i ≤ q and some constantc≥ 0.

A graphG = (V,E) is bipartite if the vertex setV can be partitioned into two setsV1 andV2 such thatv∈V1

andw∈V2, for every edge{v,w} ∈ E. In this case we writeG= (V1,V2,E). We will need the following two
technical results.

Lemma 1 Let G = (V1,V2,E) be a bipartite planar graph such that the vertices inV2 have degree at least
three each. Then|V2| ≤ 2|V1|.
Proof. Consider an embeddinĝG of G. As G is bipartite, every face of̂G has size at least 4. Thus,|F | ≤
|E|/2. By Euler’s formula|V|+ |F |− |E|= 2. That is,

2 = |V|+ |F |− |E|
≤ |V|− |E|/2

|E| ≤ 2|V|.

On the other hand,|E| ≥ 3|V2|, so that

3|V2| ≤ 2|V|
= 2(|V1|+ |V2|)

|V2| ≤ 2|V1|.

3



Corollary 1 Let G = (V1,V2,E) be a bipartite planar graph. Let the vertices inV2 be partitioned into equiv-
alence classesC1, . . . ,Cq, where two verticesv andw are equivalent if they are adjacent to the same set of
vertices inV1. Thenq≤ 6|V1|.
Proof. Every vertexv ∈ V1 defines one classCv such that the vertices inCv are adjacent only tov. Thus,
there are at most|V1| such classesCv. Now consider a pair{v,w} of vertices inV1. Let C{v,w} be the set
of vertices inV2 adjacent only tov andw. Then we choose one representativer{v,w} ∈C{v,w} for each such
class of vertices. LetH1 be the bipartite subgraph ofG induced by all edges incident to such representatives
r{v,w}. As H1 is a subgraph ofG, H1 is planar. We now remove representativesr{v,w} from H1 and replace
edges{v, r{v,w}} and{r{v,w},w} by a single edge{v,w}. As every representativer{v,w} has degree 2, the
resulting graphH2 is a planar graph whose vertex set is a subset ofV1, and whose edges are in one-to-one
correspondence to the classesC{v,w}. Thus, by Euler’s formula, there can be at most3|V1| such classes
C{v,w}. Finally, letH3 be the subgraph ofG induced by all edges incident to vertices of degree at least 3 in
V2. GraphH3 is a bipartite planar graphH3 = (V ′

1,V
′
2,E

′) with V ′
1 ⊆V1, V ′

2 ⊆V2, andE′ ⊆ E. All vertices in
V ′

2 have degree at least 3, so that|V ′
2| ≤ 2|V ′

1| ≤ 2|V1|, by Lemma 1. Each vertex inV ′
2 gives rise to at most

one categoryCi , so that there are at most6|V1| categoriesCi in total.

Given a graphG= (V,E) and an edge{v,w} ∈E, thecontractionof edge{v,w} is the operation of removing
w from G and making all edges{u,w} ∈G, u 6= v, incident tov. If the vertices ofG have weights, then the
weight ofv is increased by the weight ofw. It is known that contracting edges of a planar graphG preserves
the planarity ofG.

A matchingof a graphG = (V,E) is a subsetM ⊆ E of edges so that no two edges inM share an
endpoint. The matchingM is maximalif every edge inE \M shares an endpoint with an edge inM .

2 Separators for Planar Graphs

In this section we present a new separator algorithm for planar graphs. In particular, we show how to
compute inO(sort(N)) I/Os and linear space a subsetS of O(N/

√
h) vertices of a given planar graphG

whose removal partitionsG into O(N/h) subgraphsH1, . . . ,Hq such that|Hi | ≤ h and|∂Hi | ≤
√

h, for 1≤
i ≤ q, provided thatM ≥ 56hlog2B.

The main idea of our algorithm is to construct a hierarchy oflog2B graphsG0, . . . ,Gr such thatG = G0,
|Gi+1| ≤ 1

2|Gi |, and every vertex inGi+1 represents a small subgraph ofGi and thus a subgraph ofG. Given
this hierarchy, we start by computing a small separatorSr partitioningGr into relatively coarse subgraphs
such that the number of vertices inG corresponding to the vertices inSr is small. Then we iteratively refine
graphGr to graphsGr−1,Gr−2, . . . ,G0 as well as the partitions of graphsGi until we obtain a separator
of sizeO(N/

√
h) partitioningG into subgraphs of size at mosthlog2B. Given such a partition, we load

each subgraph into internal memory and refine it so that no subgraph has size exceedingh or boundary
size exceeding

√
h. This can be done using Theorems 1 and 2 and introduces at mostO(N/

√
h) additional

separator vertices. Summing up, we construct a separator of sizeO(N/
√

h) partitioningG into subgraphs of
size at mosth and with boundary size at most

√
h. If we can implement every recursive step inO(sort(|Gi |))

I/Os, we obtain an algorithm that takesO(sort(N)) I/Os to compute the desired separator.
Our algorithm proceeds in two phases. The first phase is only concerned with generating subgraphs of

size at mosthlog2B while keeping the total separator size small. We are not concerned about the boundary
size of each subgraph at this point. The second phase partitions each subgraph further, so that every subgraph
has size at mosth and boundary size at most

√
h. We now describe these phases in detail.
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2.1 The Graph Hierarchy

The first step is to compute the sequence of graphsG0, . . . ,Gr . We first show how to construct graphGi+1

from graphGi and then prove a number of useful properties of graphsG0, . . . ,Gr .
Given a graphGi , every vertexv∈Gi has aweightω(v), which is the number of vertices inG represented

by v. That is,ω(v) = 1, for each vertexv∈G0, asG0 = G. For every vertexv∈Gi , itssizeσ(v) is the number
of vertices inGi−1 represented byv. We define a series of weight thresholdsρi = 2i+1, for 0≤ i ≤ r. Given
Gi , we initially define a graphG′

i+1 = Gi with σ(v) = 1, for all v∈ G′
i+1. The weight of a vertex inG′

i+1 is
the same as its weight inGi . We inspect the edges ofG′

i+1 in an arbitrary order. As long as there is an edge
{v,w} ∈G′

i+1 such thatω(v)+ω(w)≤ ρi+1 andσ(v)+σ(w)≤ 56, we contract edge{v,w} and repeat. Let
G′′

i+1 be the resulting graph which does not allow any further edge contractions.
We call a vertexv in G′′

i+1 heavyif ω(v) ≥ ρi+1/2 or σ(v) ≥ 28, andlight otherwise. Observe that for
every edge{v,w} ∈ G′′

i+1, eitherω(v)+ ω(w) > ρi+1 or σ(v)+ σ(w) > 56, so that at least one ofv andw
is heavy. Thus, no two light vertices are adjacent. We partition the light vertices of degree at most 2 in
G′′

i+1 into classesC1, . . . ,Cq such that the vertices in each class have the same set of (heavy) neighbors. We
partition each classCj into subclassesCj,1, . . . ,Cj,k j , so that the total weight of each subclassCj,l , 1≤ l ≤ k j ,
is at mostρi and its total size is at most56. For1≤ l < k j , either the total weight ofCj,l is at leastρi/2 or
its total size is at least28. The last classCj,k j may have weight less thanρi+1/2 and size less than28.

GraphGi+1 is defined as follows: The vertex set ofGi+1 consists of all heavy vertices ofG′′
i+1, all light

vertices of degree at least 3, as well as one vertexv j,l , for each classCj,l of light vertices of degree at most 2.
For every heavy vertexv∈G′′

i+1, the weight ofv in Gi+1 is the same as inG′′
i+1. The same is true for all light

vertices of degree at least 3. For every vertexv j,l , we defineω(v j,l ) = ∑v∈Cj,l
ω(v). There is an edge between

two verticesv andw, wherev andw are either heavy or light and of degree at least 3, if there is an edge
betweenv andw in G′′

i+1. There is an edge{v,v j,l} ∈Gi+1, wherev is a heavy vertex andv j,l corresponds to
classCj,l , if the vertices inCj,l are adjacent tov in G′′

i+1. The following lemma provides important properties
of graphsG0, . . . ,Gr , which are crucial to guarantee an upper bound on the size of the separator we compute
in the next section.

Lemma 2 Let G be planar, and letG= G0, . . . ,Gr be the graphs as defined above. Every graphGi , 0≤ i ≤ r,
has the following properties:

(i) GraphGi is planar,

(ii) ω(v)≤ ρi , for all verticesv∈Gi ,

(iii) Every vertexv∈Gi corresponds to at most56vertices inGi−1, for i > 0, and

(iv) |Gi | ≤ 28N/ρi .

Proof. To prove Property (i), we inductively show that each graphGi , 0≤ i ≤ r, has a planar embeddinĝGi .
For i = 0, G0 = G, so that an embeddinĝG0 of G0 exists by the planarity ofG. So assume that we are given
an embeddinĝGi−1 of graphGi−1. We show how to obtain a planar embeddingĜi of Gi . First we construct
a planar embedding ofG′′

i . Such an embedding is easily obtained fromĜi−1, asG′′
i is constructed fromGi−1

using a series of edge contractions. The adjacencies between heavy vertices and light vertices of degree at
least 3 do not change fromG′′

i to Gi . For a classCi,l , vertexvi,l is adjacent to the same heavy vertices in
Gi as all members ofCi,l in G′′

i . Thus, we rename an arbitrary member ofCi,l to vi,l and remove all other
members ofCi,l from G′′

i . The result is the desired embeddingĜi .
Property (ii) is easily shown by induction. In particular,ω(v) = 1≤ ρ0, for all verticesv∈ G0. Given

that all vertices inGi have weight at mostρi , the weight of a vertex inGi+1 can exceedρi+1 only by merging
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two or more vertices into a single vertex. But we merge vertices only if their total weight does not exceed
ρi+1. Property (iii) is explicitly guaranteed by our construction.

It remains to show Property (iv). Lethi be the number of heavy vertices inGi . It follows from the above
construction and Corollary 1 that|Gi | ≤ 7hi . Thus, Property (iv) follows if we can show thathi ≤ 4N/ρi .

We prove this claim by induction. We partition the heavy vertices into two categories. Heavy vertices of
type I are heavy because their weight is at leastρi/2. Type-II vertices are heavy because their size is at least
28. In general, graphGi contains at most2N/ρi type-I vertices and at most|Gi−1|/28 type-II vertices. That
is hi ≤ 2N

ρi
+ |Gi−1|

28 .

For i = 1, we obtainh1 ≤ 2N
ρ1

+ N
28 < 4N

ρ1
becauseρ1 = 4. For i > 1, we obtain

hi ≤ 2N
ρi

+
|Gi−1|

28
(1)

≤ 2N
ρi

+
hi−1

4
(2)

≤ 2N
ρi

+
N

ρi−1
(3)

=
4N
ρi

. (4)

Line (2) follows from Line (1) because|Gi−1| ≤ 7hi−1, as shown above. Line (3) follows from Line (2) by
the induction hypothesis. Line (4) follows from Line (3) using the fact thatρi = 2ρi−1.

Next we show how to compute graphsG0, . . . ,Gr I/O-efficiently. GraphG0 is already given. So assume
that we have computed graphsG0, . . . ,Gi−1. We compute graphGi as follows. Initially letG′

i = Gi−1.
An edge{v,w} of G′

i is calledcontractibleif ω(v) + ω(w) ≤ ρi andσ(v) + σ(w) ≤ 56. The contractible
subgraphH0 of G′

i is the graph induced by all contractible edges inG′
i . H0 can easily be extracted fromG′

i
in O(sort(|Gi−1|)) I/Os. We compute a maximal matching ofH0, which takesO(sort(|H0|)) I/Os [23]. We
contract all edges in the matching, leading to a graphH ′

0. We call a vertexv of H ′
0 matchedif it is the result

of contracting a matching edge inH0. Otherwise, we callv unmatched. First observe that two unmatched
vertices cannot be adjacent because otherwise the matching we have computed is not maximal. Our goal is
to construct a graphH ′′

0 such that no unmatched vertex has an incident edge which is contractible.
In order to do that we compute the subgraphH̃ of H ′

0 induced by all edges incident to unmatched vertices.
GraphH̃ is bipartite. LetVu be the set of unmatched vertices andVm be the set of matched vertices inH̃. We
number the vertices inVu andVm in their order of appearance. For every vertexv∈Vm, we store the set of
vertices inVu adjacent tov, sorted by increasing indices in the numbering. Letw be a vertex adjacent tov,
v1 < v2 < · · ·< vk be the vertices adjacent tow, andv = v j . Then we store the index of vertexv j+1 with w
in the adjacency list ofv. If v j+1 does not exist, we markv as being the last vertex adjacent tow. Also, we
markv as being the first vertex adjacent tow if v = v1. This representation of̃H can easily be constructed in
O(sort(|H0|) I/Os from the edge list ofH ′

0.
Now we use a priority queueQ to contract the contractible edges inH̃. We inspect the vertices inVm in

their order of appearance. For every vertexv, let w1 < w1 < · · ·< wl be the vertices adjacent tov. For every
vertexw j we perform the following action. Ifv is the first vertex adjacent tow j or if the minimum entry in
Q is entry(v,w j), we test whetherω(v)+ω(w j)≤ ρi andσ(v)+σ(w j)≤ 56. If this is the case, we contract
edge{v,w j} and increase the weight ofv by ω(w j) and the size ofv by σ(w j). Otherwise, there are two
possibilities. Ifv is the last vertex adjacent tow j , none of the edges incident tow j is contractible. Ifv is
not the last vertex, letu be the vertex stored withw j in the adjacency listw j . Then we add the pair(u,w j)
to Q. If v is not the first vertex adjacent tow j and the first entry inQ is not(v,w j), then vertexw j has been
contracted into another heavy vertex already, and we proceed to the next vertex adjacent tov.
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It is obvious that this algorithm achieves the desired goal. In particular, every edge inH̃ is being
inspected by the algorithm, and the algorithm contracts the edge unless the edge is not contractible or the
unmatched endpoint of the edge has been contracted into another matched vertex, so that the edge now
joins two matched vertices. Thus, none of the remaining edges that are incident to unmatched vertices are
contractible. This procedure takesO(sort(|H0|)) I/Os [4], asH̃ is planar and its size is bounded from above
by the size ofH0.

Let H ′′
0 be the graph obtained fromH ′

0 by contracting the edges iñH using the above algorithm. We
extract the contractible subgraphH1 of H ′′

0 and repeat the whole process. We stop as soon as the con-
tractible subgraphH j+1 of graphH ′′

j is empty. From the above discussion it follows that each iteration
takesO(sort(|H j |)) I/Os. The following lemma shows that we repeat this compression procedure at most
b2log56c= 11times and that the total I/O-complexity isO(sort(|Gi |)), as the sizes of graphsH0, . . . ,Hs are
geometrically decreasing.

Lemma 3 For every vertexv∈ H j , σ(v)≥ 2 j .

Proof. The proof is by induction. Forj = 0, the claim holds because every vertex inH0 has sizeσ(v) = 1.
So assume that the claim holds forj < k. Then every vertex inHk−1 has size at least2k−1. As every matched
vertexv in H ′′

k−1 is the result of contracting at least one edge inHk−1, its size is at leastσ(v) = 2·2k−1 = 2k.
Also, no unmatched vertex inH ′′

k−1 has an incident edge which is contractible. Thus, only the matched
vertices inH ′′

k−1 remain inHk.

It is easy to extract the final vertex and edge sets ofG′
i obtained after finishing all contractions. Then it takes

sorting and scanning to partition the light vertices of degree at most two inG′
i into classesC1, . . . ,Cq and

partition these classes into subclassesCj,l , as described above. Thus,Gi can be constructed inO(sort(|Gi−1|)
I/Os from Gi−1. As |G0| = N, and the sizes of subgraphsGi are geometrically decreasing, we obtain the
following lemma.

Lemma 4 The sequenceG0, . . . ,Gr of graphs, as described above, can be constructed inO(sort(N)) I/Os
usingO(N/B) blocks of external memory.

2.2 The Separator Hierarchy

Having constructed graphsG0, . . . ,Gr we use them to construct a relatively coarse separator ofG. In partic-
ular, we show how to construct a separatorSof sizeO(N/

√
h) whose removal partitionsG into connected

subgraphs of size at mosthlog2B.
We start by computing a partition ofGr into subgraphs of size at mosthlog2B. To do this, we use an

arbitrary linear-time algorithm to compute a planar embedding ofGr and apply Theorem 1 to compute the
desired partition. As|Gr |= O(N/B), this takesO(N/B) I/Os. LetSr = S′′r be the computed separator, whose
size is|Sr | ≤ c|Gr |/(

√
hlogB), for some constantc defined in [3]. Given a separatorSj+1 for graphG j+1,

we construct a separatorSj for graphG j as follows: First we construct the setS′j of vertices represented
by the vertices inSj+1. S′j is a separator ofG j whose removal partitionsG j into subgraphs of size at most

56hlog2B. This is true because every subgraphH of G j+1−Sj+1 has size at mosthlog2B, and every vertex
in G j+1 represents at most56 vertices inG j , by Lemma 2. We load every subgraphH of G j −Sj whose
size exceedshlog2B into internal memory, compute an embedding ofH, and partition it into subgraphs of
size at mosthlog2B, again applying Theorem 1. LetS′′j be the separator obtained by partitioning all heavy

subgraphs ofG j −S′j this way. |S′′j | ≤ c|G j |/(
√

hlogB), for the same constantc as defined above. Now
Sj = S′j ∪S′′j . We continue this procedure until we obtain a separatorS0 of G0 = G.
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Lemma 5 The separatorS0 of G computed by the above procedure has sizeO(N/
√

h). The connected
components ofG−S0 have size at mosthlog2B.

Proof. It follows from the above construction and Lemma 2 that

|S0| ≤
r

∑
i=0

ρi |S′′i |

≤ c
r

∑
i=0

ρi
|Gi |√
hlogB

≤ c
r

∑
i=0

ρi
28N

ρi
√

hlogB

= c
r

∑
i=0

28N√
hlogB

=
28cN√

h
.

The bound on the size of the connected components ofG−S0 is explicitly ensured by our construction.

Given separatorSi+1, it takesO(sort(|Gi |)) I/Os to constructS′i and compute the connected components
of Gi −S′i [10]. Then it takesO(scan(|Gi |)) I/Os to load each connected component into internal memory
and perform the above partition. As the sizes of graphsG0, . . . ,Gr are geometrically decreasing, the total
I/O-complexity of the algorithm isO(sort(N)).

2.3 Computing the Final Separator

In order to finish the computation of our separator algorithm, we have to partition each connected component
of G−S0 into smaller subgraphs of size at mosth and boundary size at most

√
h. We do this by applying

Theorems 1 and 2.
We use Theorem 1 first to partition the subgraphs ofG−S0 into subgraphs of size at mosth each. In

particular, we compute the connected components ofG−S0 and load them into internal memory one by
one. For each such componentQ, we compute an embeddinĝQ and apply Theorem 1 to partitionQ into
subgraphs of size at mosth. Let S′ be the total number of separator vertices introduced by partitioning
the connected components ofG−S0 this way. By Theorem 1,|S′| = O(N/

√
h). Let S′0 = S0∪S′. Then

|S′0|= O(N/
√

h).
The final step is now to apply Theorem 2 in order to compute a separatorS⊇S′0 whose removal partitions

G into O(N/h) subgraphs whose boundary sizes do not exceed
√

h. There are two obstacles preventing us
from applying Theorem 2 immediately. Firstly, the total boundary size of the connected components of
G−S′0 may beω(N/

√
h), even though the number of separator vertices isO(N/

√
h). Secondly, the number

of connected components ofG−S′0 may be as large asΩ(N). In order to apply Theorem 2, we need
to obtain a partition ofG−S′0 into O(N/h) subgraphsH̄1, . . . , H̄s such that|H̄i | ≤ h, for 1≤ i ≤ s, and
∑s

i=1 |∂H̄i |= O(N/
√

h).
We satisfy these two requirements using ideas similar to the compression step in the construction of the

graph hierarchy in Section 2.1, but separately. First we ensure that the total boundary size isO(N/
√

h).
Once this is done, we merge small subgraphs, in order to reduce the number of graphs toO(N/h). A more
straightforward procedure may produce the correct result; but our analysis uses the fact that at any time, we
can represent the adjacencies between subgraphs and separator vertices using a planar graph. This would
not be true if for instance we exchanged the two steps (i.e., first reduced the number of regions and then
tried to argue about the total boundary size).
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In order to reduce the total boundary size, we build a planar graphG̃ containing all separator vertices
in S′0 as well as oneregion vertexper connected component ofG−S′0. G̃ contains the same edges between
vertices inS′0 as G. There is an edge between a separator vertexv and a region vertexw representing
componentQ if v is adjacent toQ in G. We now consider all region vertices of degree at most two inG̃. We
partition these vertices into equivalence classes so that the vertices in the same equivalence class have the
same set of neighbors. For every region vertexw corresponding to a connected componentQ, let its weight
ω(w) be defined asω(w) = |Q|. A region vertex isheavyif its weight is at leasth/2. We now merge region
vertices in each equivalence classC until at most one light vertex is left in each class, while maintaining the
property that no vertex has weight exceedingh.

As a result, there areO(N/h) heavy region vertices andO(N/
√

h) light region vertices inG̃, by Corol-
lary 1. Every vertexv in G̃ now represents a (possibly disconnected) subgraphHi of G−S′0. The total
boundary size∑q

i=1 |∂Hi | of these subgraphs is equal to the number of edges inG̃. However,G̃ hasO(N/
√

h)
vertices and is planar. Thus,∑q

i=1 |∂Hi |= O(N/
√

h), as desired.
GivenG̃, we use it to further merge subgraphsH1, . . . ,Hq, in order to reduce the number of subgraphs to

O(N/h). The crucial observation is that merging subgraphs cannot increase the total boundary size. We now
give every separator vertexv∈ S′0 weightω(v) = 0. Region vertices retain their weights from the previous
computation.

We compress̃G further by choosing an arbitrary incident edge{v,w} for each separator vertexv∈ G̃ and
contracting it. This preserves the planarity ofG̃ and reduces the vertex set ofG̃ so that it contains only region
vertices. We apply our edge-contraction algorithm of Section 2.1 in order to further compressG̃ so that no
vertex inG̃ has weight exceedingh and there is no edge{v,w} ∈ G′ such thatω(v)+ ω(w) < h. A vertex
in G̃ is heavy if its weight is at leasth/2, and light otherwise. We now partition the light vertices of degree
at most two inG̃ into equivalence classes so that the vertices in a classC have the same set of neighbors.
We keep merging vertices in the same class until no classC contains more than one light vertex. As shown
in Section 2.1, this procedure produces a graphḠ with O(N/h) vertices. Each such vertexv represents a
subgraph ofG−S′0 whose size is equal to the weight ofv. Thus, we obtain a partition ofG−S′0 into O(N/h)
subgraphs̄H1, . . . , H̄s of size at mosth such that∑s

i=1 |∂H̄i |= O(N/
√

h).
We now load each subgraph̄Hi into internal memory, compute an embedding ofH̄i , and partition it into

subgraphs of size at mosth and boundary size at most
√

h. If we had used the algorithm in [16] to compute
S′0, this would be straightforward, as in fact every subgraphHi including its boundarywould have size at
mosth. Our algorithm on the other hand does not guarantee a bound on the size ofHi ∪ ∂Hi better than
O(N/

√
h).

In order to work around this problem, we represent each subgraphH̄i and its boundary by another graph
H̃i , which is obtained by compressing∂H̄i to some new set∂H̃i whose size is at most6h. We first define
H̃i and prove that its size is at most7h. Then we show how to derive the desired separator ofH̄i from a
separator ofH̃i .

In order to computẽHi from H̄i , we consider the bipartite graph induced by edges{v,w}, v∈ H̄i ,w∈ ∂H̄i .
The compression technique we apply is the one we have applied already a number of times in our algorithm.
In particular, we partition the separator vertices in∂H̄i into classes according to the sets of adjacent vertices
in H̄i . Let thedegreeof such a classC be the number of vertices in̄Hi adjacent to the vertices inC. For each
classC of degree at most two, we replace all vertices inC by a single vertexv whose weight we define to
be ω(v) = |C|. For all other verticesv∈ ∂H̄i , ω(v) = 1. For all vertices inH̄i , ω(v) = 0. By Corollary 1,
|H̃i | ≤ 7|H̄i | ≤ 7h.

We now apply Theorem 2 to compute a partition ofH̃i into subgraphs̃Hi,1, . . . , H̃i,ki of weight at most√
h/2 each. By Theorem 2, the total size of the separators computed for all graphsH̃1, . . . , H̃s is O(N/

√
h),

and each subgraph̃Hi, j of H̃i is adjacent to at most
√

h/2 separator vertices. Unfortunately, some of these
vertices may have a large weight; that is they correspond to many separator vertices in∂H̄i . Thus, even
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though a subgraph̃Hi, j is adjacent to at most
√

h/2 separator vertices, the corresponding subgraphH̄i, j =
H̄i ∩ H̃i, j of H̄i may be adjacent to many separator vertices. However, each separator vertex of large weight
is the result of compressing a number of separator vertices in∂H̄i into a single vertex. As we do this only
for vertices adjacent to at most two vertices in̄Hi , every separator vertex of large weight is adjacent to at
most two vertices inH̃i, j . Thus, we modify the obtained separator as follows. For every separator vertex of
weight two or greater adjacent to a vertexv∈ H̃i, j , we addv to the separator computed forH̃i . As a result
we obtain a separator whose size is at most twice the size of the separator computed forH̃i ; every subgraph
H̄i, j of H̄i is now adjacent to at most

√
h separator vertices.

Let S′′ be the set of all separator vertices introduced in this step, and letS= S′0∪S′′ be the final separator.
By Theorem 2,|S| = O(N/

√
h), and the number of subgraphs̄Hi, j obtained by removing the vertices inS

from G is O(N/h), so that we obtain the main result of our paper.

Theorem 3 Given a planar graphG and an integerh > 0, it takesO(sort(N)) I/Os andO(N/B) blocks
of external memory to compute a separatorS of sizeO(N/

√
h) whose removal partitionsG into O(N/h)

subgraphs of size at mosth and boundary size at most
√

h, provided thatM ≥ hlog2B.

3 Applications

In this section we show how to use Theorem 3 to solve the following three fundamental problems on em-
bedded planar graphs I/O-efficiently:

Breadth-first search: Given an undirected graphG = (V,E), compute a spanning treeT of G rooted at
some source vertexs so that for every edge{v,w} ∈ E, the distances froms to v and froms to w in
T differ by at most one, where the distance between two vertices is the number of edges in the path
between the two vertices.

Depth-first search: Given an undirected graphG = (V,E), compute a spanning treeT of G rooted at some
source vertexsso that for every edge{v,w} ∈ E, v is an ancestor ofw in T or vice versa.

Single source shortest paths:Given an undirected graphG = (V,E) and an assignmentw : E → R+
0 of

non-negative weights to the edges ofG, compute a spanning treeT of G rooted at some source vertex
sso thatT is the union of the shortest paths froms to all vertices inG, where the shortest path froms
to some vertexv is the path whose edges have minimum total weight among all paths froms to v.

We prove the following theorem.

Theorem 4 It takesO(sort(N)) I/Os andO(N/B) blocks of external memory to compute BFS and DFS
trees of an embedded planar graphG of sizeN and to solve the single source shortest-path problem onG,
provided thatM ≥ B2 log2B.

We show that SSSP can be solved inO(sort(N)) I/Os. The result on BFS then follows from the fact that
BFS is the single source shortest path problem withw(v) = 1, for all v∈G. The result on DFS follows from
theO(sort(N)) I/O reduction of DFS to BFS shown in [6].

We use the algorithm of [5] to solve the SSSP problem given a small separator of an embedded planar
graph. This algorithm uses the notion of boundary sets, as introduced in [16], in order to achieve I/O-
efficiency. Given a separatorS whose removal partitions a planar graphG into subgraphsH1, . . . ,Hq, the
vertices inS can be partitioned into maximal subsetsB1, . . . ,Bt such that the vertices in each setBi are
adjacent to the same set of subgraphsHi . We callB1, . . . ,Bt theboundary setsdefined by the separatorS
and the subgraphsH1, . . . ,Hq. The following theorem provides the tool for solving the SSSP problem on
embedded planar graphs.
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Theorem 5 [5] Let G be an embedded planar graph of sizeN and bounded degree, andSbe a set ofO(N/B)
verticesO(N/B) whose removal partitionsG into O(N/B2) subgraphsH1, . . . ,Hq with the following prop-
erties:

(i) |Hi | ≤ B2, 1≤ i ≤ q,

(ii) |∂Hi | ≤ B, 1≤ i ≤ q,

(iii) The separatorSand subgraphsH1, . . . ,Hq defineO(N/B) boundary setsB1, . . . ,Bt .

Then the single source shortest path problem inG can be solved inO(sort(N)) I/Os usingO(N/B) blocks
of external memory.

In order to solve the SSSP problem for any embedded planar graphG, we first transform it to an embedded
planar graphG′ of sizeO(|G|) whose vertices have degree at most 3. We will ensure that the weighted
distances between the vertices inG and the corresponding vertices inG′ are preserved. GivenG′, we apply
Theorem 3 with parameterh = B2 to G′ to obtain a separatorSwhose removal partitionsG′ into O(N/B2)
subgraphs of size at mostB2 and boundary size at mostB. Finally we regroup the connected components of
G′−S in a manner that reduces the number of boundary sets toO(N/B2).

The construction ofG′ from G replaces every vertexv of G whose degreedv exceeds 3 by a cycle
v0, . . . ,vdv−1 of vertices. Letw0, . . . ,wdv−1 be the neighbors ofv in G in clockwise order aroundv. Then
we replace edges{v,wi}, 0≤ i < dv, by edges{vi ,wi}, 0≤ i < dv. For every edgee= {vi ,v(i+1)moddv

} in
the cycle representing vertexv, we define its weightw(e) = 0. For edges{vi ,wi}, 0≤ i < dv, we define
w({vi ,wi}) = w({v,wi}). Then it is easily verified thatG′ is planar, has sizeO(|G|), and that for any two
verticesv,w∈G, distG(v,w) = distG′(vi ,w j), 0≤ i < dv, 0≤ j < dw, wherev0, . . . ,vdv−1 andw0, . . . ,wdw−1

are the vertices inG′ representingv andw, respectively. Given the embedding ofG, the construction ofG′

takesO(sort(N)) I/Os.
In order to reduce the number of boundary sets ofG′−S, let Q1, . . . ,Qr be the connected components of

G′−S. We construct a graph̃G containing one vertexvi per connected componentQi and an edge between
two verticesvi andv j if ∂Qi ∩ ∂Q j 6= /0. Since the vertices inG′ have degree at most 3,̃G is planar, and
∑q

i=1 |∂Qi |= O(|S|) = O(N/B). We now assign weightsω(vi) = |Qi | andγ(vi) = |∂Qi | to verticesv1, . . . ,vr ,
and apply our, by now standard, contraction procedure toG̃. That is, as long as there is an edge{v,w}
such thatω(v) + ω(w) ≤ B2 and γ(v) + γ(w) ≤ B, we contract this edge and repeat. We call a vertex in
the resulting compressed version ofG̃ heavyif either ω(v) ≥ B2/2 or γ(v) ≥ B/2, and light otherwise. We
partition the light vertices of degree at most two into equivalence classes such that the vertices in the same
equivalence class are adjacent to the same set of (heavy) neighbors. Then we merge vertices in the same
equivalence class until no class contains more than one light vertex. As there areO(N/B2) heavy vertices,
the total size of the graph̄G obtained after these contractions isO(N/B2), by Corollary 1. Every vertex
v∈ Ḡ represents a subgraphHi of G′−Sconsisting of a number of connected componentsQ j . It is easily
shown that graphsRi = Hi ∪∂Hi are of two possible types:

(i) EitherRi is connected or

(ii) Ri shares vertices with at most two other graphsRj andRk, which are connected.

It now follows from arguments found in [16] that the separatorS and graphsH1, . . . ,Hq defineO(N/B2)
boundary sets. As it takesO(sort(N)) I/Os to constructG′ from G, compute the separatorS for G′, and
group the connected components ofG′−S into the desired subgraphsH1, . . . ,Hq, this proves Theorem 4.
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4 Conclusions

We have provided a fairly simple and practical algorithm for computing separators of planar graphs which
leads toO(sort(N)) I/O solutions for BFS, DFS, and SSSP on embedded planar graphs, provided thatM ≥
B2 log2B. Due to the constraints of the SSSP algorithm of [5], reducing the memory requirement for our
separator algorithm belowB2 does not lead to improved memory requirements for BFS, DFS, and SSSP. It
is a challenging open problem to design a separator algorithm that takesO(sort(N)) I/Os forM ≤ B2. If the
number of disks isD = 1, we may increase the size of the separator toO(sort(N)) instead ofO(N/B) in our
algorithm. This still leads toO(sort(N)) I/O algorithms for SSSP, BFS, and DFS and reduces the memory

requirements of our algorithm toM ≥ B2 log2 B
log2

M/B N
. For logN ≥ log2B, this implies that our algorithm requires

only M ≥ B2. In practice, however, this constraint is never satisfied.
Although our separator algorithm does not require an embedding of the planar graph to be given as

part of the input, the degree reduction of the graph applied in Section 3 requires an embedding, as does the
reduction from DFS to BFS of [6], so that we need to compute an embedding of the given graph in order
to solve any of the applications discussed in this paper. In practice, the requirement that the given graph
be given together with an embedding is not a serious constraint, as in many large scale applications dealing
with planar graphs such as GIS, we know that the graph is planar only because we are given an embedding.
From a theoretical point of view, however, I/O-efficient algorithms for planarity testing and computing a
planar embedding would be desirable, in order to have a firm grip on planar graphs as an abstract graph
class in external memory.

Acknowledgments. I would like to thank Lyudmil Aleksandrov and Anil Maheshwari for helpful discus-
sions on planar separators and external memory issues.
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